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Abstract [The Weil representations of the Jacobi group]

A Jacobi group is the semi-direct product of a symplectic group and a Heisen-
berg group. A Jacobi group plays an important role in arithmetic, geometry
and representation theory. A Jacobi group is an important object in the
framework of quantum mechanics, geometric quantization and quantum op-
tics. In this paper, we study the Weil representations of a Jacobi group and
their properties. We also provide their applications to the theory of automor-
phic forms on a Jacobi group and representation theory of a Jacobi group.
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1 Introduction

The Weil representation of a symplectic group was first introduced by
A. Weil in his remarkable paper [51] to reformulate Siegel’s analytic the-
ory of quadratic forms[43] in group theoretical terms. The Weil represen-
tation plays a central role in the study of the transformation behaviors
of theta series and has many applications to the theory of automorphic
forms (cf. [18, 27, 28, 29, 30, 34, 41, 42]). A Jacobi group is defined to be a
semi-direct product of a symplectic group and a Heisenberg group. A Jacobi
group is an important object in the framework of quantum mechanics, geo-
metric quantization and optics (cf. [1, 3, 4, 5, 6, 7, 19, 20, 21, 31, 44, 52, 73]).
The squeezed states in quantum optics represent a physical realization of the
coherent states associated with a Jacobi group (cf. [21, 31, 44, 73]). In this pa-
per, we show that we can construct several types of the Weil representations
of a Jacobi group and present their applications to the theory of automorphic
forms on a Jacobi group and representation theory of a Jacobi group.
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For a given fixed positive integer n, we let
H,={ReC™ | Q=102 Im2>0}
be the Siegel upper half plane of degree n and let
Sp(n,R) = {g e R®™>) | g ], g = J, }

be the symplectic group of degree n, where F(*:\) denotes the set of all k x I
matrices with entries in a commutative ring F' for two positive integers k and
1, M denotes the transpose of a matrix M, Im {2 denotes the imaginary part

of {2 and
0 I,
Jn—(_In O).

Here I,, denotes the identity matrix of degree n. We see that Sp(n,R) acts
on H,, transitively by

g-2=(A+ B)(CR+ D)™, (1.1)
where g = (é g) € Sp(n,R) and 2 € H,,.
For two positive integers n and m, we consider the Heisenberg group
Hﬂén,,m) ={\mr)| ApeRM™M g e RW™ k4 tX symmetric }
endowed with the following multiplication law
Mpsr)o (N w56 ) = N+ XN, p+p/sh+ 6 + X0 — '),

We let
G’ = Sp(n,R) x H[én’m) (semi-direct product)

be the Jacobi group endowed with the following multiplication law
(g, (A 1 /@)) : (g’, (N, s H')) = (gg’, A+ N, T+ ps 5+ 8 + XN — ﬁt)\’))

with g,g" € Sp(n,R), (A, i k), (N, /s ') € HE™ amd (A, i) = (A, w)g'-

Then we have the natural action of G’ on the Siegel-Jacobi space Hy, ,,, 1=
H,, x C"") defined by

(g, O\ 25 n)) (2,7) = (g-Q, (Z+ A2+ p)(CR + D)‘1>, (1.2)
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gg € Sp(n,R), (A, k) € HS™™ and (£2,2) € Hy . We

refer to [2],[9], [17], [68]-[62], [65]-[68], [71], [72] for more details on materials
related to the Siegel-Jacobi space.

where g =

The aim of this article is to introduce three types of the Weil representa-
tions of the Jacobi group G and to study their applications to the theory
of automorphic forms and representation theory. They are slightly different
each other. They are essentially isomorphic. However each has its own advan-
tage in applications to the theory of automorphic forms and representation
theory.

This article is organized as follows. In Section 2, we review the Weil rep-
resentation of a symplectic group and the Maslov index briefly following G.
Lion and M. Vergne [30]. In Section 3, we define the Weil representation of
the Jacobi group G using a cocycle class of G’ in H?(G”,T) with a circle
T ={z € C| |z|] = 1}. In Section 4, we define the Schrédinger-Weil repre-
sentation of the Jacobi group G that is used to study the transformation
behaviors of certain theta series with toroidal variables. The Schrédinger-Weil
representation plays an important role in the construction of Jacobi forms,
the theory of Maass-Jacobi forms and the study of Jacobi’s theta sums. We
deal with these applications in detail in Section 7. In Section 5, we recall
the Weil-Satake representation of the Jacobi group G formulated by Satake
[40] on the Fock model of the Heisenberg group Hﬂé"’m). In Section 6, we
recall the concept of Jacobi forms of half integral weight to be used in a sub-
sequent section. We review Siegel modular forms of half integral weight. In
Section 7, we present the applications of the Schrodinger-Weil representation
to constructing of Jacobi forms via covariant maps for the Schrédinger-Weil
representation, the study of Maass-Jacobi forms and Jacobi’s theta sums. We
describe the works of the author [69], A. Piale [37] and J. Marklof [32]. In
Section 8, we provides some applications of the Weil-Takase representation
of G’ to the study of representations of G’ which were obtained by Takase
[45, 46, 47]. Takase [45] showed that there is a bijective correspondence be-
tween the unitary equivalence classes of unitary representations of a two-fold
covering group of the symplectic group and the unitary equivalence classes
of unitary representations of the Jacobi group. Using this representation the-
oretical fact, Takase [48] established a bijective correspondence between the
space of cuspidal Jacobi forms and the space of Siegel cusp forms of half
integral weight which is compatible with the action of Hecke operators.

Notations: We denote by Z and C the ring of integers, and the field of
complex numbers respectively. We denote by R* the multiplicative group
of positive real numbers. C* (resp. R*) denotes the multiplicative group of
nonzero complex (resp. real) numbers. We denote by Z and Z* the ring of
integers and the set of all positive integers respectively. T = {z € C| |z| =1}
denotes the multiplicative group of complex numbers of modulus one. The
symbol “:=” means that the expression on the right is the definition of that
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on the left. For two positive integers k and [, F(*!) denotes the set of all k x [
matrices with entries in a commutative ring F. For a square matrix A € F(*:%)
of degree k, o(A) denotes the trace of A. For any M € F® ! M denotes the
transpose of a matrix M. I, denotes the identity matrix of degree n. We put
i = +/—1. For z € C, we define z'/? = \/z so that —7/2 < arg(z'/?) < /2.
Furthermore we put z%/2 = (21/2)5 for every k € Z. For a rational number
field Q, we denote by A and A* the ring of adeles of Q and the multiplicative
group of ideles of Q respectively. For a positive integer m we denote by S(m)
the set of all m x m symmetric real matrices.

2 The Weil Representation of a Symplectic Group

In this section we review the Weil representation of a symplectic group and
the Maslov index following G. Lion and M. Vergne [30].

Let (V, B) be a symplectic real vector space of dimension 2n with a non-
degenerate alternating bilinear form B. We consider the Lie algebra h =
V + RE with the Lie bracket satisfying the following properties (2.1) and
(2.2):

[X,)Y]=B(X,Y)E foral X,Y €V, (2.1)

[Z,E]=0 forall Zeh. (2.2)

Let H be the Heisenberg group with its Lie algebra h. Via the exponential
map exp : h — H, H is identified with the (2n + 1)-dimensional vector
space with following multiplication law :

B(vy,v
exp(v1 + t1F) - exp(vz + t2 ) = exp <v1 + vy + (m +ty+ (;2‘)) E> :

where v1,v2 € V and t1,t5 € R. Let
Sp(B) ={g € GL(V)| B(gz,gy) = B(z,y) forallz,yeV}
be the symplectic group of (V, B). Then Sp(B) acts on H by
g-exp(v+tE) =exp(gv+tE), g€ Sp(B), veV, teR.

For a fixed nonzero real number m, we let x,, : H — T be the function
defined by ‘
Xm(exp(v —|—tE)) =e2mimt eV, teR.

Let [ be a Lagrangian subspace in (V, B). We put L = exp([+RE). Obviously
the restriction of x,, to L is a character of L. The induced representation

Wi = Ind? y,,
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is the so-called Schrodinger representation of the Heisenberg group H. The
representation Hi,, of Wy ,, is the completion of the space of continuous
functions ¢ on H satisfying the following properties (2.3) and (2.4) :

p(hl) = xm()~'e(h), heH leL (2.3)
and
h+— |p(h)| is square integrable w.r.t an invariant measure on H/L. (2.4)

We observe that A
Wim ( exp(tE)) =e2mimtr,

[,m?

where Iy, ,, denotes the identity operator on Hj .
For brevity, we put G = Sp(B). For a fixed element g € G, we consider
the representation W¢,  of H on Hy,, defined by
Wg

[m

(h) = Wim(g - h), heH. (2.5)

Since W, (exptE) = Wﬁm(exptE) for all t € R, according to Stone-von
Neumann theorem, there exists a unitary operator Ry, (g) : Him — Him
such that

W[i}m(h)R[,m(g) = R[,m(g)W[,m(h)

for all h € H. For convenience, we choose Ry (1) = Iy, ,,, where 1 denotes
the identity element of G. We note that Ry ,,(g) is determined uniquely up to
a scalar of modulus one. Since Ry, (92) "' Rim(91) "' Rim(g192) is the unitary
operator on Hy ,, commuting with W, , according to Schur’s lemma, we have
a map ¢y, : G x G — T satisfying the condition

Ry (9192) = cim(91, 92)Rim(91) Rim (g2) (2.6)

for all g1,g92 € G. Therefore Ry ,, is a projective representation of G' with
multiplier ¢y ,,. It is easy to see that the map ¢y ., satisfies the cocycle condi-
tion

cm(9192, 93) cum (91, 92) = cum(91, 9293) cim (92, 93) (2.7)

for all g1, 92,93 € G. The cocycle ¢, produces the central extension G, of
G by T'. The group G|, is the set G x T with the following group multipli-
cation law :

(91,t1) - (g2, t2) := (9192, tita com(g1, 92) ") (2.8)

for all g1,g2 € G, t1,t3 € T. We see that the map R[,m : Gy — GL(Hy )
defined by 3
Rim(g,t) :=tRim(9), g€G, teR (2.9)

is a true representation of G\ .



176 Jae-Hyun Yang

We now express the cocycle ¢y ,, in terms of the Maslov index. Let [, I3, [3
be three Lagrangian subspaces of (V, B). The Maslov index 7(I3, Iz, I3) of I1, [5
and [3 is defined to be the signature of the quadratic form @ on the 3n
dimensional vector space [; & s @ [3 given by

Q(x1 + w2 + x3) = B(x1,22) + B(x2,23) + B(23,71)
forall z; € l;, i =1,2,3.
For a sequence {[1, lo, -+, [k} of Lagrangian subspaces 1, [o, - - | [ (k > 4)
in (V, B), we define the Maslov index (I, I3, -+ , [x) by
(I, loy oo ) = 7(0, by 13) + 7 (0, I3, be) + - A 7 (T, emn, ).
For a Lagrangian subspace [ in (V, B), we put 71(g1, 92) = 7(I, 911, g192!) for
91,92 € G.

Lemma 2.1. Let Iy, Iy, -+ , I be Lagrangian subspaces in (V,B) with k > 4.
Then we have

(a) 7(lh, Lo, -+, lg) is invariant under the action of G and its value is un-
changed under circular permutations.

(b) T([17[27[3) = _T([27[17[3) = _T([17[37[2)°

(c) For any four Lagrangian subspaces Iy, la, 13,1y in (V, B),

(o, 3) = 7(l, Io, L) + 7(lo, I3, L) + 7(l3, [, ).

(d) T([l, [2, ey [d) = T([l, [2, [) + T([Q, [3, [) + e+ T([d_l, [d, [) + T([d, [1, [)
for any Lagrangian subspace [ in (V,B) and d > 3.

(e) (I, 2,13, 1s) = —7(I2, l1, Iy, [3).

(f) For any Lagrangian subspaces Iy, 1o, 3,1}, 15, l5 in (V, B), we have

T([/l, [/2, [é) = 7'([1, [2, [3) + T([/l, [I2, [2, [1) + T([/Q, Ig, [3, [2) + T([/3, [/1, [1, [3)

(8) 71(9192,93) + 11(91, 92) = Ti(g1,9293) + Ti(g2,93) for all g1,92,93 € G.
Proof. The proof can be found in [30]. O

Theorem 2.1. For a Lagrangian subspace | in (V, B) and a real number m,
we have

_imm

cim(g1,92) =€ 4 7(Lg1Lg1920) for all g1,92 € G.

Proof. The proof can be found in [30]. O

An oriented vector space of dimension n is defined to be a pair (U, e), where
U is a real vector space of dimension n and e is an orientation of U, i.e., a
connected component of A" U-{0}. For two oriented vector space (1, e;) and
(o, e2) in a symplectic vector space (V, B), we define
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S(([l, 61), ([2, 62)) = inidim([lmb) 8(([1, 61), ([2, 62)). (210)

We refer to [30, pp. 64-66] for the precise definition of e((I1,e1), (I2, €2)). Let
M be the space of all Lagrangian subspaces in (V, B) and M the manifold of

all oriented Lagrangian subspaces in (V, B). Let p : M — M be the natural

projection from M onto M. Now we will write [ for a Lagrangian oriented
subspace (I, e).

Theorem 2.2. Let fl, fg, I3 € M. Then
e 3 7(p(1),p(1).p(1)) _ s(11, 1) s(lo, 13) s(I3, ).

Proof. The proof can be found in [30, pp. 67-70]. O

Let I be a Lagrangian subspace in (V, B). We choose an orientation [T on
I. Then G acts on oriented Lagrangian subspace in (V, B). We define

sum(g) == s([+,g[+)m, g€ @qG. (2.11)

The above definition is well defined, i.e., does not depend on the choice of
orientation on I. Since s(,,(g71) = si.m(g9) !, according to Theorem 2.1 and
Theorem 2.2, we get

cim(91,92)° = stm(91) " sum(92) ! sum(9192) (2.12)

for all g1, g2 € G. Hence we can see that

G2,[,m = { (9775) € Gl,m| t? = Sl,m(g)71 } (213)

is the subgroup of G|, (cf. Formula (2.8)) that is called the metaplectic group
associated with a pair ([,m). We know that Go |, is a two-fold covering group
of G. The restriction Ry, of R[’m to Ga,1,m is a true representation of G |,
that is called the Weil representation of G associated with a pair (I,m). We
note that

R2,[,m(gvt) = tR[,m(g) = 5[,m(g)71/2R[,m(g) (214)

for all (g,t) € Ga,1m. We refer to [18, 24, 30] for more detail on the Weil
representation.

3 The Weil Representation of the Jacobi Group G’

Let V = R0™m) x R(™7) he the symplectic real veactor space with a nonde-
generate alternating bilinear form on V' given by

B((Ap), (N, )) = o= '), (A ), (X, 1) € R,



178 Jae-Hyun Yang

We assume that M is a positive definite symmetric real matrix of degree m.
We denote by S(m) the set of all m x m symmetric real matrices. We let

Wy« HS™ — U(Hp) (3.1)
be the Schrodinger representation with central character #u(((0,0;k)) =

e2mi o(Mk) IHM ,

k € S(m). Here Hx, denotes the representation space of #,(. We note that
W is realized on L2 (R(™™) = Hy, by

(WM(h)f) (.’E) — e27rio<./\/((n+;4t)\+2;ztlt))f(x_'_)\), (32)

where z € RO™™ | h = (\, u;5) € Hﬂ({l’m) and f € L? (R(m’”)). We refer to
[53, 54, 55, 56, 57] for more detail about #),. The Jacobi group G” acts on
Hﬂ%n’m) by conjugation inside G”. Fix an element § € G”. The irreducible
unitary representation V//a of Hﬂén’m) defined by

Wi (h) = Wu(Ghg "), he HS™ (3.3)

has the property that #¢,((0,0; k)) = #p((0,0; k) = e2™oMr). [y for all
k € S(m). According to Stone-von Neumann theorem, there exists a unitary
operator T (g) on Haq such that T (g) #a(h) = #33(h) Tam(g) for all
h e Hﬂén’m). We observe that Th(g) is determined uniquely up to a scalar of
modulus one. According to Schur’s lemma, we have a map ¢ : G/ x G7 —
T satisfying the relation

Trm(9192) = em(G1, 92) Taa(G1) T (92) (3.4)

for all g1, go € G”. Therefore T is a projective representation of G and ¢y

defines the cocycle class in H*(G”,T). The cocycle ¢4 satisfies the following
properties

cm(hi hy) =1 for all hy, hy € HS™, (3.5

em(g,e) =cmle,§) =cm(e,e) =1 forall ge G (3.6

em(3,97) = em(@®.97") em(g,9) forallge Gy (3.7

Trm(G ") = em(@57") " Tm(g ™" forall ge G, (38

where e is the identity element of G”. The cocycle ¢ yields the central
extension Gj/t of G’ by T. The extension group Gj/t is the set G’ x T with
the following group multiplication law :

(G1,t1) - (G2, t2) = (G192, tata (91, G2) ) (3.9)

for all §1,g2 € G7, t1,ta € T. It is easily checked that (I,,1) is the identity
element of Gj/l and
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(gvt)il = (gilatilg./\/l(gméil))
if (g,t) € G}, We see easily that the map TM : Gy — U(H ) defined by

TM(E} t) = tTM<§)7 (g’ t) € Gi/l (310>

is a true representation of Gﬂ/l. Here U(H aq) denotes the group of unitary op-
erators of H . For the Lagrangian subspace [ = {(0,u) € V | p € R(m™ },
as (2.11) and (2.12) in Section 2, we can define the function sy : G/ — T
satisfying the relation

em(31,92)% = 3m(1) " Sa(G2) " Sm(102) (3.11)

for all g1, g2 € G”. Then it is easily seen that
Gz ={(@1) Gyl t?=3m(@) "} (3.12)

is a two-fold covering group of G”. The restriction Way of T 'm to G‘]Vw is
called the Weil representation of G” associated with M.

4 The Schrodinger-Weil Representation

Let #) be the Schrodinger representation of HS™™ defined by (3.1) in

(n,

Section 3. The symplectic group G = Sp(n, R) acts on Hy ™) by conjugation
inside G/. We fix an element g € G. We consider the unitary representation
W3, of H]}(%"’m) defined by

W (h) = Pm(ghg™ ), heH™. (4.1)

Since #7,((0,0;k)) = #((0,0;K)) = 2™ oMm [y for all k € S(m), ac-
cording to Stone-von Neumann theorem, #/{; is unitarily equivalent to #.
Thus there exists a unitary operator Raq(g) of Haq satisfying the commuta-
tion relation Raq(g9) #a(h) = # 3 (h) Ram(g) for all h € Hﬂ(gn’m). We observe
that R is determined uniquely up to a scalar of modulus one. According to
Schur’s lemma, we have a map caq : G x G — T satisfying the relation

Ra(g192) = cam(g1, 92) Raa(g1)Ra(g2), 91,92 € G. (4.2)

Therefore R4 is a projective representation of G and ¢y defines the cocycle
class in H?(G,T). The cocycle cpq gives rise to the central extension G of
G by T. The extension group G4 is the set G x T' with the following group
multiplication law :
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(91,t1) - (g2, t2) = (9192, t1t2 cpa(g1,92) ") (4.3)

for all g1,92 € G, t1,to € T. We see that the map EM Gy — U(Hum)
defined by B

is a true representation of G . For the Lagrangian subspace

(= {(O.meVipermm ],

as (2.11) and (2.12) in Section 2, we can define the function sy : G — T
satisfying the relation

em(g1,92)° = salg1) " saalg2) " sml(g1g2) (4.5)

for all g1, g2 € G. Hence we see that

Gom={(g9.t) € G| ? =50m(9)"" } (4.6)

is the metaplectic group associated with M € S(m) that is a two-fold covering

group of G. The restriction Ry s of }N{M to G2, o is the Weil representation
of G associated with M € S(m). Now we define the projective representation
7 of G7 by

w(hg) == #uu(h) Rmlg), heH{™, geG. (4.7)

We observe that any element g of G’ can be expressed in the form § = hg
with h € Hﬂé”’m) and g € G. Indeed, if g,g; € G and h,hy € HD%"’m), then we
have

m(hghigi) = ma(hghig™ gg1)
= Wm(hghig™") Ram(ggr)
= cm(g, 91) Pm(h )WM(ghlg’l)Rm( )Rm(g1)

= cmlg, g1) W (h) W (ha) Raa(g) Ra(g1)
= cm(9,91) Waa(h) Raa(g) #Waa(ha) Raa(g1)
= cm(9,91) Tm(hg) Taa(higr).

In the second equality, we used the fact that H]é"’m)

G”. Therefore we get the relation

is a normal subgroup of

Tm(hghigr) = eam(g, 91) ma(hg) Tar(higr) (4.8)
for all g,g1 € G and h,h; € Hﬂg{n’m). From (4.8) we obtain the relation

Tml(g) = Rm(g), emlg.9') = cmlg.g) (4.9)
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for all g,¢' € G. Ty and ¢épq were defined in (3.4). Thus the represen-
tation maoq of G is naturally extended to the true representation wé\é\, of

GQI,M =G pm X Hﬂ({“m). The representation wé‘{}v is called Schrodinger- Weil

representation of the Jacobi group G associated with M € S(m). Indeed we
have

Wile(h-(g,1)) = tmp(hg), he H™, (g,t) € Gap. (4.10)

We recall that the following matrices

t(b): = (Iél Ib> with any b = b € R,

0 ot
0 -1,
I, O

generate the symplectic group G = Sp(n,R) (cf. [16, p. 326], [33, p. 210]).

¢
gla): = < a 0 > with any a € GL(n,R),

Op -

The Weil representation Ra aq is realized on the Hilbert space L? (R(m’”))
as follows:

(Rom(t(0)f) () = 2mioMeb D p(g) = the ROV, (4.11)

(Rom(g()f) (z) = (det )% f(z'a), a € GL(n,R), (4.12)

(Ryplo )f)(x)—<1>";n (et p)? [ e gy, (413)
2,M\Un i et . .

We refer to [51] and [24] for more detail.

According to Formulas (4.11)-(4.13), Ra a¢ is decomposed into two irre-
ducible representations R2jE M

Ry = Ry 0 ® Ry (4.14)

where R; m and Ry . are the even Weil representation and the odd Weil
representation respectively. Obviously the center Zé{ am of Gi A 1s given by

22]7./\/1 = {((1271’ 1)7 (070;’%)) € GQJ,M } = S(m)
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We note that wl|c, v = Ro.m and wid () = #u(h) for all h € ™,

5 The Weil-Satake Representation

In this section we discuss the realization of the Weil representation on the
Fock model and the Weil-Satake representation due to Satake (cf.[40]). We
follow the notations in Section 3 and Section 4.

For g = (é g) € G, we set

J(g,2)=CN+ D, eH,. (5.1)

Let M be an m x m symmetric real matrix. We define the map Jy : G/ x
H,, ,» — C* by

In(7,(2.2)) = 2rio (M(Z+re+u(ce+D)1C) (5.2)

. t t t
y e—zma(M(AQ A2N Z bty ,\))’

where § = (g, (\, ;k)) € G’ with g = (g g) € G and (\, u;k) € Hﬂ(g"’m).

Here M[N]:= *NMN is a Siegel’s notation for two matrices M and N. The
Ja satisfies the cocycle condition

Im(91 92, (82, 2)) = Tm(91, 92 - (12, 2)) Tm(g2, (12, Z))

for all §1,g2 € G’ and (£2,Z) € H,, . We refer to [40] and [61] for a con-
struction of Jp4.

We introduce the coordinates (2, Z) on H,, ,,, and some notations.

=X+, X=(2w), Y = (yu) real,
Z=U+1iV, U= (ur), V= (vg) real

[dX] = N dzy, [dY]= )\ dyuw,

puy usy

[dU] = N\ duri,  [dV] = J\ do.
k,l k,l

Now we assume that M is positive definite. We define the function k4 :
Hn,m — R by

km(2,2) 1= e dmo("VMVY T, (5.3)
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We fix an element {2 in H,,. We let Haq o be the complex Hilbert space
consisting of all complex valued holomorphic functions f on C™™) such that

Lo D dnsan(2) < .

where
dvp,0(Z) = (det 2M)" (det Im £2) ™™ kp(§2, Z) [dU] A [dV].

We define an irreducible unitary representation %, of Hﬂ({l’m) on Hy 0
by
- ~1

where h = (\, u; k) € Hﬁén’m), feHmpand Z € CUmm) Tt is known that for
any two elements (21 and 25 of H,,, %, 0, is equivalent to %, o, (cf. [40]).

Therefore Zn,q; is called the Fock representation of Hﬂ({“m) associated to M.
Clearly Znm.0((0,0;K)) = e~ 2™ 7(Mr) " According to Stone-von Neumann
theorem, %, is equivalent to #_ aq

(cf. Formula (3.1)). Since the representation %, , (g € G) of Hﬂ({l’m) defined
by Uy o(h) = m.a(ghg™) is equivalent to %, g, there exists a unitary
operator Un,0(g) of Hpm,o such that Upt,o(9)%m,o(h) = %y o (U e(9)

for all h € Hﬂén’m). Thus we obtain a projective representation Upq, of G on
H a0 and a cocycle ¢, 1 G x G — T satisfying the condition

Unm,02(9192) = erm,0(91,92) Um,2(91) Um,02(g2), 91,92 € G.

Now ¢a, and Upag,o(g) will be determined explicitly (cf. [40], [45]). In fact,

7(95191‘10,9519)>m
Y(g1 " 92, 02) ’

cm(91,92) = < (5.5)

where for 21, {2, € H,,,

(=) 1
(021, 82) == (det (1222» (det Tm )7 (det Im €2)

N
=

We define the projective representation 7, of G’ by
Tama(hg) = Uma(h) Up.alg) forall he H™™, geG. (5.6)
Then 74, satisfies the following relation
Tm,2(91 92) = Tm,0(91:92) Tm,2(91) Tag,2(g2) (5.7)

for all §1 = (gl,hl), EQ = (gg, hg) e GJ with g1,92 € G and hl,hQ € Hﬂ({n,m)
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We put

_ 1
m

Balg1,92) = 5/\4,9(91792) , 91,92 €G. (5.8)
Then Sy, satisfies the cocycle condition and the following relation
Bo(91,92)* = 3a(g1) " 8alg2) ' 8algig2), 91,92 € G,

where )
Sa(g) = |det J(g~, Q)| (det J(g7',02)) , geG.

The cocycle class [Bg] in H?(G, T) defines the central extension G = G x T
of G by T with the following multiplication law

(91,t1) - (92, t2) = (9192, t1t2 Ba(g1, g2) ).

We obtain a normal closed subgroup G » of G, given by
Gro={(g9,t) Gl t?=3a(9)""}. (5.9)

We can show that G o is a two-fold covering group of G. We set for any
g < G and 91792 (S Hn,

Y(g-$21,9-22)

s, 8)) =
e(g; £21, $22) (21, 29)

(5.10)

We can see that for any element g € G and (2 € H,,, the topological group
G2,0 is isomorphic to Ga 4. via the correspondence

(g0.t0) = (g0, toe(gy "19-2,2)), (9o, to) € G2,

Therefore it is enough to consider the case 2 = il,,. We set Gy := G2 i5,, -
We let
Gg = G2 X Hﬂ({n,m)

be the two-fold covering group of G” endowed with the multiplication law
(9.0, i)} - (051, V1))
= (9000 ), A+ Nofit s+ A = i)

with (g,), (¢, t) € Ga, (A k), (N, /s ) € HI™ and (A, i) = (A, p)g'-

We observe that any element & of G§ can be written in the form & =
h(g,t) with h € Hﬂ({"’m) and (g,t) € G2. We define a unitary representation
W= 'QM,ifn of Gg by

Sa(h(g,t)) == t"Tanir, (hg), he HS™, (g,t) € Go. (5.11)
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In fact, if h,hy € Hﬂén’m) and (g,t), (g1,t2) € Ga, then we obtain

h(g,t)h1(g1,t1))
(h(g,t)h1(g,t)" (g, ) (91, 11))
(h(g,)h1(g,t)" " (991, tt1Bi1, (9. 91) "))
D™ Bir, (9, 91) " Tan,in,, (R(g, )R (g,8) " gg1)
" Bir, (9,91) ™ Una,ir,, (R(g, t)ha(g,t)™") Um,ir, (991)
" U, in, (h) Uy ip, (P1) Um,ir, (9) U, i, (91)
" Ui, (W) Un,in, (9) U, ir, (1) Una,ir, (91)
1 ™™m,ir, (hg) Tadir, (higr)
= Wm (h(g,t)) @m (Rilgr,t1)) -

—~

|
£ 8 &
2L

—~

[
~— ~—

tt
tt
tt)
tt

~—

1

W is called the Weil-Satake representation of G associated with M. In Sec-
tion 8, we discuss some applications of the Weil-Satake representation W to
the study of unitary representation of G.

6 Jacobi Forms

Let p be a rational representation of GL(n,C) on a finite dimensional complex
vector space V,. Let M € R(™™) be a symmetric half-integral semi-positive
definite matrix of degree m. Let C*°(H,, ,,V,) be the algebra of all C>°
functions on H,, ,,, with values in V,,. For f € C*(H, n,V),), we define

(Flomllg, (A s 6))D($2, Z)

— 2 7 io(M(Z+A2+p)(CR+D) T CHZ+A 2+ 1)) (6.1)

% 627\'1’0(./\/1(/\ QN+2N'Z+ +p'N))

X p(CR2+ D) fg-2,(Z + A2+ p)(CR2 + D)),

where g = <é IB)> € Sp(n,R), (\,u;k) € Hﬂgn’m) and (£2,Z) € Hy, ..

Definition 1. Let p and M be as above. Let
HY™ = {(\ k) € HY™ | A\ p € 2™ k€ 20 ),

A Jacobi form of index M with respect to p on a subgroup I" of I, of finite
index is a holomorphic function f € C*°(H, ., V,) satisfying the following
conditions (A) and (B):
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(A) flom3] = fforall € I':=T x H™™.
(B) For each M € I, f|, m has a Fourier expansion of the following form :

f(2,2) = Z Z o(T,R) - o3 o(TR) | 2mio(RZ)

T=tT>0 ReZ(n,m)
half-integral

171l
with a suitable A € Z and ¢(7T, R) # 0 only if (ﬁf}; .2/\?) = 0.
2

If n > 2, the condition (B) is superfluous by Kocher principle (cf. [74]
Lemma 1.6). We denote by J, r(I") the vector space of all Jacobi forms
of index M with respect to p on I'. Ziegler (cf.[74] Theorem 1.8 or [15]
Theorem 1.1) proves that the vector space J, o4(I") is finite dimensional. In
the special case p(A) = (det(A))* with A € GL(n,C) and a fixed k € Z, we
write Jy aq (1) instead of J, p(I7) and call k the weight of the corresponding
Jacobi forms. For more results on Jacobi forms with n > 1 and m > 1,
we refer to [58]-[62] and [74]. Jacobi forms play an important role in lifting
elliptic cusp forms to Siegel cusp forms of degree 2n (cf. [23]).

Definition 2. A Jacobi form f € J, p(I) is said to be cuspidal if

1T1R>
ip 4, >0
(;tR M

for any T, R with ¢(T,R) # 0. A Jacobi form f € J, m(I") is said to be
singular if it admits a Fourier expansion such that a Fourier coefficient ¢(T', R)

I Ay »)
vanishes unless det (’if 2 ) =0.
1 M

Remark 1. Singular Jacobi forms were characterized by a certain differential
operator and the weight by the author [60].

Without loss of generality we may assume that p is irreducible. Then we
choose a hermitian inner product ( , ) on V, that is preserved under the
unitary group U(n) C GL(n,C). For two Jacobi forms f; and f in J, pm(I),
we define the Petersson inner product formally by

(1 fa) = /F o AP, 2), 00D (2, 2) (2, Z) e, (62)
where
dv = (det V)~ [AX) A [dY] A [dU] A [dV] (6.3)

is a G7-invariant volume element on H,, ,,. A Jacobi form f in J, p (1) is
said to be square integrable if (f, f) < co. We note that cusp Jacobi forms



The Weil representations of the Jacobi group 187

are square integrable and that (fy, fo) is finite if one of f; and fy is a cusp
Jacobi form (cf. [74], p. 203).

We define the map J, p : G7 x H,, , — GL(V,) by

where § = (g,h) € G’ with g € G and h € Hﬁé"’m). For a function f on H,
with values in V), we can lift f to a function ¢y on G’

Py(o) : = (flpmlo])(ily,0)
= Jpmlo, (i]n,()))flf(cr(ifm())), ceqG’.

A characterization of @5 for a cusp Jacobi form f in J, p(I") was given by
Takase [45, pp. 162-164] and the author [63, pp. 252-254].

We allow a weight k to be half-integral. For brevity, we set G = Sp(n,R).
For any g € G and 2,2 € H,,, we note that

2 —q0 -0
e(g; 2',02) = det ™2 (9229) det? ( 2 > (6.4)
x| det J (g, ) ~1/2 | det J (g, 2)| 71/,

Here J(g,2) = CN2 + D for g = (é g) € G (cf. (5.1)).

Let
6:{SG(C(”’")| S =ts, Re(5)>o}

be a connected simply connected complex manifold. Then there is a uniquely
1
determined holomorphic function det™ 2 on & such that

(det%5>2 —detS forall S €6, (6.5)
det?S = (det S)?  for all S € & NRM™™. (6.6)
For each integer k € Z and S € G, we put
det? § = (det%s)k
For each {2 € Hl,,, we define the function 8, : G x G — T by

Bo(g1,92) = €(g1;: 02, 92(02)), 91,92 € G. (6.7)

Then Sy, satisfies the cocycle condition and the cohomology class of B of
order two:

Balgr, 92)° = anlg2) anlgig:) " anlg), (6.8)
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where
det J(g, 2)

=77 - G, 2 eH,. 6.9
[deta(g, ) 9SG € (6.9)

ap(g)

For any {2 € H,,, we let
Go={(9.0 € GxT| & =aqlg)™}

be the two-fold covering group with the multiplication law

(91, €1)(g2, €2) = (9192, €1€280(g1,92))-

The covering group G, depends on the choice of 2 € H,,, i.e., the choice of
a maximal compact subgroup of G. However for any two element (21, (2 €
H,, Gg, is isomorphic to G, (cf.[47]). We put

G, =Gg,.
We define the automorphic factor Jy /5 : G« x H,, — C* by
Ti/2(9e, 2) = € e(g: 2,10,)| det (g, )12, (6.10)
where g, = (g,¢) € G with g € G and 2 € H,,. It is easily checked that
J1/2(guhs, 2) = J1/2(gu; - 82)J1 2 (s, 2) (6.11)
for all g. = (g,¢€), he = (h,n) € G« and 2 € H,,. Moreover

J1/2(9s,2)? = det(CR2 + D) (6.12)

for all g, = (g,¢) € G, with g = <é g) €G.

Let 7, : G. — G be the projection defined by 7m.(g,€) = g. Let I" be a
subgroup of the Siegel modular group I, of finite index. Let I', = 7, 1(I") C
G.. Let x be a finite order unitary character of I',. Let k € ZT be a positive
integer. We say that a holomorphic function ¢ : H,, — C is a Siegel modular

form of a half-integral weight k/2 with level I" if it satisfies the condition

D(ver 2) = x(7)J12(1, 2)F$(2) (6.13)

for all v, € I'. and £2 € H,,. We denote by Mj,5(I', x) be the vector space
of all Siegel modular forms of weight k/2 with level I'. Let Sy 2(I, x) be the
subspace of Mj,/o(I, x) consisting of ¢ € Mj,/o(I, x) such that

|p(£2)| det(Im £2)*/4 is bounded on H,,.

An element of Sy, /5(1I, x) is called a Siegel cusp form of weight k/2.
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Definition 3. Let I C I}, be a subgroup of finite index. We put I, = 7, 1(I)
and B
I,=TI,x HM™.

A holomorphic function f : Hj, ,,, — C is said to be a Jacobi form of a weight
k € 37 (k:odd) with level I" and index M for the character x of I, of if it
satisfies the following transformation formula

fOx - (92,2)) = x(7x) e M (s (£2,2))f(£2,Z) for all 4, € f* (6.14)

where J aq f* x H,, ,,, — C is an automorphic factor defined by

Toaa (o1 (2,2)) s = mimMERasCaIDTIC @) (615)

« e 2mic(MOARAF2NZ + k5 + “t’\))J1/2(7*, 2)F,

where 3, = (7., (A, p1; k) € T with y = <é f’;) €L, = (7€), (\ k)€

H™™ and (2, Z) € Hy, .

7 Applications of the Schrodinger-Weil Representation

7.1. Construction of Jacobi Forms

We assume that M is a positive definite symmetric integral matrix of
degree m. Let way be the Schrédinger-Weil representation of G constructed
in Section 4. We recall that w4 is realized on the Hilbert space L? (R(m’”)) by
Formulas (4.11)-(4.13). We define the mapping &) : H,, ,,, — L? (ROmm)
by

g;(M)((LZ)(x) _ eﬂ'io’{./\/l(th:E—&-thZ)}’ (7.1)

where (Q, Z) € Hn)m’ T c R(m:n)

For brevity we put ﬁf(;vzl) = FMNN, Z) for (2,7) € H,, . Let J :
G’ x H,, ,, — C* be an automorphic factor for G7 on H,, r, defined by

JXA@» (2,2)) = em’a(M(Z—i-/\ Q+p)(CR+D) "' CHZ+N 24p)) (7.2)

% e—m‘a(/\/l(/\Qt/\+2>\tZ+m+ut/\)) det(C0 + D)%

9



190 Jae-Hyun Yang

vaE@OwW)Gmwﬂg(ég)EMWM,QMMG

HY™ and (2, Z) € Hy, .

Theorem 7.3. The map F™ : H,,,,, — L2(R(™") defined by (7.1) is
a covariant map for the Schrédinger- Weil representation way of G7 and the
automorphic factor J3, for G’ on M, ,,, defined by Formula (7.2). In other
words, FM) satisfies the following covariance relation

M x [~ -1 M
wMm@F5Y = Tia(3.(2.2) " Z0 4 (7.3)
for allg e G7 and (2,Z) € Hy .-

Proof. The proof can be found in [69]. O

For a positive definite integral matrix M of degree m, we define the holo-
morphic function Oy : H,, ,,, — C by

@M(Q,Z): Z eﬂia(M(EQ"erQth))’ (.Q,Z) GHn,m- (74)
gezlm:n)

We can prove the following theorem.

Theorem 7.4. The function Oa is a Jacobi form of weight 5 and index
%M with respect to a discrete subgroup F/‘(/[ = Iy X Hé"’m) of I'V with a
suitable arithmetic subgroup I'ng of Ih,. That is, O satisfies the functional
equation

where (£2,Z) € H,, ,, and pp(7) is a suitable character of I'y,.
Proof. The proof can be found in [69] when M is unimodular and even inte-
gral. In a similar way we can prove the above theorem. O

According to Theorem 7.3 and Theorem 7.4, we see that the theta series
O is closely related to the Schrodinger-Weil representation of the Jacobi
group G”. We note that the theta series

O(R)= Y e gem, (7.6)
AezZm

is a Siegel modular form of weight % with respect to the theta subgroup I'g
of I,, that is, @ satisfies the following functional equation

O(y-2) = ((7) (det(CR2 + D)) O(R), QcH,, (7.7)
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81and’y<ég>€F@.We

refer to [33, pp.189-201] for more detail. Indeed the function # : H,, —
L*(R™) defined by

where ((7) is a character of I'o with |{(7)

F(2)(x) = ™72 ) cH, and z € R". (7.8)

is a covariant map for the Weil representation w of Sp(n,R) and the auto-
morphic form Jyi : Sp(n,R) x H,, — C* defined by

Ji(g,2) = (det(C2+ D)), QeH, (7.9)

1
2

B . .
C D) € Sp(n,R). More precisely, if we put Fy, := F(12) for
brevity, the vector valued map % satisfies the following covariance relation

with ¢ = (A

w(g) T = (det(CR + D))" % Fpp (7.10)

for all g € Sp(n,R) and 2 € H,,. We refer to [30] for more detail. This is a
special case of Theorem 7.3 and Theorem 7.4.

7.2. Maass-Jacobi Forms

Recently in the case n = m = 1 A. Pitale [37] gave a new definition of
nonholomorphic Maass-Jacobi forms of weight k and m € Z™* as eigenfunc-
tions of a certain differential operator C*™, and constructed new examples
of cuspidal Maass-Jacobi forms F; of even weight & and index 1 from Maass
forms f of weight half integral weight k—1/2 with respect to I'H(4). Moreover
he also showed that the map f — F} is Hecke equivariant and compatible
with the representation theory of the Jacobi group G/. We will describe his
results in some detail.

For a positive integer N, we let

Iy(N) = {(‘; Z) € SL(2,7Z) ‘ ¢ =0 (mod N) }

be the congruence subgroup of SL(2,7Z) called the Hecke subgroup of level N.
Let & be the group which consists of all pairs (v, ¢(7)), where v = (CCL Z) €
GL(2,R)" and ¢(7) is a function on H such that

(e +d)

1/2
— with t € C, |¢| = 1.
ler + d|

o(r) = 1 det() (
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The group law is given by
(1,01(7)) - (72, 92(7)) = (172, b1 (72 - T)d2(7)), (7.11)

where v = <CCL Z) € GL(2,R)". Then there is an injective homomorphism

I'h(4) — & given by
Yyt = (1000 71), (7.12)

where v = (Z Z) € Iy(4) and

/2
ey [l D\ 0y
itnr)= (5) <|CT+d|) G
with -
9(7_) = y1/4 Z e27rin2'r
and

1, ifd=1 (mod 4),
6 =
Y74, ifd=3 (mod 4)

And () is defined as in [41, p.442].

For an integer k € Z, we define the slash operator ||;_; /2 on functions on
H as follows:

(Flle=1/2(v: ) (7) := fly-7) $(7)"FY. (7.13)

Definition 4. A smooth function f : H — C is called a Maass form of
weight k — 1/2 with respect to I'h(4) if it satisfies the following properties
(M1)-(M3):
(M1) fllk—1/2v" = [ forall v € I5(4).
(M2)  Ap_y)of = Af forsome A € C, where A,_y/5 is the Laplace-
Beltrami operator given by
0? 0? 0
Mpap=9 2=+ 75 ) —i(k—1/2)y—. 7.14
v = (G + 5z ) ~ ik - 12w (7.14)

(M3) f(r) =O(y") as y — oo for some N > 0.

If, in addition, f vanishes at all the cusps of I(4), then we say that f is a
Maass cusp form.

We denote by Mj,_1/2(4) (resp. Sy—1/2(4)) be the vector space of all Maass
forms (resp. Maass cusp forms) of weight k—1/2 with respect to I'y. As shown
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in [25, 37], if f € Mj_,,2(4), then f has the following Fourier expansion

flr)= %c(n)WSgn%m%(%ﬂnw) e2mine (7.15)

where A = — {1/4 + (1/2)?} and W, , (y) is the classical Whittaker function
which is normalized so that W, ., (y) ~ e Y2yl asy — 00 If f € Sk—1/2(4),
then we have ¢(0) = 0 in (7.15). We define the plus space by

M+

F @)= {f € My_1(4)| ¢(n) = 0if (~1)*'n = 2,3 mod 4) } . (7.16)

SJ_1/2(4) = M,j_l/z(él) N Sk_1/2(4).
For a given integer k € Z and m € Z™, we let

e2rim{r—c(tArm)(ertd) Y (7 17)
+a )"
cT
x (\c‘r+d|>

be the nonholomorphic automorphic factor for G’ on H x C, where § =

(g, (A, p; £)) with g = (CCL Z) € SL(2,R), A\, u,x € Rand (r,z) € H x C. For

i (G5 (7,2)) =

G € G/(R), (1,2) € H x C and a smooth function F : H x C — C, we set

(Flimd)(1,2) := jin (9, (1, 2))F (G - (1, 2)). (7.18)

Let IV := SL(2,Z) x Hél’l) be the discrete subgroup of G7(R) :=
SL(2,R) x H"Y.

Definition 5. A smooth function F : H x C — C is called a Maass-Jacobi

form of weight k and index m with respect to I'’) if it satisfies the following

properties (MJ1)—(MJ3):

ﬁ_ﬂMl)@ F©&-(r,2) = j,r;};n(’?, (1,2))"'F(r,2z) forall ¥ € I'’ and (7,2) €
x C.

(M2) CF™F = A\ (f)F  for some Mg, (f) € C.

(M3) F(r,2)=O0(y") as y — oofor some N > 0.

If, in addition, f satisfies the following cuspidal condition

1 1
L[ r((67) omoema) esesmag—o  m)
o Jo 01

for all n,r € Z such that 4mn —r? = 0, then we say that f is a Maass-Jacobi
cusp form.
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We denote by Ji ( resp. Jyh“*P ) the vector space of all Maass-Jacobi
forms (resp. Maass-Jacobi cusp forms) of weight & and index m with respect
to I'’.

For a Maass form f € M, 1/2( ) with k € 2Z, he defined the function Fy
on H x C by

Fy(r,2) = fO(1) 0 (r,2) + fD(r) 0V (7, 2) (7.20)

for all (7, z) € H x C. We refer to [37, pp.96-97] for the precise definition
of f@, f1, 6O and M. Pitale [37] showed that if f € M, | /o(4) with
k € 2Z, then Fy € Jp%, and Fy € J5"*7 if and only if f € S, ,(4).
Furthermore he showed that if A,_;/,of = Af, then ck 1Fp = 2 A Fy under

the assumption f € M, 104 ) with k € 2Z.

For an odd prime p, the Jacobi Hecke operator 7}, on J};}i (cf. [10, p. 168]
or [15, p.41] is defined by

T,F = 3 Y Fla (det(M)—l/QM(,\,u;o)). (7.21)
MeSL(2,2)/733? (\p)E(Z/pZL)?
det(M)=p?
ged(M)=1

Theorem 7.5. Let f € S} 1/2( ) (k € 2Z) be a Hecke eigenform with eigen-

value A, for every odd prime p. Then T, = pk*3/2)\p Fy for all odd prime p.
Namely F is also an eigenfunction of all T}, for every odd prime p.

Proof. The proof can be found in [37, pp. 104-106]. O

Let f be a Hecke eigenform in S, 1/2( ) (k € 2Z) such that for every odd

prlme p we have T,f = \pf and Ap_y/2f = Af with A = (s —1). Let
7§ = ®7fp be the irreducible cuspidal genuine automorphic representation

—_~—

of a two-fold covering group SL(2,A) of SL(2,A) corresponding to f (cf. [49,
p. 386]). Now we let F; be the Maass-Jacobi cusp form in J3““*? constructed
from an eigenform f € S 1/2( ) (k € 2Z) by Formula (7 20). Then F} is
an eigenform of all T}, for every odd prime p and is an eigenfunction of the
differential operator C*!. We lift Fy to the function @, on G”(A) as follows.
By the strong approximation theorem for G’ (A), we have the decomposition

GI(A) = G7(2) G7(R) Ilp<oc G (Zp). (7.22)

If § = vgocko € G7(A) with v € G'(Z), §oo € G'(R), ko € <G’ (Zp),
we define
@Ff (g) = (Ff|k,m§oo)(7/70) (723)
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Let IIr, be the space of all right translates of @, on which G’(A) acts by
right translation. Pitale [37] proved that

Ip, = 75 @ wiw, (7.24)

where wly; is the Schrodinger-Weil representation of G (A) (cf. [10]).

Remark 2. For a Siegel cusp form of half integral weight, we have a result
similar to Formula (7.24). See [49] for the case n = 1 and [47, 48] for the case
n>1.

Remark 3. Berndt and Schmidt [10] gave a definition of Maass-Jacobi forms
different from Definition 7.2. Yang [64, 66, 70] gave a definition of Maass-
Jacobi forms using the Laplacian of an invariant metric on the Siegel-Jacobi
space H,, x C("™) in the aspect of the spectral theory on L? (F;L’\Hn XC(m’”)).
We refer to [11, 12, 13, 14] for another notion of Maass-Jacobi forms.

7.3. Theta Sums

We embed SL(2,R) into Sp(n,R) by
ab al, bl,
SL(2,R) > (C d) — (CI“ dIn) € Sp(n,R). (7.25)

ab
Every map M = (c d

12\ (¥ 0 cosf —sinf)
M= (O 1) ( 0 y/2) \sinf cosf) (7,0),
where 7 =z + iy € H; and 0 < 0 < 27. Then SL(2,R) acts on H; x [0, 27)
by

) € SL(2,R) admits the unique Iwasawa decomposi-

tion

M - (1,0) := (M -7, 0+ arg(ct + d) mod 27), (7.26)
where M = (i Z) € SL(2,R), 7 € Hy and 6 € [0, 27).

We put
G, = Sp(n,R) x =Y,
We take M = 1 in section 4. Then we let # = #), R = Ry and ¢ =
cpm (see section 4). If M; = (CCL: Zj) € SL(2,R) for i = 1,2,3 with M5 =
M My, then the cocycle c is given by

C(Ml,MQ) — e—iﬂnsign(clcgc;g)/4,

where
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-1 if x <0,
sign(z) = 0 ifz =0,
1 if z <0.
For (,0) € SL(2,R), we define
R(7,0) := e "™/* R(7,0), (7.27)
where
2v if0=vm, veZ,
Op =
’ 2v+1 ifrr<0<(v+1)m veZ.

Then R is a unitary representation of the double covering group of SL(2,R)
(cf. [30]). Obviously R(i,0)R(i,0") = R(i,0+0").

We see that B
wiw ((&:6)(7,0)) = #((&1)) R(7,0), (7.28)

where wly, denotes the Schrédinger-Weil representation of G ; (see Formula

(4.10)). Here (&;t) € Hé&n’l) and (7,0) is considered as an element of Sp(n,R)
by the embedding (7.25).

We denote by S(R™) the vector space of C'*°-functions on R” that, as well
as their derivatives, decrease rapidly at co. For any f € S(R™), Jacobi’s theta
sum for f is defined to be the function

O(7,0;¢,1) := > [whw((&)(7,0))f] (o), (7.29)

aEZm™

where (7,60) € SL(2,R) < Sp(n,R) and (¢;t) € HY™" with € = (A, 1), A, p €
R™ and t € R. For f,g € S(R™), the product of theta sums of the form

@f (Ta 07 57 t) @g (7—’ 07 67 t)

is independent of the t-variable.

Let us therefore define the semi-direct product group
G[n] := SL(2,R) x R*"
with multiplication law
(M, &)(M', &)= (MM', ¢+ M), M,M € SL(2,R), &¢ € R*™

The set

I'ln) = {((Z Z) : (jgj) +a) ’ <i Z) € SL(2,Z), a e z?”}



The Weil representations of the Jacobi group 197

with s = ?(1,1,--- 1) € R" is a subgroup of G[n]. We can show that I'[n]
is generated by

0-1 11 5 10 on
(G0 0) (1)) ((60)2) ez
We put, for brevity,
Of(1,0; &) == O¢(1,6;€,0).
J. Marklof [32] proved the following properties of Jacobi’s theta sums.

Theorem 7.6. Let f and g be two elements in S(R™). Then

(1) Of(7,6;5) O4(7,6;€) is invariant under the action of the left action of
I'[n].

(2) For any real number R > 1, we have

Os(r,0:8) Oy(r.0:9)
=y Y fo(la=wy"?) go(a — u) y'/?) + Or(y™™),

aEZ™

where T =z + iy € Hy, €= (A, p) with A, u € R™ and

fo=R(i,0)].
Proof. The proof can be found in [32, pp. 432-433]. O

The above properties of Jacobi’s theta sums together with Ratner’s clas-
sification of measures invariant under unipotent flows (cf. [38, 39]) are used
to prove the important fact that under explicit diophantine conditions on
(o, B) € R2, the local two-point correlations of the sequence given by the
values (m — «)? + (n — 3)? with (m,n) € Z?2, are those of a Poisson process
(see [32] for more detail).

8 Applications of the Weil-Satake Representation

In this section we provide some applications of the Weil-Satake Representa-
tion Wz, to the theory of representations of the Jacobi group G”. Through-
out this section, for brevity, we put G := Sp(n,R) and &g 1= Gpq,i1,. We
will keep the notations and the conventions in Section 5. We recall the nota-
tions G2 = Ga,1, and G{ = Gy x Hﬂ(g"’m) in Section 5. For a real Lie group
&, we denote by & the unitary dual of &. We define the following projections
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pgng—)G, (gat)'—>gv
p’ G — G, (g,h) — g,
pglGé—)G‘], ((gvt)ah)'ﬁ(gah)v
P2y Gy — Ga,  ((g,1),h) — (g,1).

Let 2 be the center of G/. Obviously 2 = S(m).

Proposition 1. Let y a¢ be the character of 2 defined by x (k) = €27 17 (M#r)

with k € 2. We denote by G (YM) the set of all equivalence classes of ir-
reducible representations n of G4 such that n(k) = xm(k)~! for all k € Z.

We put ® = 7o pa y for any ™ € Gy. Then the correspondence
@—)GQ’(XM), T T QWM

s a bijection from é\g to Gy (YM). Furthermore 7 is square integrable if and
only if T ® Waq is square square integrable modulo % .

Proof. The proof can be found in [45]. O

We now consider a holomorphic discrete series representation of G. Let
K Dbe the stabilizer of the action (1.1) at ¢I,,. Then

Kz{(é_f)eG‘ A—i—iBeU(n)}.

Thus K can be identified with the unitary group U(n). Let (p,V,) be an irre-
ducible representation of K with highest weight p = (p1,- -+, pn) € Z™ such
that p; > --- > p, > 0. Then p can be extended to a rational representation
of GL(n,C) that is also denoted by p. The representation space V, of p has a
Hermitian inner product ( , ) on V), such that (p(g)u,v) = (v, p(g*)v) for all
g € GL(n,C), u,v € V,, where g* = 'g. We define the unitary representation
7, of K by

To(k) = p(J(k,iIn)), ke K. (8.1)

For all § = (g,h) € G’ with g € G and (£2,Z) € H,, ,,, we define

Jp, M (ﬁ, (92, Z)) = Jm(9,(2,2)) p(J(g,2)). (see (5.1) and (5.2)) (8.2)

We note that for all g € G, (£2,Z) € H,,,», and u,v € V,, we have the
relation

< Jp,M (ﬁ, (‘97 Z))u’ U) = <’LL, Jp,M (E, (07 Z))*U >a
where
Tom (9. (2.2))" = T (9, (2, 2)) p(" (9, 2))-

We let E, ¢ be the Hilbert space consisting of V,-valued measurable functions
f on H,, ,, satisfying the condtion
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(f,f)=||f||2=/ (p(V)f($2,2), f(£2,2) ) kpa(82, Z) do,

n,m

where kpq(§2,Z) and dv are defined in (5.3) and (6.3) respectively. We let

K7 := K x Z be a subgroup of G’. The representation IT, r( := Ind?(.J] (p®
X ) induced from a representation p @ X, is realized on E, o as follows:
for any g € G and f € E, pm, II, A is given by

(Hp,M(g)f)(Qa Z) = p,M(gv (Q’Z))_lf(g_l . (Qa Z)) (83)

Let H, ro¢ be the subspace of E, r¢ consisting of holomorphic functions in
E, m. It is easily seen that H, o¢ is a closed subspace of E, »¢ invariant
under the action of II, oq. We let 7, ¢ be the restriction of 11, o to H, aq.

Takase [46] proved the following result.

Theorem 8.7. Suppose p, > n+ 5. Then H, pm # 0 and 7y aq is an irre-
ducible representation of G’ which is square integrable modulo 2. Moreover
the multiplicity of p in the restriction mp pm|x of Tp a1 to K is equal to one.

We let
Ky =py {(K) = {(k,t) € K x T| t2 = det J(k,il,) } .

The Lie algebra ¢ of K5 and its Cartan subalgebra § are given by

A-B
_ (2n,2n)

_ 0-C (2n,2n)
I CRIE

Here diag (¢, ¢a, -+ ,¢,) denotes the diagonal matrix of degree n. We define

Aj €bE by A ((g _OC>> = +v/—1c¢;. We put

A+ tA=0, B:tB}

and

C:diag<cl7027"' ,Cn> }

1
ijQZ, my > - > My, my —m; € Zforalli,j

M+ = im]—/\j
j=1

We take an element A\ = 37 m;\; € M*. Let 7 be an irreducible
representation of K with highest weight 7 = (7,---,7,) € Z", where
7 = myj —my, (1 < j < n—1). Let 75 be the irreducible representation
of K5 defined by

(k1) = 27 7 (J(k,iLL)), (k,t) € Ka. (8.4)
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Then 7y is the irreducible representation of Ko with highest weight A\ =

(m1, -+ ,my) and X — 77 is a bijection from M* to K,, the unitary
dual of Kj. According to [24, Theorem 7.2], we have a decomposition of the
restriction @k, into irreducible components :

Brlre, = P mam,
A
where A\ runs over

A= Z’Tj)\j + % Z)\j € MT (s= Min{m,n}),
j=1 j=1

7; € Z such that 11 > 71 >--- > 7, >0
and the multiplicity my is given by

_ Tiij
my = H <1—|— j—i>7

1<i<j<m

where 7; = 0 if j > s. Let éld be the set of all equivalence classes of square
integrable irreducible unitary representations of GG3. The correspondence

7w +— Harish-Chandra parameter of 7

is a bijection from @2@ to AT, where
n
At = ij)\j e Mt ’ my > >my, m; —my; #0foralli,j, i #j
j=1

See [50], Theorem 10.2.4.1 for the details.

We choose an element \ = Z;Zl mjA; € MT. Let 7t € ég,d be the
representation corresponding to the Harish-Chandra parameter

n

> (my =)A€ AT

Jj=1

The representation 7 is realized as follows (see [26], Theorem 6.6): Let
(1,V;) be the irreducible representation of K with highest weight 7 =
(1, sTn)y s = my —my (1 < j < n—1). Let #* be a Hilbert space

consisting of V;-valued holomorphic functions ¢ on H,, such that

ol = /H (r(Y) 9(£2), 9(2)) (det V)™ dug < oo,

n
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where dvg = (detY)~("+tD[dX] A [dY] is a G-invariant volume element on
H,,. Then 7 is defined realized on #* as follows: for any o = (g,t) € G2
and f € s,

(7}0)f) (2) = I (0™, )~ fo7 1) (8.5)

for all o = (g,t) € G and f € . Here

T, 2) = {tﬁun (9971 | det J(g, )] W} " (79, 92).

Proposition 2. Suppose 7, > n + 5. We put A\ = Z?Zl(Tj — )N € MF.
Then the unitary representation mr a0 py of G is unitarily equivalent to the
representation (7 o pa 1) @ W.

Proof. The proof can be found in [46]. O

Using Theorem 8.7, Takase [48] established a bijective correspondence be-
tween the space of cuspidal Jacobi forms and the space of Siegel cusp forms of
half integral weight which is compatible with the action of Hecke operators.
For example, the classical result (cf. [15] and [22])

Jin " (In) = Sy—1/2(I0(4)) (8.6)

can be obtained by the method of the representation theory. Here I, denotes
the Siegel modular group of degree n and I'h(4) denotes the Hecke subgroup
of I,.
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