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Abstract [Invariant differential operators on Siegel-Jacobi space and Maass-
Jacobi forms]
For two positive integers m and n, we let Hn be the Siegel upper half plane of
degree n and let C(m,n) be the set of allm×n complex matrices. In this article,
we study differential operators on the Siegel-Jacobi space Hn×C(m,n) that are

invariant under the natural action of the Jacobi group Sp(n,R)nH
(n,m)
R on

Hn ×C(m,n), where H
(n,m)
R denotes the Heisenberg group. We give some ex-

plicit invariant differential operators. We present important problems which
are natural. We announce some solutions for these natural problems. Finally
we introduce a notion of Maass-Jacobi forms.
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1 Introduction

For a given fixed positive integer n, we let

Hn = {Ω ∈ C(n,n) | Ω = tΩ, ImΩ > 0 }

be the Siegel upper half plane of degree n and let

Sp(n,R) = {M ∈ R(2n,2n) | tMJnM = Jn }

be the symplectic group of degree n, where F (k,l) denotes the set of all k × l
matrices with entries in a commutative ring F for two positive integers k and
l, tM denotes the transpose of a matrix M and

Jn =

(
0 In

−In 0

)
.

Sp(n,R) acts on Hn transitively by
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M ·Ω = (AΩ +B)(CΩ +D)−1, (1.1)

where M =

(
A B
C D

)
∈ Sp(n,R) and Ω ∈ Hn.

For two positive integers m and n, we consider the Heisenberg group

H
(n,m)
R =

{
(λ, µ;κ) | λ, µ ∈ R(m,n), κ ∈ R(m,m), κ+ µ tλ symmetric

}
endowed with the following multiplication law(

λ, µ;κ
)
◦
(
λ′, µ′;κ′

)
=
(
λ+ λ′, µ+ µ′;κ+ κ′ + λ tµ′ − µ tλ′

)
with

(
λ, µ;κ

)
,
(
λ′, µ′;κ′

)
∈ H

(n,m)
R . We define the Jacobi group of degree n

and index m that is the semidirect product of Sp(n,R) and H(n,m)
R

GJ = Sp(n,R)nH
(n,m)
R

endowed with the following multiplication law(
M, (λ, µ;κ)

)
·
(
M ′, (λ′, µ′;κ′ )

)
=
(
MM ′, (λ̃+λ′, µ̃+µ′;κ+κ′+λ̃ tµ′−µ̃ tλ′ )

)
with M,M ′ ∈ Sp(n,R), (λ, µ;κ), (λ′, µ′;κ′) ∈ H

(n,m)
R and (λ̃, µ̃) = (λ, µ)M ′.

Then GJ acts on Hn × C(m,n) transitively by(
M, (λ, µ;κ)

)
· (Ω,Z) =

(
M ·Ω, (Z + λΩ + µ)(CΩ +D)−1

)
, (1.2)

where M =

(
A B
C D

)
∈ Sp(n,R), (λ, µ;κ) ∈ H

(n,m)
R and (Ω,Z) ∈ Hn ×

C(m,n). We note that the Jacobi group GJ is not a reductive Lie group and
the homogeneous space Hn × C(m,n) is not a symmetric space. We refer to
[2, 7, 22, 23, 24, 25, 27, 28, 29, 30, 31] about automorphic forms on GJ and
topics related to the content of this paper. From now on, for brevity we write
Hn,m = Hn×C(m,n). The homogeneous space Hn,m is called the Siegel-Jacobi
space of degree n and index m.

The aim of this survey paper is to present results on differential operators
on Hn,m which are invariant under the natural action (1.2) of GJ . The study
of these invariant differential operators on the Siegel-Jacobi space Hn,m is
interesting and important in the aspects of invariant theory, arithmetic and
geometry. This article is organized as follows. In Section 2, we review differ-
ential operators on Hn invariant under the action (1.1) of Sp(n,R). In Section
3, we discuss differential operators on Hn,m invariant under the action (1.2)
of GJ and propose some natural problems related to invariant differential op-
erators on the Siegel-Jacobi space. We present some results without proofs.
In Section 4, we gives some examples of explicit GJ -invariant differential op-
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erators on Hn,m. In Section 5, we introduce the partial Cayley transform
of the Siegel-Jacobi space into the Siegel-Jacobi disk and present some ex-
plicit invariant differential operators on the Siegel-Jacobi disk. In Section 6,
we present some results in the special case n = m = 1 in detail. We give
complete solutions of the problems that are proposed in Section 3. In the
final section, using these invariant differential operators on the Siegel-Jacobi
space, we discuss a notion of Maass-Jacobi forms.

Acknowledgements: This work was in part done during my stay at the
Max-Planck-Institut für Mathematik in Bonn. I am very grateful to MPIM,
Bonn for its hospitality and financial support. I also thank the National
Research Foundation of Korea for its financial support. I would like to give my
hearty thanks to Don Zagier, Eberhard Freitag, Rainer Weissauer, Hiroyuki
Ochiai and Minoru Itoh for their interests in this work and fruitful discussions.

Notations: We denote by Q, R and C the field of rational numbers, the field
of real numbers and the field of complex numbers respectively. We denote by
Z and Z+ the ring of integers and the set of all positive integers respectively.
The symbol “:=” means that the expression on the right is the definition of
that on the left. For two positive integers k and l, F (k,l) denotes the set of
all k × l matrices with entries in a commutative ring F . For a square matrix
A ∈ F (k,k) of degree k, tr(A) denotes the trace of A. For any M ∈ F (k,l), tM
denotes the transpose of a matrix M . For A ∈ F (k,l) and B ∈ F (k,k), we set
B[A] = tABA. For a positive integer n, In denotes the identity matrix of
degree n. For a complex number z, |z| denotes the absolute value of z. For a
complex number z, Re z and Im z denote the real part of z and the imaginary
part of z respectively.

2 Invariant Differential Operators on Siegel Space

For a coordinate Ω = (ωij) ∈ Hn, we write Ω = X+i Y with X = (xij), Y =
(yij) real. We put dΩ =

(
dωij

)
and dΩ =

(
dωij

)
. We also put

∂

∂Ω
=

(
1 + δij

2

∂

∂ωij

)
and

∂

∂Ω
=

(
1 + δij

2

∂

∂ωij

)
.

Then for a positive real number A,

ds2n;A = A tr
(
Y −1dΩ Y −1dΩ

)
(2.1)

is a Sp(n,R)-invariant Kähler metric onHn (cf. [19, 20]), where tr(M) denotes
the trace of a square matrix M . H. Maass [14] proved that the Laplacian of
ds2n;A is given by
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∆n;A =
4

A
tr

(
Y

t(
Y
∂

∂Ω

)
∂

∂Ω

)
. (2.2)

And
dvn(Ω) = (detY )−(n+1)

∏
1≤i≤j≤n

dxij
∏

1≤i≤j≤n

dyij

is a Sp(n,R)-invariant volume element on Hn (cf. [20, p. 130]).

For brevity, we write G = Sp(n,R). The isotropy subgroup K at iIn for
the action (1.1) is a maximal compact subgroup of G given by

K =

{(
A −B
B A

) ∣∣∣ A tA+B tB = In, A
tB = B tA, A,B ∈ R(n,n)

}
.

Let k be the Lie algebra of K. Then the Lie algebra g of G has a Cartan
decomposition g = k⊕ p, where

g =

{(
X1 X2

X3 − tX1

) ∣∣∣ X1, X2, X3 ∈ R(n,n), X2 = tX2, X3 = tX3

}
,

k =

{(
X −Y
Y X

)
∈ R(2n,2n)

∣∣∣ tX +X = 0, Y = tY

}
,

p =

{(
X Y
Y −X

) ∣∣∣ X = tX, Y = tY, X, Y ∈ R(n,n)

}
.

The subspace p of g may be regarded as the tangent space of Hn at iIn.
The adjoint representation of G on g induces the action of K on p given by

k · Z = kZ tk, k ∈ K, Z ∈ p. (2.3)

Let Tn be the vector space of n × n symmetric complex matrices. We let
Ψ : p −→ Tn be the map defined by

Ψ

((
X Y
Y −X

))
= X + i Y,

(
X Y
Y −X

)
∈ p. (2.4)

We let δ : K −→ U(n) be the isomorphism defined by

δ

((
A −B
B A

))
= A + i B,

(
A −B
B A

)
∈ K, (2.5)

where U(n) denotes the unitary group of degree n. We identify p (resp. K)
with Tn (resp. U(n)) through the map Ψ (resp. δ). We consider the action of
U(n) on Tn defined by

h · ω = hω th, h ∈ U(n), ω ∈ Tn. (2.6)
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Then the adjoint action (2.3) of K on p is compatible with the action (2.6)
of U(n) on Tn through the map Ψ. Precisely for any k ∈ K and Z ∈ p, we
get

Ψ(k Z tk) = δ(k)Ψ(Z) tδ(k). (2.7)

The action (2.6) induces the action of U(n) on the polynomial algebra Pol(Tn)
consisting of polynomials on Tn. We denote by Pol(Tn)

U(n) the subalgebra of
Pol(Tn) consisting of polynomials invariant under the action of U(n). Then
we have the so-called Helgason map

Θn : Pol(Tn)
U(n) −→ D(Hn) (2.8)

of Pol(Tn)
U(n) onto the algebra D(Hn) of differential operators on Hn invari-

ant under the action (1.1) of G. The map Θn is a canonical linear bijection
but is not an algebra isomorphism. The map Θn is described explicitly as
follows. We put N = n(n + 1). Let {ξα | 1 ≤ α ≤ N } be a basis of a real
vector space p. If P ∈ Pol(p)K , then

(
Θn(P )f

)
(gK) =

[
P

(
∂

∂tα

)
f

(
g exp

(
N∑

α=1

tαξα

)
K

)]
(tα)=0

, (2.9)

where f ∈ C∞(Hn). We refer to [10, 11] for more detail. In general, it is hard
to express Φ(P ) explicitly for a polynomial P ∈ Pol(p)K .

According to the work of Harish-Chandra [8, 9], the algebra D(Hn) is
generated by n algebraically independent generators and is isomorphic to the
commutative algebra C[x1, · · · , xn] with n indeterminates. We note that n
is the real rank of G. Let gC be the complexification of g. It is known that
D(Hn) is isomorphic to the center of the universal enveloping algebra of gC.

Using a classical invariant theory (cf. [12, 21], we can show that Pol(Tn)
U(n)

is generated by the following algebraically independent polynomials

qj(ω) = tr
((
ωω
)j )

, ω ∈ Tn, j = 1, 2, · · · , n. (2.10)

For each j with 1 ≤ j ≤ n, the image Θn(qj) of qj is an invariant dif-
ferential operator on Hn of degree 2j. The algebra D(Hn) is generated by n
algebraically independent generators Θn(q1), Θn(q2), · · · , Θn(qn). In particu-
lar,

Θn(q1) = c1 tr

(
Y

t(
Y
∂

∂Ω

)
∂

∂Ω

)
for some constant c1. (2.11)

We observe that if we take ω = x + i y ∈ Tn with real x, y, then q1(ω) =
q1(x, y) = tr

(
x2 + y2

)
and
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q2(ω) = q2(x, y) = tr
((
x2 + y2

)2
+ 2x

(
xy − yx)y

)
.

It is a natural question to express the images Θn(qj) explicitly for j =
2, 3, · · · , n. We hope that the images Θn(qj) for j = 2, 3, · · · , n are expressed
in the form of the trace.

H. Maass [15] found explicit algebraically independent generators of D(Hn).
G. Shimura [18] found canonically defined algebraically independent genera-
tors of D(Hn).

Example 2.1. We consider the case n = 1. The algebra Pol(T1)
U(1) is gen-

erated by the polynomial

q(ω) = ω ω, ω = x+ iy ∈ C with x, y real.

Using Formula (2.9), we get

Θ1(q) = 4 y2
(
∂2

∂x2
+

∂2

∂y2

)
.

Therefore D(H1) = C
[
Θ1(q)

]
.

Example 2.2. We consider the case n = 2. The algebra Pol(T2)
U(2) is gen-

erated by the polynomial

q1(ω) = tr
(
ω ω

)
, q2(ω) = tr

((
ω ω
)2)

, ω ∈ T2.

Using Formula (2.9), we may express Θ2(q1) and Θ2(q2) explicitly. Θ2(q1)
is expressed by Formula (2.11). The computation of Θ2(q2) might be quite
tedious. We leave the detail to the reader. In this case, Θ2(q2) was essentially
computed in [5], Proposition 6. Therefore

D(H2) = C
[
Θ2(q1), Θ2(q2)

]
.

In fact, the center of the universal enveloping algebra U (gC) was computed
in [5].

3 Invariant Differential Operators on Siegel-Jacobi
Space

The stabilizer KJ of GJ at (iIn, 0) is given by
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KJ =
{(
k, (0, 0;κ)

) ∣∣ k ∈ K, κ = tκ ∈ R(m,m)
}
.

Therefore Hn,m
∼= GJ/KJ is a homogeneous space of non-reductive type. The

Lie algebra gJ of GJ has a decomposition

gJ = kJ + pJ ,

where

gJ =
{(
Z, (P,Q,R)

) ∣∣ Z ∈ g, P,Q ∈ R(m,n), R = tR ∈ R(m,m)
}
,

kJ =
{(
X, (0, 0, R)

) ∣∣ X ∈ k, R = tR ∈ R(m,m)
}
,

pJ =
{(
Y, (P,Q, 0)

) ∣∣ Y ∈ p, P,Q ∈ R(m,n)
}
.

Thus the tangent space of the homogeneous space Hn,m at (iIn, 0) is identified
with pJ .

If α =

((
X1 Y1
Z1 −tX1

)
, (P1, Q1, R1)

)
and β =

((
X2 Y2
Z2 −tX2

)
, (P2, Q2, R2)

)
are elements of gJ , then the Lie bracket [α, β] of α and β is given by

[α, β] =

((
X∗ Y ∗

Z∗ −tX∗

)
, (P ∗, Q∗, R∗)

)
, (3.1)

where

X∗ = X1X2 −X2X1 + Y1Z2 − Y2Z1,

Y ∗ = X1Y2 −X2Y1 + Y2
tX1 − Y1

tX2,

Z∗ = Z1X2 − Z2X1 +
tX2Z1 − tX1Z2,

P ∗ = P1X2 − P2X1 +Q1Z2 −Q2Z1,

Q∗ = P1Y2 − P2Y1 +Q2
tX1 −Q1

tX2,

R∗ = P1
tQ2 − P2

tQ1 +Q2
tP1 −Q1

tP2.

We recall that Tn denotes the vector space of all n×n symmetric complex
matrices. For brevity, we put Tn,m := Tn × C(m,n). We define the real linear
map Φ : pJ −→ Tn,m by

Φ

((
X Y
Y −X

)
, (P,Q, 0)

)
=
(
X + i Y, P + iQ

)
, (3.2)

where

(
X Y
Y −X

)
∈ p and P,Q ∈ R(m,n).
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Let S(m,R) denote the additive group consisting of all m ×m real sym-
metric matrices. Now we define the isomorphism θ : KJ −→ U(n)× S(m,R)
by

θ(h, (0, 0, κ)) = (δ(h), κ), h ∈ K, κ ∈ S(m,R), (3.3)

where δ : K −→ U(n) is the map defined by (2.5). Identifying R(m,n)×R(m,n)

with C(m,n), we can identify pJ with Tn × C(m,n).

Theorem 3.1. The adjoint representation of KJ on pJ is compatible with
the natural action of U(n)× S(m,R) on Tn,m defined by

(h, κ) · (ω, z) := (hω th, z th) (3.4)

through the maps Φ and θ, where h ∈ U(n), κ ∈ S(m,R), (ω, z) ∈ Tn,m.
Precisely, if kJ ∈ KJ and α ∈ pJ , then we have the following equality

Φ
(
Ad
(
kJ
)
α
)
= θ
(
kJ
)
· Φ(α). (3.5)

Here we regard the complex vector space Tn,m as a real vector space.

The proof of the above theorem can be found in [13].

We now study the algebra D(Hn,m) of all differential operators on Hn,m

invariant under the natural action (1.2) of GJ . The action (3.4) induces the
action of U(n) on the polynomial algebra Poln,m := Pol (Tn,m).We denote by

PolU(n)
n,m the subalgebra of Poln,m consisting of all U(n)-invariants. Similarly

the adjoint action of K on pJ induces the action of K on the polynomial
algebra Pol

(
pJ
)
. We see that through the identification of pJ with Tn,m, the

algebra Pol
(
pJ
)
is isomorphic to Poln,m.

According to Helgason ([11], p. 287), one obtains the Helgason map

Θn,m : PolU(n)
n,m −→ D(Hn,m)

of PolU(n)
n,m onto D(Hn,m) which is a natural linear bijection but is not an

algebra isomorphism. The map Θn,m is described explicitly as follows. We
put N⋆ = n(n + 1) + 2mn. Let

{
ηα | 1 ≤ α ≤ N⋆

}
be a basis of pJ . If

P ∈ Pol
(
pJ
)K

= PolU(n)
n,m , then

(
Θn,m(P )f

)
(gKJ ) =

[
P

(
∂

∂tα

)
f

(
g exp

(
N⋆∑
α=1

tαηα

)
KJ

)]
(tα)=0

, (3.6)

where g ∈ GJ and f ∈ C∞(Hn,m). In general, it is hard to express Θn,m(P )

explicitly for a polynomial P ∈ Pol
(
pJ
)K

.

We propose the following natural problems.
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Problem 1. Find a complete list of explicit generators of PolU(n)
n,m .

Problem 2. Find all relations among a set of generators of PolU(n)
n,m .

Problem 3. Find an easy or effective way to express explicitly the images of
the above invariant polynomials or generators of PolU(n)

n,m under the Helgason
map Θn,m.

Problem 4. Decompose Poln,m into U(n)-irreducibles.

Problem 5. Find a complete list of explicit generators of the algebra
D(Hn,m) or construct explicit GJ -invariant differential operators on Hn,m.

Problem 6. Find all relations among a set of generators of D(Hn,m).

Problem 7. Is PolU(n)
n,m finitely generated ?

Problem 8. Is D(Hn,m) finitely generated ?

Problem 1 and Problem 7 are solved as follows.

Theorem 3.2. PolU(n)
n,m is generated by

qj(ω, z) = tr
(
(ω ω)j+1

)
, 0 ≤ j ≤ n− 1,

α
(j)
kp (ω, z) = Re

(
z (ωω)j tz

)
kp
, 0 ≤ j ≤ n− 1, 1 ≤ k ≤ p ≤ m,

β
(j)
lq (ω, z) = Im

(
z (ωω)j tz

)
lq
, 0 ≤ j ≤ n− 1, 1 ≤ l < q ≤ m,

f
(j)
kp (ω, z) = Re (z (ωω)j ω tz)kp, 0 ≤ j ≤ n− 1, 1 ≤ k ≤ p ≤ m,

g
(j)
kp (ω, z) = Im (z (ωω)j ω tz )kp, 0 ≤ j ≤ n− 1, 1 ≤ k ≤ p ≤ m,

where ω ∈ Tn and z ∈ C(m,n).

The proof of Theorem 3.2 can be found in [13]. Here we will not describe
the solution of Problem 2 because it is very complicated. The solution of
Problem 2 will appear in another paper in the near future.

4 Examples of Explicit GJ-Invariant Differential
Operators

In this section we give examples of explicit GJ -invariant differential operators
on the Siegel-Jacobi space Hn,m.
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For g =
(
M, (λ, µ;κ)

)
∈ GJ with M =

(
A B
C D

)
∈ Sp(n,R) and (Ω,Z) ∈

Hn,m, we set

Ω = X + i Y, X = (xµν), Y = (yµν) real,

Ω∗ = M ·Ω = X∗ + i Y∗, X∗, Y∗ real,

Z∗ = (Z + λΩ + µ)(CΩ +D)−1 = U∗ + i V∗, U∗, V∗ real.

For a coordinate (Ω,Z) ∈ Hn,m with Ω = (ωµν) and Z = (zkl), we put
dΩ, dΩ, ∂

∂Ω ,
∂
∂Ω

as before and set

Z = U + iV, U = (ukl), V = (vkl) real,

dZ = (dzkl), dZ = (dzkl),

∂

∂Z
=


∂

∂z11
. . . ∂

∂zm1

...
. . .

...
∂

∂z1n
. . . ∂

∂zmn

 ,
∂

∂Z
=


∂

∂z11
. . . ∂

∂zm1

...
. . .

...
∂

∂z1n
. . . ∂

∂zmn

 .

The author [29] proved that the following differential operators M1 and
M2 on Hn,m defined by

M1 = tr

(
Y

∂

∂Z

t( ∂

∂Z

))
(4.1)

and

M2 = tr

(
Y

t(
Y

∂

∂Ω

)
∂

∂Ω

)
+ tr

(
V Y −1 tV

t(
Y
∂

∂Z

)
∂

∂Z

)
(4.2)

+ tr

(
V

t(
Y

∂

∂Ω

)
∂

∂Z

)
+ tr

(
tV

t(
Y
∂

∂Z

)
∂

∂Ω

)
are invariant under the action (1.2) of GJ .

The authors [13] proved that the following differential operator K on Hn,m

of degree 2n defined by

M3 = det(Y ) det

(
∂

∂Z

t( ∂

∂Z

))
(4.3)

is invariant under the action (1.2) of GJ . Furthermore the authors [13] proved
that the following matrix-valued differential operator T on Hn,m defined by

T =
t( ∂

∂Z

)
Y
∂

∂Z
(4.4)
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and the following differential operators

Tkl =
n∑

i,j=1

yij
∂2

∂zki∂zlj
, 1 ≤ k, l ≤ m (4.5)

are invariant under the action (1.2) of GJ .

We see that
M∗ = [M1,M2] = M1M2 −M2M1

is an invariant differential operator of degree three on Hn,m and

Pkl = [M3,Tkl] = M3Tkl − TklM3, 1 ≤ k, l ≤ m

is an invariant differential operator of degree 2n+ 1 on Hn,m.

The author [29] proved that for any two positive real numbers A and B,

ds2n,m;A,B = A tr
(
Y −1dΩ Y −1dΩ

)
+B

{
tr
(
Y −1 tV V Y −1dΩ Y −1dΩ

)
+ tr

(
Y −1 t(dZ) dZ

)
−tr
(
V Y −1dΩ Y −1 t(dZ)

)
− tr

(
V Y −1dΩ Y −1 t(dZ)

)}
is a Riemannian metric on Hn,m which is invariant under the action (1.2) of
GJ . In fact, ds2n,m;A,B is a Kähler metric of Hn,m. The author [29] proved
that for any two positive real numbers A and B, the following differential
operator

∆n,m;A,B =
4

A
M2 +

4

B
M1 (4.6)

is the Laplacian of the GJ -invariant Riemannian metric ds2n,m;A,B .

We set, for an integer k with 1 ≤ k ≤ m,

∂

∂Zk
=

t( ∂

∂z1k
, · · · , ∂

∂znk

)
and

Y+,k :=
∂

∂Zk
, Y−,k :=

∂

∂Zk

Y.

We define
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Y+ : =
∂

∂Z
, Y− :=

t( ∂
∂Z

)
Y,

X+ : = 2 i
∂

∂Ω
+ i Y −1 tV

∂

∂Z
+

t(
i Y −1 tV

t( ∂
∂Z

))
,

X− : = tY−
t
(
Y Y +

)
,

K̃ : = 2 i Y
∂

∂Ω
+ i tV

t( ∂
∂Z

)
+ i

t(
Y −1 tV

t( ∂
∂Z

)
Y

)
,

and

Λ̃ := 2 i Y
∂

∂Ω
+ i tV

t( ∂
∂Z

)
+ i

t(
Y −1 tV

t( ∂
∂Z

)
Y

)
.

Following H. Maass [15] (cf. (2.18)–(2.20)), we put

Ã(1) = Λ̃K̃ +
n+ 1

2
K̃

and define Ã(j) (j = 2, 3, · · · , n) recursively by

Ã(j) = Ã(1)Ã(j−1) − n+ 1

2
Λ̃ Ã(j−1) +

1

2
Λ̃ tr

(
Ã(j−1)

)
+

1

2

(
Ω −Ω

) t{(
Ω −Ω

)−1 t
(

tΛ̃ tÃ(j−1)
)}

.

For any positive integers j, k, l with 1 ≤ j ≤ n, 1 ≤ k, l ≤ m, we define

H̃j : = tr
(
Ã(j)

)
, Tk,l := tr

(
tY−,k

tY+,l Ã
(j)
)
,

Uk,l : = tr (tY−,k Y−,lX+) , Vk,l := tr (Y+,k
tY+,lX−) .

J. Yang and L. Yin [32] showed that H̃j , Tk,l, Uk,l and Vk,l are invariant
under the action (1.2) of GJ .

5 The Partial Cayley Transform

In this section we discuss a notion of the partial Cayley transform and give
examples of explicit GJ -invariant differential operators on the Siegel-Jacobi
disk.

Let
Dn =

{
W ∈ C(n,n) | W = tW, In −WW > 0

}
be the generalized unit disk.
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For brevity, we write Dn,m := Dn×C(m,n). This homogeneous space Dn,m

is called the Siegel-Jacobi disk of degree n and index m. For a coordinate
(W,η) ∈ Dn,m with W = (wµν) ∈ Dn and η = (ηkl) ∈ C(m,n), we put

dW = (dwµν), dW = (dwµν),

dη = (dηkl), dη = (dηkl)

and

∂

∂W
=

(
1 + δµν

2

∂

∂wµν

)
,

∂

∂W
=

(
1 + δµν

2

∂

∂wµν

)
,

∂

∂η
=


∂

∂η11
. . . ∂

∂ηm1

...
. . .

...
∂

∂η1n
. . . ∂

∂ηmn

 ,
∂

∂η
=


∂

∂η11
. . . ∂

∂ηm1

...
. . .

...
∂

∂η1n
. . . ∂

∂ηmn

 .

We can identify an element g = (M, (λ, µ;κ)) of GJ , M =

(
A B
C D

)
∈

Sp(n,R) with the element
A 0 B A tµ−B tλ
λ Im µ κ
C 0 D C tµ−D tλ
0 0 0 Im


of Sp(m+ n,R).

We set

T∗ =
1√
2

(
Im+n Im+n

iIm+n −iIm+n

)
.

We now consider the group GJ
∗ defined by

GJ
∗ := T−1

∗ GJT∗.

If g = (M, (λ, µ;κ)) ∈ GJ with M =

(
A B
C D

)
∈ Sp(n,R), then T−1

∗ gT∗ is

given by

T−1
∗ gT∗ =

(
P∗ Q∗
Q∗ P ∗

)
, (5.1)

where

P∗ =

(
P 1

2 {Q
t(λ+ iµ)− P t(λ− iµ)}

1
2 (λ+ iµ) Ih + iκ2

)
,

Q∗ =

(
Q 1

2 {P
t(λ− iµ)−Q t(λ+ iµ)}

1
2 (λ− iµ) −iκ2

)
,
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and P, Q are given by the formulas

P =
1

2
{(A+D) + i (B − C)} (5.2)

and

Q =
1

2
{(A−D)− i (B + C)} . (5.3)

From now on, we write((
P Q
Q P

)
,

(
1

2
(λ+ iµ),

1

2
(λ− iµ); −iκ

2

))
:=

(
P∗ Q∗
Q∗ P ∗

)
.

In other words, we have the relation

T−1
∗

((
A B
C D

)
, (λ, µ;κ)

)
T∗ =

((
P Q
Q P

)
,

(
1

2
(λ+ iµ),

1

2
(λ− iµ); −iκ

2

))
.

Let

H
(n,m)
C :=

{
(ξ, η ; ζ) | ξ, η ∈ C(m,n), ζ ∈ C(m,m), ζ + η tξ symmetric

}
be the complex Heisenberg group endowed with the following multiplication

(ξ, η ; ζ) ◦ (ξ′, η′; ζ ′) := (ξ + ξ′, η + η′ ; ζ + ζ ′ + ξ tη′ − η tξ′)).

We define the semidirect product

SL(2n,C)nH
(n,m)
C

endowed with the following multiplication((
P Q
R S

)
, (ξ, η ; ζ)

)
·
((

P ′ Q′

R′ S′

)
, (ξ′, η′; ζ ′)

)
=

((
P Q
R S

) (
P ′ Q′

R′ S′

)
, (ξ̃ + ξ′, η̃ + η′; ζ + ζ ′ + ξ̃ tη′ − η̃ tξ′)

)
,

where ξ̃ = ξP ′ + ηR′ and η̃ = ξQ′ + ηS′.

If we identify H
(n,m)
R with the subgroup{

(ξ, ξ; iκ) | ξ ∈ C(m,n), κ ∈ R(m,m)
}

of H
(n,m)
C , we have the following inclusion

GJ
∗ ⊂ SU(n, n)nH

(n,m)
R ⊂ SL(2n,C)nH

(n,m)
C .
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We define the mapping Θ : GJ −→ GJ
∗ by

Θ

((
A B
C D

)
, (λ, µ;κ)

)
=

((
P Q
Q P

)
,

(
1

2
(λ+ iµ),

1

2
(λ− iµ); −iκ

2

))
, (5.4)

where P and Q are given by (5.2) and (5.3). We can see that if g1, g2 ∈ GJ ,
then Θ(g1g2) = Θ(g1)Θ(g2).

According to [26, p. 250],GJ
∗ is of the Harish-Chandra type (cf. [17, p. 118]).

Let

g∗ =

((
P Q
Q P

)
, (λ, µ; κ)

)
be an element of GJ

∗ . Since the Harish-Chandra decomposition of an element(
P Q
R S

)
in SU(n, n) is given by

(
P Q
R S

)
=

(
In QS

−1

0 In

)(
P −QS−1R 0

0 S

)(
In 0

S−1R In

)
,

the P+
∗ -component of the following element

g∗ ·
((

In W
0 In

)
, (0, η; 0)

)
, W ∈ Dn

of SL(2n,C)nH
(n,m)
C is given by((

In (PW +Q)(QW + P )−1

0 In

)
,
(
0, (η + λW + µ)(QW + P )−1 ; 0

))
. (5.5)

We can identify Dn,m with the subset{((
In W
0 In

)
, (0, η; 0)

) ∣∣∣ W ∈ Dn, η ∈ C(m,n)

}
of the complexification of GJ

∗ . Indeed, Dn,m is embedded into P+
∗ given by

P+
∗ =

{((
In W
0 In

)
, (0, η; 0)

) ∣∣∣ W = tW ∈ C(n,n), η ∈ C(m,n)

}
.

This is a generalization of the Harish-Chandra embedding (cf. [17, p. 119]).
Then we get the natural transitive action of GJ

∗ on Dn,m defined by((
P Q
Q P

)
,
(
ξ, ξ; iκ

))
· (W,η) (5.6)

=
(
(PW +Q)(QW + P )−1, (η + ξW + ξ)(QW + P )−1

)
,
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where

(
P Q
Q P

)
∈ G∗, ξ ∈ C(m,n), κ ∈ R(m,m) and (W,η) ∈ Dn,m.

The author [30] proved that the action (1.2) of GJ on Hn,m is compatible
with the action (5.6) of GJ

∗ on Dn,m through the partial Cayley transform
Ψ : Dn,m −→ Hn,m defined by

Ψ(W,η) :=
(
i(In +W )(In −W )−1, 2 i η (In −W )−1

)
.

In other words, if g0 ∈ GJ and (W,η) ∈ Dn,m,

g0 · Ψ(W,η) = Ψ(g∗ · (W,η)),

where g∗ = T−1
∗ g0T∗. Ψ is a biholomorphic mapping of Dn,m onto Hn,m which

gives the partially bounded realization of Hn,m by Dn,m. The inverse of Ψ is

Ψ−1(Ω,Z) =
(
(Ω − iIn)(Ω + iIn)

−1, Z(Ω + iIn)
−1
)
.

The author [31] proved that for any two positive real numbers A and B,
the following metric ds̃2n,m;A,B defined by

ds2Dn,m;A,B = 4A tr
(
(In −WW )−1dW (In −WW )−1dW

)
+4B

{
tr
(
(In −WW )−1 t(dη)β

)
+tr

(
(ηW − η)(In −WW )−1dW (In −WW )−1 t(dη)

)
+tr

(
(ηW − η)(In −WW )−1dW (In −WW )−1 t(dη)

)
− tr

(
(In −WW )−1 tη η (In −WW )−1WdW (In −WW )−1dW

)
− tr

(
W (In −WW )−1 tη η (In −WW )−1dW (In −WW )−1dW

)
+tr

(
(In −WW )−1tη η (In −WW )−1dW (In −WW )−1dW

)
+tr

(
(In −W )−1 tη ηW (In −WW )−1dW (In −WW )−1dW

)
+tr
(
(In −W )−1(In −W )(In −WW )−1 tη η (In −WW )−1

× (In −W )(In −W )−1dW (In −WW )−1dW
)

− tr
(
(In −WW )−1(In −W )(In −W )−1 tη η (In −W )−1

× dW (In −WW )−1dW
)}
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is a Riemannian metric on Dn,m which is invariant under the action (5.6) of
the Jacobi group GJ

∗ .

The author [31] proved that the following differential operators S1 and S2
on Dn,m defined by

S1 = σ

(
(In −WW )

∂

∂η

t( ∂

∂η

))
and

S2 = tr

(
(In −WW )

t(
(In −WW )

∂

∂W

)
∂

∂W

)
+tr

(
t(η − ηW )

t( ∂

∂η

)
(In −WW )

∂

∂W

)
+tr

(
(η − ηW )

t(
(In −WW )

∂

∂W

)
∂

∂η

)
− tr

(
ηW (In −WW )−1 tη

t( ∂

∂η

)
(In −WW )

∂

∂η

)
− tr

(
ηW (In −WW )−1 tη

t( ∂

∂η

)
(In −WW )

∂

∂η

)
+tr

(
η(In −WW )−1tη

t( ∂

∂η

)
(In −WW )

∂

∂η

)
+tr

(
ηWW (In −WW )−1 tη

t( ∂

∂η

)
(In −WW )

∂

∂η

)
are invariant under the action (5.6) of GJ

∗ . The author also proved that

∆Dn,m;A,B :=
1

A
S2 +

1

B
S1 (5.7)

is the Laplacian of the invariant metric ds2Dn,m;A,B on Dn,m (cf. [31]).

The authors [13] proved that the following differential operator on Dn,m

defined by

S3 = det(In −WW ) det

(
∂

∂η

t( ∂

∂η

))
is invariant under the action (5.6) of GJ

∗ on Dn,m. Furthermore the authors
[13] proved that the following matrix-valued differential operator on Dn,m

defined by

J :=
t( ∂

∂η

)
(In −WW )

∂

∂η

and each (k, l)-entry Jkl of J given by
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Jkl =
n∑

i,j=1

(
δij −

n∑
r=1

wir wjr

)
∂2

∂ηki∂ηlj
, 1 ≤ k, l ≤ m

are invariant under the action (5.6) of GJ
∗ on Dn,m.

S∗ = [S1, S2] = S1S2 − S2S1
is an invariant differential operator of degree three on Dn,m and

Qkl = [S3, Jkl] = S3Jkl − JklS3, 1 ≤ k, l ≤ m

is an invariant differential operator of degree 2n+ 1 on Dn,m.

Indeed it is very complicated and difficult at this moment to express the
generators of the algebra of all GJ

∗ -invariant differential operators on Dn,m

explicitly.

6 Invariant Differential Operators on the Siegel-Jacobi
Space of Lowest Dimension

We consider the case n = m = 1. For a coordinate (w, ξ) in T1,1 = C×C, we
write w = r+ i s, ξ = ζ + i η ∈ C, r, s, ζ, η real. The author [27] proved that

the algebra Pol
U(1)
1,1 is generated by

q(w, ξ) =
1

4
ww =

1

4

(
r2 + s2

)
,

α(w, ξ) = ξ ξ = ζ2 + η2,

ϕ(w, ξ) =
1

2
Re
(
ξ2w

)
=

1

2
r
(
ζ2 − η2

)
+ s ζη,

ψ(w, ξ) =
1

2
Im (ξ2w) =

1

2
s
(
η2 − ζ2

)
+ r ζη.

In [27], using Formula (3.6) the author calculated explicitly the images

D1 = Θ1,1(q), D2 = Θ1,1(α), D3 = Θ1,1(ϕ) and D4 = Θ1,1(ψ)

of q, ξ, ϕ and ψ under the Helgason map Θ1,1. We can show that the algebra
D(H1,1) is generated by the following differential operators
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D1 =y2
(

∂2

∂x2
+

∂2

∂y2

)
+ v2

(
∂2

∂u2
+

∂2

∂v2

)
+ 2 y v

(
∂2

∂x∂u
+

∂2

∂y∂v

)
,

D2 = y

(
∂2

∂u2
+

∂2

∂v2

)
,

D3 = y2
∂

∂y

(
∂2

∂u2
− ∂2

∂v2

)
− 2y2

∂3

∂x∂u∂v

−
(
v
∂

∂v
+ 1

)
D2

and

D4 = y2
∂

∂x

(
∂2

∂v2
− ∂2

∂u2

)
− 2 y2

∂3

∂y∂u∂v

− v
∂

∂u
D2,

where τ = x + iy and z = u + iv with real variables x, y, u, v. Moreover, we
have

D1D2−D2D1 = 2 y2
∂

∂y

(
∂2

∂u2
− ∂2

∂v2

)
− 4 y2

∂3

∂x∂u∂v
− 2

(
v
∂

∂v
D2 +D2

)
.

In particular, the algebra D(H1,1) is not commutative. We refer to [2, 6, 27]
for more detail.

Recently the authors [13] proved the following results.

Theorem 6.3. We have the following relation

ϕ2 + ψ2 = q α2.

This relation exhausts all the relations among the generators q, α, ϕ and ψ

of Pol
U(1)
1,1 .

Theorem 6.4. We have the following relations

(a) [D1, D2] = 2D3

(b) [D1, D3] = 2D1D2 − 2D3

(c) [D2, D3] = −D2
2
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(d) [D4, D1] = 0

(e) [D4, D2] = 0

(f) [D4, D3] = 0

(g) D2
3 +D2

4 = D2D1D2

These seven relations exhaust all the relations among the generators D1, D2, D3

and D4 of D(H1,1).

Theorem 6.5. The action of U(1) on Pol
U(1)
1,1 is not multiplicity-free.

Finally we see that for the case when n = m = 1, the eight problems
proposed in Section 3 are completely solved.

Remark 1. According to Theorem 6.4, we see that D4 is a generator of the
center of D(H1,1). We observe that the Lapalcian

∆1,1;A,B =
4

A
D1 +

4

B
D2 (see (4.6))

of (H1,1, ds
2
1,1;A,B) does not belong to the center of D(H1,1).

Remark 2. When n = 1 and m is an arbitrary integer, Conley and Raum [6]
found the 2m2 +m + 1 explicit generators of D(H1,m) and the explicit one
generator of the center of D(H1,m). They also found the generators of the
center of the universal enveloping algebra of U

(
gJ
)
of the Jacobi Lie algebra

gJ . The number of generators of the center of U
(
gJ
)
is 1 + m(m+1)

2 .

7 Remarks on Maass-Jacobi Forms

Using GJ -invariant differential operators on the Siegel-Jacobi space, we in-
troduce a notion of Maass-Jacobi forms.

Definition 1. Let
Γn,m := Sp(n,Z)nH

(n,m)
Z

be the discrete subgroup of GJ , where

H
(n,m)
Z =

{
(λ, µ;κ) ∈ H

(n,m)
R | λ, µ, κ are integral

}
.

A smooth function f : Hn,m −→ C is called a Maass-Jacobi form on Hn,m if
f satisfies the following conditions (MJ1)-(MJ3) :

(MJ1) f is invariant under Γn,m.
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(MJ2) f is an eigenfunction of the Laplacian∆n,m;A,B (cf. Formula (4.6)).
(MJ3) f has a polynomial growth, that is, there exist a constant C > 0

and a positive integer N such that

|f(X + i Y, Z)| ≤ C |p(Y )|N as detY −→ ∞,

where p(Y ) is a polynomial in Y = (yij).

Remark 3. Let D∗ be a commutative subalgebra of D(Hn,m) containing the
Laplacian ∆n,m;A,B . We say that a smooth function f : Hn,m −→ C
is a Maass-Jacobi form with respect to D∗ if f satisfies the conditions
(MJ1), (MJ2)∗ and (MJ3) : the condition (MJ2)∗ is given by

(MJ2)∗ f is an eigenfunction of any invariant differential operator in D∗.

Remark 4. Erik Balslev [1] developed the spectral theory of ∆1,1;1,1 on H1,1

to prove that the set of all eigenvalues of ∆1,1;1,1 satisfies the Weyl law.

It is natural to propose the following problems.

Problem A : Find all the eigenfunctions of ∆n,m;A,B .

Problem B : Construct Maass-Jacobi forms.

If we find a nice eigenfunction ϕ of the Laplacian ∆n,m;A,B , we can con-
struct a Maass-Jacobi form fϕ on Hn,m in the usual way defined by

fϕ(Ω,Z) :=
∑

γ∈Γ∞
n,m\Γn,m

ϕ
(
γ · (Ω,Z)

)
,

where

Γ∞
n,m =

{((
A B
C D

)
, (λ, µ;κ)

)
∈ Γn,m

∣∣∣ C = 0

}
is a subgroup of Γn,m.

We consider the simple case when n = m = 1 and A = B = 1. A metric
ds21,1;1,1 on H1,1 given by

ds21,1;1,1 =
y + v2

y3
( dx2 + dy2 ) +

1

y
( du2 + dv2 )

− 2v

y2
( dx du + dy dv )

is a GJ -invariant Kähler metric on H1,1. Its Laplacian ∆1,1;1,1 is given by



60 Jae-Hyun Yang

∆1,1;1,1 = y2
(

∂2

∂x2
+

∂2

∂y2

)
+ ( y + v2 )

(
∂2

∂u2
+

∂2

∂v2

)
+ 2 y v

(
∂2

∂x∂u
+

∂2

∂y∂v

)
.

We provide some examples of eigenfunctions of ∆1,1;1,1.

(a) h(x, y) = y
1
2Ks− 1

2
(2π|a|y) e2πiax (s ∈ C, a ̸= 0 ) with eigenvalue

s(s− 1). Here

Ks(z) :=
1

2

∫ ∞

0

exp
{
−z
2
(t+ t−1)

}
ts−1 dt,

where Re z > 0.
(b) ys, ysx, ysu (s ∈ C) with eigenvalue s(s− 1).
(c) ysv, ysuv, ysxv with eigenvalue s(s+ 1).
(d) x, y, u, v, xv, uv with eigenvalue 0.
(e) All Maass wave forms.

Let ρ be a rational representation of GL(n,C) on a finite dimensional
complex vector space Vρ. Let M ∈ R(m,m) be a symmetric half-integral semi-
positive definite matrix of degree m. Let C∞(Hn,m, Vρ) be the algebra of all
C∞ functions on Hn,m with values in Vρ. We define the |ρ,M-slash action of
GJ on C∞(Hn,m, Vρ) as follows: If f ∈ C∞(Hn,m, Vρ),

f |ρ,M[(M, (λ, µ;κ))](Ω,Z)

:= e−2πi tr(M[Z+λΩ+µ](CΩ+D)−1C) · e2πi tr(M(λΩ tλ+2λ tZ +κ+µ tλ))

× ρ(CΩ +D)−1f(M ·Ω, (Z + λΩ + µ)(CΩ +D)−1),

where

(
A B
C D

)
∈ Sp(n,R) and (λ, µ;κ) ∈ H

(n,m)
R . We recall the Siegel’s

notation α[β] = tβαβ for suitable matrices α and β. We define Dρ,M to be
the algebra of all differential operators D on Hn,m satisfying the following
condition

(Df)|ρ,M[g] = D(f |ρ,M[g])

for all f ∈ C∞(Hn,m, Vρ) and for all g ∈ GJ . We denote by Zρ,M the center
of Dρ,M.

We define another notion of Maass-Jacobi forms as follows.
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Definition 2. A vector-valued smooth function ϕ : Hn,m −→ Vρ is called a
Maass-Jacobi form on Hn,m of type ρ and index M if it satisfies the following
conditions (MJ1)ρ,M, (MJ2)ρ,M and (MJ3)ρ,M :

(MJ1)ρ,M ϕ|ρ,M[γ] = ϕ for all γ ∈ Γn,m.
(MJ2)ρ,M f is an eigenfunction of all differential operators in the center

Zρ,M of Dρ,M.
(MJ3)ρ,M f has a growth condition

ϕ(Ω,Z) = O
(
ea detY · e2πtr(M[V ]Y −1)

)
as detY −→ ∞ for some a > 0.

The case when n = 1, m = 1 and ρ = detk(k = 0, 1, 2, · · · ) was studied by
R. Berndt and R. Schmidt [2], A. Pitale [16] and K. Bringmann and O. Richter
[4]. The case when n = 1, m =arbitrary and ρ = detk(k = 1, 2, · · · ) was
investigated by C. Conley and M. Raum [6]. In [6] the authors proved that the
center Zdetk,M of Ddetk,M is the polynomial algebra with one generator Ck,M,
the so-called Casimir operator which is a |detk,M–slash invariant differential
operator of degree three for the case when n = m = 1 or of degree four
for the case when n = 1, m ≥ 2. Bringmann and Richter [4] considered

the Poincaré series P(n,r)
k,M,s (the case when n = m = 1) that is a harmonic

Maass-Jacobi form in the sense of Definition 2 and investigated its Fourier

expansion and its Fourier coefficients. Here the harmonicity of P(n,r)
k,M,s means

that Ck,MP(n,r)
k,M,s = 0, i.e., P(n,r)

k,M,s is an eigenfunction of Ck,M with zero
eigenvalue. Conley and Raum [6] generalized the results in [16] and [4] to the
case when n = 1 and m is arbitrary.

Remark 5. In [3], Bringmann, Conley and Richter proved that the center of
the algebra of differential operators invariant under the action of the Jacobi
group over a complex quadratic field is generated by two Casimir operators
of degree three. They also introduce an analogue of Kohnen’s plus space for
modular forms of half-integral weight over K = Q(i), and provide a lift from
it to the space of Jacobi forms over K.
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