Problems in Invariant Differential Operators on Homogeneous Manifolds

Jae-Hyun Yang

YIAS and Inha University

October 26 (Sat), 2024 2024 KMS Annual Meeting

Sungkyunkwan University Natural Sciences Campus (Suwon)

Jae-Hyun Yang

Problems in Invariant Differential Operators on Homogeneous Manifolds

Table of Contents

- I. Homogeneous Manifolds
- II. Invariant Differential Operators on $GL(n, \mathbb{R})/O(n, \mathbb{R})$
- III. Invariant Differential Operators on $SL(n, \mathbb{R})/SO(n, \mathbb{R})$
- IV. Invariant Differential Operators on $Sp(2n,\mathbb{R})/U(n)$
- V. Invariant Differential Operators on $(GL(n,\mathbb{R})\ltimes\mathbb{R}^{(m,n)})/O(n,\mathbb{R})$
- VI. Invariant Differential Operators on $(SL(n, \mathbb{R}) \ltimes \mathbb{R}^{(m,n)}) / SO(n, \mathbb{R})$
- VII. Invariant Differential Operators on $G^J/(U(n) \times S(m, \mathbb{R}))$

Homogeneous Manifolds

We consider the following six homogeneous manifolds which are important geometrically and number theoretically.

- $GL(n,\mathbb{R})/O(n,\mathbb{R})$
- $SL(n,\mathbb{R})/SO(n,\mathbb{R})$
- $Sp(2n,\mathbb{R})/U(n)$
- $\left(GL(n,\mathbb{R})\ltimes\mathbb{R}^{(m,n)}\right)/O(n,\mathbb{R})$
- $\left(SL(n,\mathbb{R})\ltimes\mathbb{R}^{(m,n)}\right)/SO(n,\mathbb{R})$

•
$$\left(Sp(2n,\mathbb{R})\ltimes H^{(n,m)}_{\mathbb{R}}\right)/(U(n)\times S(m,\mathbb{R}))$$

II. Invariant Differential Operators on $GL(n, \mathbb{R})/O(n, \mathbb{R})$

$GL(n,\mathbb{R})/O(n,\mathbb{R})$

• For any positive integer $n \ge 1$, we let

$$\mathscr{P}_n := \{ Y \in \mathbb{R}^{(n,n)} \mid Y = {}^t Y > 0 \}$$

be the open convex cone in the Euclidean space \mathbb{R}^N with $N = \frac{n(n+1)}{2}$.

• $GL(n,\mathbb{R})$ acts \mathscr{P}_n transitively by

$$g \cdot Y = gY^{t}g, \qquad (2.1)$$

where $g \in GL(n, \mathbb{R})$ and $Y \in \mathscr{P}_n$.

Since O(n) is the isotopic subgroup of GL(n, ℝ) at I_n, the symmetric space GL(n, ℝ)/O(n) is diffeomorphic to 𝒫_n.

 $GL(n,\mathbb{R})/O(n,\mathbb{R})$

• For
$$Y = (y_{ij}) \in \mathscr{P}_n$$
, we put

$$dY = (dy_{ij})$$
 and $\frac{\partial}{\partial Y} = \left(\frac{1+\delta_{ij}}{2}\frac{\partial}{\partial y_{ij}}\right).$

• For any positive real number C > 0,

$$ds_{n;C}^2 = C \cdot \operatorname{Tr}\left((Y^{-1}dY)^2\right)$$

is a Riemannian metric on \mathscr{P}_n invariant under the action (2.1). • Laplace operator is given by

$$\Delta_{n;C} = \frac{1}{C} \cdot \operatorname{Tr}\left(\left(Y\frac{\partial}{\partial Y}\right)^2\right),\,$$

where Tr(M) denotes the trace of a square matrix M.

Jae-Hyun Yang

Problems in Invariant Differential Operators on Homogeneous Manifolds

Invariant Differential Operators on $GL(n, \mathbb{R})/O(n, \mathbb{R})$

We consider the following Maass-Selberg (differential) operators $\delta_1, \delta_2, \dots, \delta_n$ on \mathscr{P}_n defined by

$$\delta_k = \operatorname{Tr}\left(\left(Y\frac{\partial}{\partial Y}\right)^k\right), \quad k = 1, 2, \cdots, n.$$
 (2.2)

Each δ_i $(1 \le i \le n)$ is invariant under the action (2.1) of $GL(n, \mathbb{R})$.

Theorem 1 (Maass and Selberg)

The algebra $\mathbb{D}(\mathscr{P}_n)$ of all $GL(n, \mathbb{R})$ -invariant differential operators on \mathscr{P}_n is generated by $\delta_1, \delta_2, \dots, \delta_n$. Furthermore, $\delta_1, \delta_2, \dots, \delta_n$ are algebraically independent and $\mathbb{D}(\mathscr{P}_n)$ is isomorphic to the commutative ring $\mathbb{C}[x_1, x_2, \dots, x_n]$ with nindeterminates x_1, x_2, \dots, x_n .

Remark

A different description of $\mathbb{D}(\mathscr{P}_n)$ was given by Helgason.

Jae-Hyun Yang

III. Invariant Differential Operators on $SL(n,\mathbb{R})/SO(n,\mathbb{R})$

 $SL(n,\mathbb{R})/SO(n,\mathbb{R})$

- Let $\mathfrak{P}_n := \{Y \in \mathbb{R}^{(n,n)} \mid Y = {}^tY > 0, \det(Y) = 1\}$ be a symmetric space associated to $SL(n, \mathbb{R})$.
- $SL(n,\mathbb{R})$ acts on \mathfrak{P}_n transitively by

$$g \circ Y = gY^t g, \qquad g \in SL(n, \mathbb{R}), \ Y \in \mathfrak{P}_n.$$
 (3.1)

• \mathfrak{P}_n is a smooth manifold diffeomorphic to the symmetric space $SL(n, \mathbb{R})/SO(n, \mathbb{R})$ through the bijective map

$$g \cdot SO(n, \mathbb{R}) \mapsto g \circ I_n = g^t g, \quad g \in SL(n, \mathbb{R}).$$

- Let $\mathbb{D}(\mathfrak{P}_n)$ be the algebra of all differential operators on \mathfrak{P}_n invariant under the action (3.1) of $SL(n,\mathbb{R})$.
- $\mathbb{D}(\mathfrak{P}_n)$ is isomorphic to the polynomial algebra $\mathbb{C}[x_1, x_2, \cdots, x_{n-1}]$ with n-1 indeterminates $x_1, x_2, \cdots, x_{n-1}$.
- n-1 is the rank of the symmetric space $SL(n,\mathbb{R})/SO(n,\mathbb{R})$.

Invariant Differential Operators on $SL(n, \mathbb{R})/SO(n, \mathbb{R})$

Theorem 2 (Brennecken, Ciardo and Hilgert, 2020)

Let $\delta_1, \delta_2, \ldots, \delta_n$ be the Maass-Selberg operators, and consider the mapping $\mathscr{L} : \mathbb{D}(GL(n, \mathbb{R})/O(n, \mathbb{R})) \longrightarrow \mathbb{D}(SL(n, \mathbb{R})/SO(n, \mathbb{R}))$ defined by $\mathscr{L}(\delta_1) = 0$, and for $2 \le k \le n$ by

 $\mathscr{L}(\delta_k)f(g \cdot SO(n,\mathbb{R})) := \delta_k|_{X=0} f\left((g \cdot \exp(X - n^{-1}\operatorname{Tr}(X)I_n)) \cdot SO(n,\mathbb{R}) \right)$

for all $f \in C^{\infty}(SL(n, \mathbb{R})/SO(n, \mathbb{R}))$, where $X = (x_{ij}) \in \mathbb{R}^{(n,n)}$ is a symmetric matrix and $\frac{\partial}{\partial X} = \left(\frac{1+\delta_{ij}}{2}\frac{\partial}{\partial x_{ij}}\right)$. Then, the differential operators $\mathscr{L}(\delta_2), \mathscr{L}(\delta_3), \cdots, \mathscr{L}(\delta_n)$ are algebraically independent generators of $\mathbb{D}(SL(n, \mathbb{R})/SO(n, \mathbb{R}))$.

IV. Invariant Differential Operators on $Sp(2n,\mathbb{R})/U(n)$

 $Sp(2n,\mathbb{R})/U(n)$

• Let
$$G := Sp(2n, \mathbb{R}), K := U(n)$$
 and

$$\mathbb{H}_n := \{ \Omega \in \mathbb{C}^{(n,n)} \mid \Omega = {}^t \Omega, \ \operatorname{Im} \Omega > 0 \}$$

be the **Siegel upper half plane** of degree *n*.

• G acts on \mathbb{H}_n transitively by

$$M \cdot \Omega = (A\Omega + B)(C\Omega + D)^{-1}, \qquad (4.1)$$

where
$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in G$$
 and $\Omega \in \mathbb{H}_n$.

• The stabilizer of the action (4.1) at iI_n is

$$K = \left\{ \begin{pmatrix} A & B \\ -B & A \end{pmatrix} \middle| A + iB \in U(n) \right\} \cong U(n).$$

• Thus we get the biholomorphic map $G/K \longrightarrow \mathbb{H}_n$ given by

$$gK \mapsto g \cdot iI_n, \quad g \in G.$$

\mathbb{H}_n is an Einstein-Kähler Hermitian symmetric manifold.

 $Sp(2n,\mathbb{R})/U(n)$

For $\Omega = (\omega_{ij}) \in \mathbb{H}_n$, we write $\Omega = X + i Y$ with $X = (x_{ij}), Y = (y_{ij})$ real. We put $d\Omega = (d\omega_{ij})$ and $d\overline{\Omega} = (d\overline{\omega}_{ij})$. We also put

$$\frac{\partial}{\partial\Omega} = \left(\frac{1+\delta_{ij}}{2}\frac{\partial}{\partial\omega_{ij}}\right) \qquad \text{and} \qquad \frac{\partial}{\partial\overline{\Omega}_{ij}} = \left(\frac{1+\delta_{ij}}{2}\frac{\partial}{\partial\overline{\omega}_{ij}}\right).$$

C. L. Siegel (1943) introduced the symplectic metric ds²_{n;A} on ℍ_n invariant under the action (4.1) of Sp(2n, ℝ) that is given by

$$ds_{n;A}^2 = A \cdot \operatorname{Tr}(Y^{-1}d\Omega Y^{-1}d\overline{\Omega}), \qquad A > 0.$$

• H. Maass (1953) proved that its Laplace operator $\Delta_{n;A}$ is given by

$$\Delta_{n;A} = \frac{4}{A} \cdot \operatorname{Tr}\left(Y \stackrel{t}{\left(Y \frac{\partial}{\partial \overline{\Omega}}\right)} \frac{\partial}{\partial \Omega}\right).$$

And

$$dv_n(\Omega) = (\det Y)^{-(n+1)} \prod_{1 \le i \le j \le n} dx_{ij} \prod_{1 \le i \le j \le n} dy_{ij}$$

is a $Sp(2n, \mathbb{R})$ -invariant volume element on \mathbb{H}_n .

Problems in Invariant Differential Operators on Homogeneous Manifolds

Invariant Differential Operators on $Sp(2n, \mathbb{R})/U(n)$

- Let D(ℍ_n) be the algebra of all differential operators on ℍ_n invariant under the action (4.1).
- According to Harish-Chandra (1956), D(H_n) is a commutative algebra, finitely generated by n algebraically independent invariant differential operators D₁, ..., D_n on H_n.
- Maass (1971) found the explicit expressions for D_1, \dots, D_n .
- Let T_n be the vector space of $n \times n$ symmetric complex matrices. And we denote by $\operatorname{Pol}(T_n)^{U(n)}$ the subalgebra of the polynomial algebra $\operatorname{Pol}(T_n)$ consisting of all U(n)-invariants with respect to the action induced by the adjoint representation.
- We get a canonical linear bijection

$$\mathscr{H}_{C,n}: \operatorname{Pol}(T_n)^{U(n)} \longrightarrow \mathbb{D}(\mathbb{H}_n)$$

of $\operatorname{Pol}(T_n)^{U(n)}$ onto $\mathbb{D}(\mathbb{H}_n)$.

Invariant Differential Operators on $Sp(2n, \mathbb{R})/U(n)$

Example 3 (n = 1 case)

The algebra $\operatorname{Pol}(T_1)^{U(1)}$ is generated by the polynomial

 $q(\omega) = \omega \overline{\omega}, \quad \omega = x + iy \in \mathbb{C}$ with x, y real.

Moreover, we get

$$\mathscr{H}_{C,1}(q) = 4 y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right).$$

Therefore $\mathbb{D}(\mathbb{H}_1) = \mathbb{C}[\mathscr{H}_{C,1}(q)].$

In fact, we see that

$$\Delta_{n;1} = 4 \operatorname{Tr} \left(Y \frac{\partial}{\partial \overline{\Omega}} \right) \frac{\partial}{\partial \Omega} \right).$$

is the Laplace operator for the invariant metric $ds_{n:1}^2$ on \mathbb{H}_n .

Jae-Hyun Yang

Problems in Invariant Differential Operators on Homogeneous Manifolds

V. Invariant Differential Operators on $(GL(n, \mathbb{R}) \ltimes \mathbb{R}^{(m,n)}) / O(n, \mathbb{R})$

 $\left(GL(n,\mathbb{R})\ltimes\mathbb{R}^{(m,n)}\right)/O(n,\mathbb{R})$

• The group $GL_{n,m}(\mathbb{R}) := GL(n,\mathbb{R}) \ltimes \mathbb{R}^{(m,n)}$ is the semidirect product of $GL(n,\mathbb{R})$ and the additive group $\mathbb{R}^{(m,n)}$ endowed with multiplication law

$$(g,\alpha) \circ (h,\beta) := (gh,\alpha^{t}h^{-1} + \beta)$$
(5.1)

for all $g, h \in GL(n, \mathbb{R})$ and $\alpha, \beta \in \mathbb{R}^{(m,n)}$.

• $GL_{n,m}(\mathbb{R})$ acts on the Minkowski-Euclid space $\mathscr{P}_{n,m} := \mathscr{P}_n \times \mathbb{R}^{(m,n)}$ naturally and transitively by

$$(g,\alpha) \cdot (Y,V) := (gY^{t}g, (V+\alpha)^{t}g)$$
(5.2)

for all $(g, \alpha) \in GL_{n,m}(\mathbb{R})$ and $(Y, V) \in \mathscr{P}_{n,m}$.

Since O(n, ℝ) is the stabilizer of the action (5.1) at (I_n, 0), the non-symmetric homogeneous space GL_{n,m}(ℝ)/O(n, ℝ) is diffeomorphic to the Minkowski-Euclid space 𝒫_{n,m}.

Invariant Differential Operators on $GL_{n,m}(\mathbb{R})/O(n,\mathbb{R})$

Lemma 4

For all two positive real numbers a and b, the following metric $ds^2_{n,m;a,b}$ on $\mathscr{P}_{n,m}$ defined by

$$ds_{n,m;a,b}^{2} = a \cdot \operatorname{Tr}(Y^{-1}dYY^{-1}dY) + b \cdot \operatorname{Tr}(Y^{-1}t(dV)dV)$$

is a Riemannian metric on $\mathscr{P}_{n,m}$ which is invariant under the action (5.1) of $GL_{n,m}(\mathbb{R})$. The Laplacian $\Delta_{n,m;a,b}$ of $(\mathscr{P}_{n,m}, ds^2_{n,m;a,b})$ is given by

$$\frac{1}{a} \cdot \operatorname{Tr}\left(\left(Y\frac{\partial}{\partial Y}\right)^2\right) - \frac{m}{2a}\operatorname{Tr}\left(Y\frac{\partial}{\partial Y}\right) + \frac{1}{b} \cdot \sum_{k \le p} \left(\left(\frac{\partial}{\partial V}\right)Y^t\left(\frac{\partial}{\partial V}\right)\right)_{kp}$$

Moreover, the Laplacian $\triangle_{n,m;a,b}$ is a differential operator of order 2 which is invariant under the action (5.1) of $GL_{n,m}(\mathbb{R})$.

Jae-Hyun Yang

Invariant Differential Operators on $GL_{n,m}(\mathbb{R})/O(n,\mathbb{R})$

• The Lie algebra \mathfrak{g}_{\star} of $GL_{n,m}(\mathbb{R})$ is given by

$$\mathfrak{g}_{\star} = \left\{ \left(X, Z \right) \mid X \in \mathbb{R}^{(n,n)}, \ Z \in \mathbb{R}^{(m,n)} \right\}$$

equipped with the following Lie bracket

$$\left[(X_1, Z_1), (X_2, Z_2) \right]_{\star} = \left([X_1, X_2]_0, Z_2^{t} X_1 - Z_1^{t} X_2 \right),$$

where $[X_1, X_2]_0 = X_1X_2 - X_2X_1$ denotes the usual matrix bracket and $(X_1, Z_1), (X_2, Z_2) \in \mathfrak{g}_{\star}$.

• Let $K_{\star} := \{ (k, 0) \in GL_{n,m}(\mathbb{R}) \mid k \in O(n, \mathbb{R}) \} \cong K := O(n, \mathbb{R}).$ Then the Lie algebra \mathfrak{k}_{\star} of K_{\star} is

$$\mathfrak{k}_{\star} = \Big\{ (X,0) \in \mathfrak{g}_{\star} \, \big| \, X + {}^{t}X = 0 \Big\}.$$

We let \mathfrak{p}_{\star} be the subspace of \mathfrak{g}_{\star} defined by

$$\mathfrak{p}_{\star} = \left\{ \left(X, Z \right) \in \mathfrak{g}_{\star} \mid X = {}^{t}X \in \mathbb{R}^{(n,n)}, \ Z \in \mathbb{R}^{(m,n)} \right\}.$$

Then we have $\mathfrak{g}_{\star} = \mathfrak{k}_{\star} \oplus \mathfrak{p}_{\star}$ (the direct sum).

Invariant Differential Operators on $GL_{n,m}(\mathbb{R})/O(n,\mathbb{R})$

• K_{\star} acts on \mathfrak{p}_{\star} via the adjoint representation of $GL_{n,m}(\mathbb{R})$ by

$$k_{\star} \cdot (X, Z) = \left(k X^{t} k, Z^{t} k \right), \tag{5.3}$$

where $k_{\star} = (k, 0) \in K_{\star}$ with $k \in O(n, \mathbb{R})$ and $(X, Z) \in \mathfrak{p}_{\star}$.

- The action (5.3) induces the action of K on the polynomial algebra Pol(p*) of p* and the symmetric algebra S(p*). We denote by Pol(p*)^K (resp. S(p*)^K) the subalgebra of Pol(p*) (resp. S(p*)) consisting of all K-invariants.
- We denote by D(𝒫_{n,m}) the algebra of all differential operators on 𝒫_{n,m} invariant under the action (5.1) of GL_{n,m}(ℝ). It is known that there is a canonical linear bijection of S(𝔅_{*})^K onto D(𝒫_{n,m}). Then we get a canonical linear bijection of Pol(𝔅_{*})^K onto D(𝒫_{n,m}).

$$\Phi_{n,m}: \operatorname{Pol}(\mathfrak{p}_{\star})^K \longrightarrow \mathbb{D}(\mathscr{P}_{n,m}).$$
(5.4)

Problems in $\mathbb{D}(\mathscr{P}_{n,m})$

We propose the following natural problems.

- **1** Find a complete list of explicit generators of $Pol(\mathfrak{p}_{\star})^{K}$.
- **2** Find all the relations among a set of generators of $Pol(\mathfrak{p}_{\star})^{K}$.
- **3** Find an easy or effective way to express the images of the above invariant polynomials under the Helgason map $\Phi_{n,m}$ explicitly.
- **4** Decompose $\operatorname{Pol}(\mathfrak{p}_{\star})^{K}$ into $O(n, \mathbb{R})$ -irreducibles.
- **5** Find a complete list of explicit generators of the algebra $\mathbb{D}(\mathscr{P}_{n,m})$. Or construct explicit $GL_{n,m}(\mathbb{R})$ -invariant differential operators on $\mathscr{P}_{n,m}$.
- **6** Find all the relations among a set of generators of $\mathbb{D}(\mathscr{P}_{n,m})$.
- **7** Is $\operatorname{Pol}(\mathfrak{p}_{\star})^{K}$ finitely generated ? Is $\mathbb{D}(\mathscr{P}_{n,m})$ finitely generated ?

Minoru Itoh (2013) solved Problem 1 and Problem 7.

Remark

$\mathbb{D}(\mathscr{P}_{n,m})$ is not commutative.

VI. Invariant Differential Operators on $(SL(n, \mathbb{R}) \ltimes \mathbb{R}^{(m,n)}) / SO(n, \mathbb{R})$

 $SL(n,\mathbb{R}) \ltimes \mathbb{R}^{(m,n)}/SO(n,\mathbb{R})$

• The group $SL_{n,m}(\mathbb{R}) := SL(n,\mathbb{R}) \ltimes \mathbb{R}^{(m,n)}$ is the semidirect product of $SL(n,\mathbb{R})$ and the additive group $\mathbb{R}^{(m,n)}$ with the multiplication law

$$(g,\alpha) \circ (h,\beta) := (gh,\alpha^{t}h^{-1} + \beta)$$
(6.1)

for all $g, h \in SL(n, \mathbb{R})$ and $\alpha, \beta \in \mathbb{R}^{(m,n)}$.

• $SL_{n,m}(\mathbb{R})$ acts on the space $\mathfrak{P}_{n,m} := \mathfrak{P}_n \times \mathbb{R}^{(m,n)}$ naturally and transitively by

$$(g,\alpha) \cdot (Y,V) := (gY^{t}g, (V+\alpha)^{t}g)$$
(6.2)

for all $(g, \alpha) \in SL_{n,m}(\mathbb{R})$ and $(Y, V) \in \mathfrak{P}_{n,m}$.

Since SO(n, ℝ) is the stabilizer of the action (6.2) at (I_n, 0), the non-symmetric homogeneous space SL_{n,m}(ℝ)/SO(n, ℝ) is diffeomorphic to the space 𝔅_{n,m}.

Invariant Differential Operators on $SL_{n,m}(\mathbb{R})/SO(n,\mathbb{R})$

• The Lie algebra \mathfrak{g}_{\diamond} of $GL_{n,m}(\mathbb{R})$ is given by

$$\mathfrak{g}_{\diamond} = \left\{ \left(X, Z \right) \mid X \in \mathfrak{sl}(n, \mathbb{R}), \ Z \in \mathbb{R}^{(m, n)} \right\}$$
(6.3)

equipped with the following Lie bracket

$$[(X_1, Z_1), (X_2, Z_2)]_\diamond = ([X_1, X_2]_0, Z_2^{t}X_1 - Z_1^{t}X_2),$$
 (6.4)

where $[X_1, X_2]_0 := X_1X_2 - X_2X_1$ denotes the usual matrix bracket and $(X_1, Z_1), (X_2, Z_2) \in \mathfrak{g}_{\diamond}$.

• Let $K_{\diamond} := \{ (k, 0) \in GL_{n,m}(\mathbb{R}) \mid k \in SO(n, \mathbb{R}) \} \cong K_{\natural} := SO(n, \mathbb{R}).$ Then the Lie algebra \mathfrak{k}_{\diamond} of K_{\diamond} is

$$\mathfrak{k}_{\diamond} = \{ (X,0) \in \mathfrak{g}_{\diamond} \mid X + {}^{t}X = 0, \ X \in \mathbb{R}^{(n,n)}, \ 0 \in \mathbb{R}^{(m,n)} \}.$$

We let \mathfrak{p}_{\diamond} be the subspace of \mathfrak{g}_{\diamond} defined by

$$\mathfrak{p}_{\diamond} = \left\{ \left(X, Z \right) \in \mathfrak{g}_{\diamond} \mid X = {}^{t}X \in \mathbb{R}^{(n,n)}, \ \operatorname{Tr}(X) = 0, \ Z \in \mathbb{R}^{(m,n)} \right\}.$$

Then we have $\mathfrak{g}_{\diamond} = \mathfrak{k}_{\diamond} \oplus \mathfrak{p}_{\diamond}$ (direct sum).

Invariant Differential Operators on $SL_{n,m}(\mathbb{R})/SO(n,\mathbb{R})$

• K_{\diamond} acts on \mathfrak{p}_{\diamond} via the adjoint representation of K_{\diamond} on \mathfrak{p}_{\diamond} by

$$k_{\diamond} \cdot (X, Z) = \left(kX^{t}k, Z^{t}k\right), \tag{6.5}$$

where $k_{\diamond} = (k, 0) \in K_{\diamond}$ with $k \in SO(n, \mathbb{R})$ and $(X, Z) \in \mathfrak{p}_{\diamond}$.

The action (6.5) induces the action of K_↓ on the polynomial algebra Pol(p_◊) of p_◊ and the symmetric algebra S(p_◊). We denote by Pol(p_◊)^{K_↓} (resp. S(p_◊)^{K_↓}) the subalgebra of Pol(p_◊) (resp. S(p_◊)) consisting of all K_↓-invariants.

Invariant Differential Operators on $SL_{n,m}(\mathbb{R})/SO(n,\mathbb{R})$

 \bullet The following inner product $(\ ,\)_{\diamond}$ on \mathfrak{p}_{\diamond} defined by

$$((X_1, Z_1), (X_2, Z_2))_{\diamond} = \operatorname{Tr}(X_1 X_2) + \operatorname{Tr}(Z_1 {}^t Z_2),$$

for $(X_1, Z_1), (X_2, Y_2) \in \mathfrak{p}_\diamond$ gives an isomorphism as vector spaces

$$\mathfrak{p}_{\diamond} \cong \mathfrak{p}_{\diamond}^*,$$
 (6.6)

- Let $\mathbb{D}(\mathfrak{P}_{n,m})$ be the algebra of all differential operators on $\mathfrak{P}_{n,m}$ that are invariant under the action (6.2) of $GL_{n,m}(\mathbb{R})$.
- It is known that there is a canonical linear bijection of $S(\mathfrak{p}_{\diamond})^K$ onto $\mathbb{D}(\mathfrak{P}_{n,m})$. Identifying \mathfrak{p}_{\diamond} with $\mathfrak{p}_{\diamond}^*$ by the above isomorphism (6.6), we get a canonical linear bijection

$$\Psi_{n,m}:\operatorname{Pol}(\mathfrak{p}_{\diamond})^{K_{\natural}}\longrightarrow \mathbb{D}(\mathfrak{P}_{n,m})$$

of $\operatorname{Pol}(\mathfrak{p}_{\diamond})^{K_{\natural}}$ onto $\mathbb{D}(\mathfrak{P}_{n,m})$.

Problems in $\mathbb{D}(\mathfrak{P}_{n,m})$

We propose the following problems:

- **1** Find a complete list of explicit generators of $Pol(\mathfrak{p}_{\diamond})^{K_{\mathfrak{p}}}$.
- **2** Find all the relations among the generators of $Pol(\mathfrak{p}_{\diamond})^{K_{\mathfrak{p}}}$.
- **3** Find an easy or effective way to express the images of the above invariant polynomials under the Helgason map $\Phi_{n,m}$ explicitly.
- **4** Decompose $\operatorname{Pol}(\mathfrak{p}_{\star})^{K}$ into $SO(n, \mathbb{R})$ -irreducibles.
- **5** Find a complete list of explicit generators of the algebra $\mathbb{D}(\mathfrak{P}_{n,m})$. Or construct explicit $SL_{n,m}(\mathbb{R})$ -invariant differential operators on $\mathfrak{P}_{n,m}$.
- **6** Find all the relations among a set of generators of $\mathbb{D}(\mathfrak{P}_{n,m})$.
- **7** Is $\operatorname{Pol}(\mathfrak{p}_{\diamond})^{K_{\natural}}$ finitely generated? Is $\mathbb{D}(\mathfrak{P}_{n,m})$ finitely generated?
- **B** Let $SL_{n,m}(\mathbb{Z}) := SL(n,\mathbb{Z}) \ltimes \mathbb{Z}^{(m,n)}$ denote the discrete subgroup of $SL_{n,m}(\mathbb{R})$. Decompose the Hilbert space $L^2(SL_{n,m}(\mathbb{Z}) \setminus SL_{n,m}(\mathbb{R}))$ into irreducible unitary representations of $SL_{n,m}(\mathbb{R})$.

Problems in $\mathbb{D}(\mathfrak{P}_{n,m})$

Remark

Using the commutative subalgebra of $\mathbb{D}(\mathfrak{P}_{n,m})$ containing the Laplace operator, the author introduced the notion of automorphic forms for $SL_{n,m}(\mathbb{Z})$.

Remark

For the case n = 2, the author introduced the notion of Maass-Jacobi forms on $\mathbb{H}_{1,m}$ and investigated unitary representations of $SL_{2,m}(\mathbb{R})$.

VII. Invariant Differential Operators on $G^J/(U(n) \times S(m, \mathbb{R}))$

$G^J/(U(n) \times S(m, \mathbb{R}))$

• For two positive integers m and n, we consider the Heisenberg group $H_{\mathbb{R}}^{(n,m)} = \{(\lambda,\mu;\kappa) \mid \lambda, \mu \in \mathbb{R}^{(m,n)}, \kappa \in \mathbb{R}^{(m,m)}, \kappa + \mu^{t}\lambda \text{ symmetric }\}$ endowed with the following multiplication

$$(\lambda,\mu;\kappa) \circ (\lambda',\mu';\kappa') = (\lambda+\lambda',\mu+\mu';\kappa+\kappa'+\lambda^{t}\mu'-\mu^{t}\lambda')$$

with $(\lambda, \mu; \kappa), \ (\lambda', \mu'; \kappa') \in H^{(n,m)}_{\mathbb{R}}$.

• We define the Jacobi group G^J of degree n and index m that is the semidirect product of $Sp(2n,\mathbb{R})$ and $H^{(n,m)}_{\mathbb{R}}$

$$G^J=Sp(2n,\mathbb{R})\ltimes H^{(n,m)}_{\mathbb{R}}$$

endowed with the following multiplication law

$$\begin{pmatrix} M, (\lambda, \mu; \kappa) \end{pmatrix} \cdot \begin{pmatrix} M', (\lambda', \mu'; \kappa') \end{pmatrix} = \begin{pmatrix} MM', (\tilde{\lambda} + \lambda', \tilde{\mu} + \mu' & \kappa + \kappa' + \tilde{\lambda} {}^t \mu' - \tilde{\mu} {}^t \lambda') \end{pmatrix}$$
(7.1)

with $M, M' \in Sp(2n, \mathbb{R}), (\lambda, \mu; \kappa), (\lambda', \mu'; \kappa') \in H^{(n,m)}_{\mathbb{R}}$ and $(\tilde{\lambda}, \tilde{\mu}) = (\lambda, \mu)M'.$

Jae-Hyun Yang

Problems in Invariant Differential Operators on Homogeneous Manifolds

 $G^J/(U(n) \times S(m, \mathbb{R}))$

• G^J acts on $\mathbb{H}_n imes \mathbb{C}^{(m,n)}$ transitively by

$$(M, (\lambda, \mu; \kappa)) \cdot (\Omega, Z) = (M \cdot \Omega, (Z + \lambda \Omega + \mu)(C\Omega + D)^{-1}),$$
(7.2)

where
$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(2n, \mathbb{R}), \ (\lambda, \mu; \kappa) \in H^{(n,m)}_{\mathbb{R}}$$
 and $(\Omega, Z) \in \mathbb{H}_n \times \mathbb{C}^{(m,n)}.$

• The stabilizer K^J of G^J at $(iI_n, 0)$ is given by

$$K^{J} = \Big\{ \big(k, (0, 0; \kappa)\big) \mid k \in K, \ \kappa = {}^{t}\kappa \in \mathbb{R}^{(m, m)} \Big\},\$$

where

$$K = \left\{ \begin{pmatrix} A & -B \\ B & A \end{pmatrix} \middle| A^{t}A + B^{t}B = I_{n}, A^{t}B = B^{t}A, A, B \in \mathbb{R}^{(n,n)} \right\}$$

• The Jacobi group G^J is not a reductive Lie group and the homogeneous space $\mathbb{H}_n \times \mathbb{C}^{(m,n)} \cong G^J/K^J$ is not a symmetric space. The homogeneous space $\mathbb{H}_{n,m} := \mathbb{H}_n \times \mathbb{C}^{(m,n)}$ is called the Siegel-Jacobi space of degree n and index m.

Jae-Hyun Yang

G^J -invariant metric on $\mathbb{H}_{n,m}$

Theorem 5 (J.-H. Yang, 2007)

For any two positive real numbers A and B,

$$ds_{n,m;A,B}^{2} = A \cdot \operatorname{Tr}\left(Y^{-1}d\Omega Y^{-1}d\overline{\Omega}\right) + B\left\{\operatorname{Tr}\left(Y^{-1}{}^{t}VVY^{-1}d\Omega Y^{-1}d\overline{\Omega}\right) + \operatorname{Tr}\left(Y^{-1}{}^{t}(dZ)d\overline{Z}\right) - \operatorname{Tr}\left(VY^{-1}d\Omega Y^{-1}{}^{t}(d\overline{Z})\right) - \operatorname{Tr}\left(VY^{-1}d\overline{\Omega} Y^{-1}{}^{t}(dZ)\right)\right\}$$

is a Riemannian metric on $\mathbb{H}_{n,m}$ which is invariant under the action (7.2) of G^J .

Remark

J. Yang and L. Yin (2016) showed that the invariant metric $ds_{n,m;A,B}^2$ is a Kähler metric.

Jae-Hyun Yang

Problems in Invariant Differential Operators on Homogeneous Manifolds

Laplace operator of $ds^2_{n,m;A,B}$

Theorem 6 (J.-H. Yang, 2007)

The Laplace operator $\Delta_{m,m;A,B}$ of the G^J -invariant metric $ds^2_{n,m;A,B}$ is given by

$$\Delta_{n,m;A,B} = \frac{4}{A} \mathbb{M}_1 + \frac{4}{B} \mathbb{M}_2, \qquad (7.3)$$

where

$$\mathbb{M}_{1} = \operatorname{Tr}\left(Y^{t}\left(Y\frac{\partial}{\partial\overline{\Omega}}\right)\frac{\partial}{\partial\Omega}\right) + \operatorname{Tr}\left(VY^{-1} V^{t}\left(Y\frac{\partial}{\partial\overline{Z}}\right)\frac{\partial}{\partial Z}\right) \\ + \operatorname{Tr}\left(V^{t}\left(Y\frac{\partial}{\partial\overline{\Omega}}\right)\frac{\partial}{\partial Z}\right) + \operatorname{Tr}\left(V^{t}\left(Y\frac{\partial}{\partial\overline{Z}}\right)\frac{\partial}{\partial\Omega}\right)$$

and

$$\mathbb{M}_2 = \operatorname{Tr}\left(Y\frac{\partial}{\partial Z}^t \left(\frac{\partial}{\partial \overline{Z}}\right)\right).$$

Furthermore \mathbb{M}_1 and \mathbb{M}_2 are differential operators on $\mathbb{H}_{n,m}$ invariant under the action (7.2) of G^J .

Jae-Hyun Yang

Problems in Invariant Differential Operators on Homogeneous Manifolds

Laplace operator of $ds^2_{n,m;A,B}$

Remark

Erik Balslev (2012) developed the spectral theory of $\Delta_{1,1;1,1}$ on $\mathbb{H}_{1,1}$ for certain arithmetic subgroups of the Jacobi modular group to prove that the set of all eigenvalues of $\Delta_{1,1;1,1}$ satisfies the Weyl law.

Remark

Yang et al (2013) proved that the scalar curvature of $(\mathbb{H}_{1,1}, ds_{1,1;A,B}^2)$ is $-\frac{3}{A}$ and hence is independent of the parameter B. The scalar and Ricci curvatures of $(\mathbb{H}_{1,m}, ds_{1,m;A,B}^2)$ $(m \ge 1)$ were completely computed by G. Khan and J. Zhang (2022). Furthermore Khan and Zhang proved that $(\mathbb{H}_{1,m}, ds_{1,m;A,B}^2)$ $(m \ge 1)$ has non-negative orthogonal anti-bisectional curvature.

Invariant Differential Operators on $G^J/(U(n) \times S(m, \mathbb{R}))$ The Lie algebra \mathfrak{g}^J of G^J has a decomposition $\mathfrak{g}^J = \mathfrak{k}^J + \mathfrak{p}^J$, where

$$\begin{split} &\mathfrak{g}^{J} = \Big\{ \left(Z, \left(P, Q, R \right) \right) \, \Big| \, Z \in \mathfrak{g}, \ P, Q \in \mathbb{R}^{(m,n)}, \ R = \ {}^{t}\!R \in \mathbb{R}^{(m,m)} \Big\}, \\ &\mathfrak{k}^{J} = \Big\{ \left(X, \left(0, 0, R \right) \right) \, \Big| \, X \in \mathfrak{k}, \ R = \ {}^{t}\!R \in \mathbb{R}^{(m,m)} \Big\}, \\ &\mathfrak{p}^{J} = \Big\{ \left(Y, \left(P, Q, 0 \right) \right) \, \Big| \, Y \in \mathfrak{m}, \ P, Q \in \mathbb{R}^{(m,n)} \Big\}. \end{split}$$

Here

$$\begin{split} \mathfrak{g} &= \left\{ \begin{pmatrix} X_1 & X_2 \\ X_3 & -{}^tX_1 \end{pmatrix} \ \Big| \ X_1, X_2, X_3 \in \mathbb{R}^{(n,n)}, \ X_2 = {}^tX_2, \ X_3 = {}^tX_3 \right\}, \\ \mathfrak{k} &= \left\{ \begin{pmatrix} X & -Y \\ Y & X \end{pmatrix} \in \mathbb{R}^{(2n,2n)} \ \Big| {}^tX + X = 0, \ Y = {}^tY \right\}, \text{ and} \\ \mathfrak{m} &= \left\{ \begin{pmatrix} X & Y \\ Y & -X \end{pmatrix} \ \Big| \ X = {}^tX, \ Y = {}^tY, \ X, Y \in \mathbb{R}^{(n,n)} \right\}. \end{split}$$

 \mathfrak{g} is the Lie algebra of $Sp(2n,\mathbb{R})$ and \mathfrak{k} is the Lie algebra of $K\cong U(n).$

Invariant Differential Operators on $G^J/(U(n) \times S(m, \mathbb{R}))$

 Let T_n be the vector space of all n × n symmetric complex matrices. For brevity, we put T_{n,m} := T_n × C^(m,n). We define the real linear isomorphism Φ : p^J → T_{n,m} by

$$\Phi\left(\begin{pmatrix} X & Y \\ Y & -X \end{pmatrix}, (P,Q,0)\right) = (X + iY, P + iQ),$$
(7.4)

- where $\begin{pmatrix} X & Y \\ Y & -X \end{pmatrix} \in \mathfrak{m}$ and $P, Q \in \mathbb{R}^{(m,n)}$. Identifying $\mathbb{R}^{(m,n)} \times \mathbb{R}^{(m,n)}$ with $\mathbb{C}^{(m,n)}$, we can identify \mathfrak{p}^J with $T_{n,m} = T_n \times \mathbb{C}^{(m,n)}$.
- Let S(m, ℝ) denote the additive group consisting of all m × m real symmetric matrices. Now we define the isomorphism
 θ: K^J → U(n) × S(m, ℝ) by

$$\theta(h, (0, 0, \kappa)) = (\delta(h), \kappa), \quad h \in K, \ \kappa \in S(m, \mathbb{R}),$$
(7.5)

where $\delta: K \longrightarrow U(n)$ is the naturally defined group isomorphism.

Invariant Differential Operators on $G^J/(U(n) \times S(m, \mathbb{R}))$

•
$$U(n) \times S(m, \mathbb{R})$$
 acts on $T_{n,m}$ defined by

$$(h,\kappa) \cdot (\omega, z) := (h \,\omega^{t} h, \, z^{t} h), \tag{7.6}$$

where $h \in U(n), \ \kappa \in S(m, \mathbb{R}), \ (\omega, z) \in T_{n,m}$.

• If $k^J \in K^J$ and $\alpha \in \mathfrak{p}^J,$ then we have the following equality

$$\Phi(\operatorname{Ad}(k^J)\alpha) = \theta(k^J) \cdot \Phi(\alpha).$$
(7.7)

- The action (7.6) induces the action of U(n) on the polynomial algebra Pol_{n,m} := Pol (T_{n,m}). We denote by Pol^{U(n)}_{n,m} the subalgebra of Pol_{n,m} consisting of all U(n)-invariants.
- Similarly, the map (7.5) of K induces the action of K on the polynomial algebra Pol(p^J). We see that through the identification of p^J with T_{n,m}, the algebra Pol(p^J) is isomorphic to Pol_{n,m}.

Let $\mathbb{D}(\mathbb{H}_{n,m})$ be the algebra of all differential operators on $\mathbb{H}_{n,m}$ that are invariant under the action (7.2) of G^J . There is the natural linear bijection

$$\Theta_{n,m}: \operatorname{Pol}_{n,m}^{U(n)} \longrightarrow \mathbb{D}(\mathbb{H}_{n,m}).$$

- **I** Find a complete list of explicit generators of $\operatorname{Pol}_{n,m}^{U(n)}$.
- **2** Find all the relations among a set of generators of $\operatorname{Pol}_{n,m}^{U(n)}$.
- 3 Find an easy or effective way to express the images of the above invariant polynomials or generators of Pol^{U(n)}_{n,m} under the Helgason map Θ_{n,m} explicitly.
- **4** Decompose $Pol_{n,m}$ into U(n)-irreducibles.
- **5** Find a complete list of explicit generators of the algebra $\mathbb{D}(\mathbb{H}_{n,m})$. Or construct explicit G^J -invariant differential operators on $\mathbb{H}_{n,m}$.
- **6** Find all the relations among a set of generators of $\mathbb{D}(\mathbb{H}_{n,m})$.
- **Z** Is $\operatorname{Pol}_{n,m}^{U(n)}$ finitely generated? Is $\mathbb{D}(\mathbb{H}_{n,m})$ finitely generated?
- **B** Are there canonical ways to find generators of $Pol_{n,m}^{U(n)}$?

Theorem 7 (Minoru Itoh, 2013)

We put $\varphi^{(2k)} = \operatorname{Tr}((w\bar{w})^k)$. Moreover, for $1 \le a, b \le m$ and $k \ge 0$, we put

$$\psi_{ba}^{(0,2k,0)} = (\bar{z}(w\bar{w})^{k} \,{}^{t}z)_{ba}, \qquad \psi_{ba}^{(1,2k,0)} = (z\bar{w}(w\bar{w})^{k} \,{}^{t}z)_{ba}.$$

The algebra $\operatorname{Pol}_{n,m}^{U(n)}$ is generated by the following polynomials:

 $\varphi^{(2k+2)}$, $\operatorname{Re}\psi^{(0,2k,0)}_{ab}$, $\operatorname{Im}\psi^{(0,2k,0)}_{cd}$, $\operatorname{Re}\psi^{(1,2k,0)}_{ab}$, $\operatorname{Im}\psi^{(1,2k,0)}_{ab}$.

Here the indices run as follows:

$$0 \leq k \leq n-1, \quad 1 \leq a \leq b \leq m, \quad 1 \leq c < d \leq m.$$

For the case when n = m = 1, the above eight problems are completely solved.

Theorem 8 (J.-H. Yang, 2003)

For a coordinate (w, ξ) in $T_{1,1} = \mathbb{C} \times \mathbb{C}$, we write w = r + i s, $\xi = \zeta + i \eta \in \mathbb{C}, r, s, \zeta, \eta$ real. The algebra $\operatorname{Pol}_{1,1}^{U(1)}$ is generated by

$$q(w,\xi) = \frac{1}{4} w \,\overline{w} = \frac{1}{4} \left(r^2 + s^2 \right), \qquad \alpha(w,\xi) = \xi \,\overline{\xi} = \zeta^2 + \eta^2,$$

$$\phi(w,\xi) = \frac{1}{2} \operatorname{Re} \left(\xi^2 \overline{w} \right) = \frac{1}{2} r \left(\zeta^2 - \eta^2 \right) + s \,\zeta \eta,$$

$$\psi(w,\xi) = \frac{1}{2} \operatorname{Im} \left(\xi^2 \overline{w} \right) = \frac{1}{2} s \left(\eta^2 - \zeta^2 \right) + r \,\zeta \eta.$$

Theorem 9 (J.-H. Yang, 2003)

Let $D_1 = \Theta_{1,1}(q), D_2 = \Theta_{1,1}(\alpha), D_3 = \Theta_{1,1}(\phi)$ and $D_4 = \Theta_{1,1}(\psi)$. Then,

$$D_{1} = y^{2} \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} \right) + v^{2} \left(\frac{\partial^{2}}{\partial u^{2}} + \frac{\partial^{2}}{\partial v^{2}} \right) + 2yv \left(\frac{\partial^{2}}{\partial x \partial u} + \frac{\partial^{2}}{\partial y \partial v} \right)$$
$$D_{2} = y \left(\frac{\partial^{2}}{\partial u^{2}} + \frac{\partial^{2}}{\partial v^{2}} \right),$$
$$D_{3} = y^{2} \frac{\partial}{\partial y} \left(\frac{\partial^{2}}{\partial u^{2}} - \frac{\partial^{2}}{\partial v^{2}} \right) - 2y^{2} \frac{\partial^{3}}{\partial x \partial u \partial v} - \left(v \frac{\partial}{\partial v} + 1 \right) D_{2},$$

and

$$D_4 = y^2 \frac{\partial}{\partial x} \left(\frac{\partial^2}{\partial v^2} - \frac{\partial^2}{\partial u^2} \right) - 2y^2 \frac{\partial^3}{\partial y \partial u \partial v} - v \frac{\partial}{\partial u} D_2,$$

where $\tau = x + iy$ and z = u + iv with real variables x, y, u, v.

Remark

By Theorem 9, the following relation holds.

$$D_1 D_2 - D_2 D_1 = 2 y^2 \frac{\partial}{\partial y} \left(\frac{\partial^2}{\partial u^2} - \frac{\partial^2}{\partial v^2} \right) - 4 y^2 \frac{\partial^3}{\partial x \partial u \partial v} - 2 \left(v \frac{\partial}{\partial v} D_2 + D_2 \right)$$

Therefore, the algebra $\mathbb{D}(\mathbb{H}_{1,1})$ is not commutative.

Lemma 10 (Hiroyuki Ochiai, 2013)

We have the following relation

$$\phi^2 + \psi^2 = q \,\alpha^2.$$

This relation exhausts all the relations among the generators q, α , ϕ and ψ of $\operatorname{Pol}_{1,1}^{U(1)}$.

Theorem 11 (Hiroyuki Ochiai, 2013)

We have the following relations

- $(a) \ [D_1, D_2] = 2D_3.$
- (b) $[D_1, D_3] = 2D_1D_2 2D_3.$
- (c) $[D_2, D_3] = -D_2^2$.
- $(d) \ [D_4, D_1] = 0.$
- $(e) \ [D_4, D_2] = 0.$
- $(f) [D_4, D_3] = 0.$
- $(g) \quad D_3^2 + D_4^2 = D_2 D_1 D_2.$

These seven relations exhaust all the relations among the generators D_1 , D_2 , D_3 and D_4 of $\mathbb{D}(\mathbb{H}_{1,1})$.

David Hilbert (1862-1943) Hermann Weyl (1885-1955) Sigurdur Helgason (1927 - 2023) Bertram Kostant (1928 - 2017) Raoul Bott (1923 - 2005) Roger E. Howe (1945 -) Capelli's Identity, Reductive Dual Pair Alfredo Capelli (1855-1910)

Thank you!