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j-function

& For a lattice A = [A1, A2] in C, we define the constants

ga(A) = 60 > i4

weAv{o} ¥
1
gs(A) = 140 > —
weA{o} ¥
A(A) = g2(A)® —27g5(A)? (in fact, # 0)
) g2(A)3
A) = 1728 )
J(A) ACM)

&Two lattices A1 and Ao are homothetic if there is a constant o € C* such that
Ao = alq.

& It is known that

j(A1) = j(A2) <= Ay and Az are homothetic.
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Zagier lifts

[e]e] le]elelele]

& We define the elliptic modular function

i(r) =il 1) (= € H).
where [1, 1] = Z7 + Z is a lattice.

& Then it is a classical modular function for SL2(Z) and

G(7) = ¢ 1 4 744 4 196884q + 21493760¢% + --- , with ¢ = €2™'".
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ction on H*

& Let
H={reC|Im(r) >0}

be the complex upper half plane and
H* =HUQU {oco}
be the extended upper half plane.

& The modular group

SLg(Z):{(Z Z) . a,be,d € Z with adfbczl}

acts on H* by linear fractional transformation

ar +b
ct+d

T = YT =

forT=(2%) € SLaZ).

Two elements of SLa(Z) give the same action on H* <= they differ by + ( (1) (1) )
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Congruence subgroups

& For a positive integer N, let

(V) = {(‘Z Z)ESLQ(Z) : (‘CZ 2)

To(N) = {(“ Z)ESLQ(Z) . e=0 (modN)}

TH(N)

& [(1) = SLy(Z).

& If I'(N) C ' C I'(1), then I is called a congruence subgroup.

) (mod N)}

{(Z Z)ESLQ(Z) . b=c=0 (modN)}_
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functions

& Let I' be a congruence subgroup. We say that a meromorphic function f

on H is a modular function for T" if
(i) f(yr) = f(r) forallyeTl,
(ii) f(7) is meromorphic at every cusp.

ii) means that for each v € SL2(Z), o v has the Fourier expansion
Y Y

oo

forvm = ¢en (q%) " (en€C, mel).
n>m N——

parameter

& j(7) is a modular function for I'(1).

& A modular function for I'(IV) is called a modular function of level N.
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Zagier lifts

00000080

& We denote
C(X(N)) = the field of all modular functions of level N.
In particular, C(X (1)) = C(j(7)).
& C(X(N)) is a Galois extension of C(X(1)). Its Galois group is given by
P(1)/ £ T(N) & SLa(Z/NZ) / {12}
whose action is composition as linear fractional transformation.

& For a positive integer N, let

Fn = the field of functions in C(X(N)) whose Fourier expansion have

27

coefficients in Q({y), where {(y =e N .

& F1 = Q(j(1))-
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Galois group Gal(Fy/F1)

& Fn is a Galois extension of F; and its Galois group is represented by

GL2(Z/NZ)/{£12} = GN x SL2(Z/NZ)/{£12}

GNz{((l) 2) ‘dE(Z/NZ)*}.

(i) The matrix ( §9) € Gy acts on Fy by

where

> 1 > 1
Doeal@™)t e Y SN )"

n>m n>m

where o4 is the automorphism of Q(¢y) induced by ¢(n — (%

(ii) An element v € SLo(Z/NZ)/{£12} acts on Fn by composition as

linear transformation.
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r lifts
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@ Zagier lifts

o Class fields over an imaginary quadratic field
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& Let
o K : an imaginary quadratic field with discriminant dg
o D : a positive integer = 0, 3 (mod 4) s.t. D = —f2 - dg

& Let

v—D
— for D=0 (mod 4)

_ 2
™=\ —i+v—D

5 for D=3 (mod 4)

& Op =1, 7p] is an order of conductor f with discriminant —D in K.

& When f =1, Op = Ok is the ring of integers of K, which is the maximal

order in K.
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& Let

e K : an imaginary quadratic field

e O : an order of conductor f with discriminant —D in K

& The quotient group

{ fractonal ideals of K prime to f }

Qo) =
<(a) |a €Ok, a=a (mod f), a €Z, (a, f):1>

is called the ring class group of order O.
& By the existence theorem of class field theory, there exists unique abelian

extension Hp of K such that
Gal(Hp/K) = Cl1(0),

which is called ring class field of order O.
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lifts
[e]e]e] ]

nded ring class field of O

& We define the quotient group

{ fractonal ideals of K prime to f- N }

CI(O,N) := .
<(a) |la€ Ok, a=a (mod f-N),a€Z, a=1 (modN)>
& We can consider the extension Hp n of K with Galois group

Gal(Ho n/K) = CI(O,N).
& We call Hp n the extended ring class field of O of level N.

& In particular,

Hoy, the Hilbert class field of K and
Ho,,n = theray class field of modulus NOg of K.
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@ Zagier lifts

o Shimura reciprocity law
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& Let

e K : an imaginary quadratic field of discriminant dg

e O =1, 7p] C Ok : an order of conductor f and discriminant —D

& From the theory of complex multiplication, we have

Ho = K(jw)) - K(j(m)),

Hon = K(f(TD) | f € Fn is finite at TD).
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Shimura’s reciprocity law

& Assume that K # Q(v/—1), Q(v/-3).
& Let min(7p, Q) = X2+ Bz + C € Z[X], and let

Wo. n = { {t - ’tcs] € GLa(Z/NZ) | t, s € (Z/NZ)}

which is a subgroup of GL2(Z/NZ).

& Then, there is an isomorphism
Wo, n/{£l2} — Gal(Ho,n/Ho)

v (f(TD) — fY(tp) | f € Fn is finite at TD).

B ) G. Shimura,
Introduction to the Arithmetic Theory of Automorphic Functions,

Iwanami Shoten and Princeton Univ. Press, 1971.

- P. Stevenhagen,
Hilbert’s 12th problem, complex multiplication and Shimura reciprocity,
Adv. Stud. Pure Math. 30, 2001.
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Form class group

& Let

o Qp : the set of positive definite binary quadratic forms
Q=as® +bay+cy’ €Ze, y

with discriminant b? — 4ac = —D.
° Q% : the subset of Qp of primitive forms. (i.e. @ with (a, b, ¢) =1).

& Then I'(1) = SL2(Z)/ + I> acts on Qp by

v = [a Z] D Qz,y) = Qaz + by, cx + dy)

c
& It is well known that

Gal(Ho /K) 2 C(D) = Q% /T (D).

20 / 78
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& Let
e Q=la, b, ] € C(D). we can choose a matrix Mg such that

(;’ %) ifpta

Mg = <71% 76) ifplaand ptc (mod p™) for D=0 (mod 4)
(*31*‘1 ’g*°> ifplaandp|c

and
(‘S b;Tl> ifpta

Mg = (% _C) ifplaand ptc (mod p™) for D=3 (mod 4)

—b-1 1-b .
(2 —a 271—“) ifplaandp|c

where p runs over all prime factors of N and p"»||N.
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& Then, we have an injective map
C(D) — Gal(Ho’N/K)

Q" (f(TK) — fMe (tq@) | f € Fn is finte at TD>~

The restriction to Ho, followed by the above map, gives rise to the isomorphism

C(D) ~ Gal(Ho/K).

p = P. Stevenhagen,
Hilbert’s 12th problem, complex multiplication and Shimura reciprocity,
Adv. Stud. Pure Math. 30, 2001.
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Zagier lifts
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& In summary, if N > 2,

Wo, n/{xI2}

( |
Hy = K (i)
o

=
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singular moduli

& For a positive integer D =0, 3 (mod 4), j(Tp) generates the ring class field
Ho over K = Q(1p).-

& The Galois conjugates of j(7p) under the action of Gal(Hp/K) are singular
moduli j(7q) for Q € C(D).

& Let J(7) = j(7) — 744 be the normalized Hauptmodul for I'(1).

& D. Zagier defined the modified Galois trace

tyD)= 3. J(ro)

QeQp/T(1)

—~

[N

v
o

where I'(1), is the stabilizer of @
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& Zagier showed that the generating series
oo
—q¢ ' 24+ > t;(D)gP = —q " +2—248¢° + 492¢" — 4119¢" + 7256¢° + - --
D=1

is a weakly holomorphic modular form of weight 3/2 for the group I'g(4).
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@ Zagier lifts

o Theta lift
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Setting

& We consider the quadratic space (V, q) given by

V(@) = {X - (”“ 22 ) e Mg(@)}

x3 —T1
with ¢(X) = det(X) and (X,Y) = —tr(XY). SL2(Q) acts on V by conjugation,
i.e. 7.X = yX~~ L. Let D be the space of positive lines in V(R).
& Then H is identified with D as follows.
H ~ D
i — span(Xo) with Xo=( %})
z=x+iy — X(z)=g..Xo withg. :\/§71 ( 07 )

—1 T

= X(z) = % ( —x 2% +y? )
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& Let
e L C V(Q) : an even lattice of full rank
o L# : the dual lattice of L

o I' : a congruence subgroup preserves L and acts trivially on L# /L

& For X € V(Q) of positive norm we put
Dx =span(X) € D.
For m € Q¢ and h € L#, the group I acts on
Lym={X€L+h|qX)=m}

with finitely many orbits.
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& For h € L# /L, 7 = u + iv, and z = z + iy, consider the theta kernel

eh(772790) = Z QD(X,T,Z)

XeL+h
where
dxdy
2
€ QY1(D) (= the closed differential forms on D of Hodge type (1,1))

P(X2) = (XX ()2 — oL ) minr o (X 2me (%)
Us

& Properties of the theta kernel:

o Oy (7, 2,) is a I-invariant differential form in z.

o Oy (T, z,p) transforms as a non-holomorphic modular form of weight 3/2 for
I'(m) where m is the level of the lattice L, i.e. m is the smallest positive
integer N such that Ng(z) € Z for all X € L#.

o Let 0 € I'(1). There is a constant C' > 0 such that
On(r,02) = O(e_cyQ), Yy — 00

uniformly in x.
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Theta integral

30 / 78



0000000

Outline

@ Zagier lifts

o Modularity of Galois traces
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[o] Jelelele]e}

y of modular traces

& For a weakly holomorphic modular function f for I'; Bruinier-Funke defined

the modular trace of f for positive index m by
1
MTf(h, m)= > f—f(DX).
XEM\Lp,,m x|

& Assume that the constant coefficients of f at all cusps vanish. They proved that

> MTH(h, n)g”
n>>—oo

is a weakly holomorphic modular form of weight 3/2 for I'(4N), where 4N is
the level of the lattice L.
& If h = 0, the above series is modular for the bigger group I'g(4N).
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& Let
o N : a positive integer
o D : a positive integer such that —D =0 (mod 4N?2)
o B € Z/2N?Z such that —D = 82 (mod 4N?2)

& Let
Op,(n),s = {[Na, b, NdJ€ Qp | b=p (mod 2N?)}.

on which the group T'J(NN) acts.

& There is a canonical bijection between

Qp/T(1) and Qp (ny,5/TH(N),

for D not divisible as a discriminant by the squares of any prime dividing N.
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Zagier lifts

[e]e]e] lelele)

& Let

b 2Nc
Ll:{X:<2N¢1 _b>|a,b,c€Z}

be a lattice in the quadratic space.
& Assume that discriminant —D = 0 (mod 4N?).
& For a I'}(N)-modular function f, we define

£ (D) = o f(rq).

—0
QEQp (n),8/TH(N) To(NMal

& Then we have
MTH (0, DY=2 Y P (D).
BEL/2N2Z

& Using this, we can relate modular traces and modified Galois traces.
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lifts
[e]e]ele] lele}

ified Galois trace of class ir

Let
e —D : an imaginary quadratic discriminant.
o K =Q(7p) : an imaginary quadratic field
o f(7p) : a class invariant (i.e. K(f(7p)) = Hop)-

& The modified Galois trace of f(7p) can be defined by
2
SR SR ST
050p Y9 seci(0)

where we is the number of unit elements in O.

& Note that wp = 2 if K # Q(v/—1), Q(v/-3).

& Furthermore, if © D Op has discriminat —d, then d|D and —d < dg. So we can
write

Gy = Y S ()

w
d|D, —d<dg 94 QeC(d)
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& Let

@ 72(7) : the holomorphic cube root of j on H, a modular function of level 3
0 -1 1 1
0 S = (1 0 ), T = (0 1) : generators of SLo(Z).

& It is well known that if D > 4 and (3, D) =1, and if B =0 for D even and
B =1 otherwise, then (E~2(7p) is a class invariant.

Using the actions of S and T given by
¥2 0S8 =72 and ’YQOT:C:;:L’YQ.
and Shimura’s reciprocity law, we have

)[3a, —b, 3c]

(¢Fr2(rp) = 72(7Q).

& Therefore, we obtain

GTipoyy(p) = > 12(7Q)-
QEQp (3),8/70(3)
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& Counting the number of possible 3, we get

GT¢p.,(0)

1
= ZMT% (0, D).
& Using the above relation, Jeon, Kang and Kim proved that

-1 D
a + Z GTC;gB’Y?(D)q
D>0, (3, D)=1,
—D=0 (mod 36)

is a weakly holomorphic modular form of weight 3/2 on I'g(36).

& This method can be applied to other ring class invariants or ray class invariants.
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‘Weakly holomorphic Hecke eigenforms
@0000000000000000

Outline

© Weakly holomorphic Hecke eigenforms
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Weakly holomorphic Hecke >nforms

[e] 0000000000000 0

Let p be one or a prime and F(J]r (p) be the group generated by the Hecke group

I'o(p) and the Fricke involution W), = ( \Sﬁ 716\/5 )
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Weakly holomorphic Hecke «

0O®@000000000000000

Let p be one or a prime and Far (p) be the group generated by the Hecke group

I'o(p) and the Fricke involution W), = ( \Sﬁ 716\/5 )

Definition

Let k£ be a positive integer greater than 2 and let Pr_o denote the space of all
polynomials of degree at most k — 2. For p € {1,2,3} we define a subspace WJ_Q
of P,_5 by
Wi, ={9€Pizlg+gla—xWp=0
=g+ gla—rU + gla—xU? + -+ + gla_ U™~}
3, ifp=1
2p, ifp=2,3

space W,:ZQ are called period polynomials.

with T = (1), U=TW,, and n, = { . The elements of the
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‘Weakly holomorphic Hecke eigenforms
00800000000000000

Period Polynomials

e When p =1,2,3, period polynomials have been investigated in relation to
modular integrals, cusp forms via the Eichler-Shimura isomorphism and to
various other areas of mathematics.
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Weakly holomorphic Hecke eigenforms
00800000000000000

Period Polynomi

e When p =1,2,3, period polynomials have been investigated in relation to
modular integrals, cusp forms via the Eichler-Shimura isomorphism and to
various other areas of mathematics.

o The importance of period polynomials comes from their close connection with
special values of modular L-functions.
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Weakly holomorphic modular forms

For any even integer k and ¢ € {£1}, let M,!f(p) be the space of weakly
holomorphic modular forms (that is, meromorphic with poles only at the cusps) of

weight k for I'o(p) with f|xWp = ef. Each f € M;c’e(p) has a Fourier expansion of

the form
=3 apma,

n>ng

where q = exp(2miz). We set ordeo f = ng if af(ng) # 0.
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‘Weakly holomorphic Hecke eigenforms
00008000000000000

Basis for M ;\,’E(p)

o When the genus of Fg (p) is zero, the space M,!C’E(p) has a canonical basis.
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Weakly holomorphic Hecke eigenforms
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Basis for M ;\,’E(p)

o When the genus of Fg (p) is zero, the space M,!C’E(p) has a canonical basis.

o When p = 1, such a canonical basis was constructed by Duke and Jenkins.
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Weakly holomorphic Hecke eigenforms
00008000000000000

Basis for M ;\,’E(p)

o When the genus of Fg (p) is zero, the space M,!C’E(p) has a canonical basis.
o When p = 1, such a canonical basis was constructed by Duke and Jenkins.

o Let mj, denote the maximal order of a nonzero f € M,!C’E(p) at co. Indeed, for
every integer m > —mj,, there exists a unique weakly holomorphic modular

form fj . € M;c’6 (p) with Fourier expansion of the form

fom(M=a""+ > ag(m,n)q"

€
n>mi

and together they form a basis for M]i’é(p).
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Basis for M ;\,’E(p)

o When the genus of Fg (p) is zero, the space M,!C’E(p) has a canonical basis.
o When p = 1, such a canonical basis was constructed by Duke and Jenkins.

o Let mj, denote the maximal order of a nonzero f € M,!C’E(p) at co. Indeed, for
every integer m > —mj,, there exists a unique weakly holomorphic modular

form fj . € M;c’6 (p) with Fourier expansion of the form

fom(M=a""+ > ag(m,n)q"

€
n>mi

and together they form a basis for M]i’é(p).

o If k > 2, the maximal order m§ is given by dim S (p) where S§(p) denotes
the space of holomorphic cusp forms f of weight k for I'o(p) with f|x W}, = €f.
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Eichler integrals and period polynomials

For f=3 o o ar(n)q" € M,!C’+(p) we define the Eichler integral of f by
Ef(z) == Z af(n)nl_kq".
n>>—oo
n#0
4
b
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For f=3 o o ar(n)q" € M,!c’+(p) we define the Eichler integral of f by

Ef(z) == Z af(n)nl_kq".
n>>-—oo
n#0

.

The period polynomial for f is defined by

I'(k—1)

r+(f)(z) i=cip(Ep — Efla—xWp)(2) with ¢ = fW,

which measures the obstruction to modularity of the Eichler integral of f.

€
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o Let SL’Jr(p) be the subspace of M;C’+(p) consisting of weakly holomorphic
modular forms for 1"3' (p) with zero constant term in the Fourier expansion.
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o Let SL’Jr(p) be the subspace of M;c’+(p) consisting of weakly holomorphic
modular forms for 1"3' (p) with zero constant term in the Fourier expansion.
e Bol’s identity states that for any v € SL2(R) and any function g, we have

dk‘fl dk71

(1) W(gbf;ﬂ) = (dzki_i])hs%

from which it easily follows that 7+ (f)(z) € Py_2 for each f € S;@’+(p).
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o Let SL’Jr(p) be the subspace of M;c’+(p) consisting of weakly holomorphic
modular forms for 1"3' (p) with zero constant term in the Fourier expansion.

e Bol’s identity states that for any v € SL2(R) and any function g, we have

dk‘fl dk71

(1) W(gbf;ﬂ) = (dzki_i])hs%

from which it easily follows that 7+ (f)(z) € Py_2 for each f € S;@’+(p).

e Moreover 7T defines a map from S;v’-’_(p) to W;:r,?
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Exact Sequence

For p € {1,2,3} and even k > 2, the following sequence is exact:

+
+ w,
0 — DF (bt St L ———— k=2 4
( sz(p)) k (p) < (\/ﬁz)k_Q 1>
where D denotes the differential operator ﬁ d%' This gives an isomorphism

Syt (p)/DF Y (My ™t (0) =2 WL < (Vp)R TR -1 >,

where the right hand side is isomorphic to S,j (p) D S,j (p) by the Eichler-Shimura
theorem.
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Weakly holomorphic Hecke

0000000000000 000

Thus we have l |
dim S F (p)/DF =1 (MY Y, (p)) = 2dim S (p).

Question: Is there a nice basis for S;€’+(p)/Dk*1(Mé’jk (p)) consisting of Hecke
eigenforms?
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Hecke operator

e For each positive integer n coprime to p, the Hecke operator T}, on the space
of cusp forms for I'g(p) defined in the usual way acts on S,:r (p)-

o Common eigenforms of all Hecke operators T3, with n coprime to p are called
Hecke eigenforms.
o The Hecke operators T with prime indices I(# p) acting on S;C‘Jr(p) are

defined in the same way. Indeed if f € S,!C’+(p) has g-expansion Y af(n)q",
then

G =S Al (§h) = Slarn) + 1 ag (e
ad=l1
b (d)
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Weakly holomorphic Hecke eigenforms

Following Bringmann, Guerzhoy, Kent and Ono we call f € S,!C’+(p) a weakly

holomorphic Hecke eigenform with respect to S;C’+(p)/Dk*1(M;’_k(p)) if for every
Hecke operator Ty, with (n,p) = 1 there is a complex number X, for which

T f — Anf € D*=L (ML, ().
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‘Weakly holomorphic Hecke eigenforms
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Multiplicity Two Theorem

If t = dim S} (p), then dim W,! , = 2¢ + 1 and dim S} " (p)/DF 1 (M, (p)) = 2t.

Theorem (2013, Bringmann, Guerzhoy, Kent and Ono)

When p =1,
T (p)/DF (M =P

where each @ T; consists of a cuspidal Hecke eigenform and a weakly
holomorphic Hecke eigenform with the same eigenvalues.
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Weakly holomorphic Hecke eigenforms

000000000000 e0000

o The proof of the above theorem in [BGKO] uses the theory of harmonic
Maass forms and Poincare series.

o We extended the above theorem to higher level cases to the primes for which
Fg(p) has genus zero (primes up to 71 excluding 37, 43, 53, 61 and 67).

o We give an explicit construction of basis of eigenforms which does not relying
on the theory of harmonic Maass forms.

o We give an explicit description of the “polar” eigenform h, in terms of a
linear combination of cuspidal eigenforms fn and the dual form f;; (Here the
duality is with respect to a certain pairing of fn introduced by Guerzhoy.
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‘Weakly holomorphic Hecke eigenforms
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Pairing

Let f,ge M ,!C‘Jr(p) have Fourier expansions as follows:

fx)= > as(n)g" and g(2) = > ag(n)q".

n>—oo n>>—oo

Definition

Following Bringmann, Guerzhoy, Kent and Ono, we define a pairing {f, g} by

&) {fod= > W

n€Z,n#0

It is antisymmetric, bilinear and Hecke equivariant. Specifically, for any prime
I(# p)
{T2f, 9} = {f Tig}.
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—

Quotient Space S;" (p)

o Following Guerzhoy, we set

—_— St ()
S+ = ; k .
e @) DE=1(My*, (p)) @ Si (p)

o Ift = dimS,j(p), then dimS,:'(p) =t and S,:'(p) =< f/k\l,,f/k\t > .

o The pairing {-, -} induces a non-degenerate pairing on ,5’2' (p) x ,5’2' (p).
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Weakly holomorphic Hecke eigenforms
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Dual Basis

o Let t = dim S,j(p) and

{f’n: Z )‘(n7m)qm|n:1727"' 7t}

m>0

be a basis of S,:' (p) consisting of normalized Hecke eigenforms.

o Let
fr=%_ wn(mn)g™
m>—t
with p(m,n) € C be a linear combination of f 1,...,fx,+ which is dual to fp

with respect to the pairing, i.e. {f},, fn} = dmn where §ynp is the Kronecker
delta function. Then such functions f;; are unique.
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Dual Basis

Moreover T} f and \(n,l)f} represent the same coset in
S;‘,’Jr(p)/(D"’_l(Z\J;'jk (p) D SZf (p)). Thus we can write

t
(3) Tifr = Ao, ) fr 4+ D" g+ ajn(Df
=

for some g, ; € M;jk(p) and ajn (1) € C.
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Outline

© Weakly holomorphic Hecke eigenforms
o Construction of Weakly holomorphic Hecke eigenforms in higher level cases
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Theorem

Let p be one or a prime number for which the genus of F(J)r (p) is zero. Let

t = dim S: (p) and l be a prime different from p. Then the following assertions
are true.

(’L) Let A1 = (()\1)”') and Ao = ((}\2)7;
given by (A\1)ij = A(4,7) and (A2)i; =
are satisfied:

j) be t X t matrices whose ij-entries are
A(3,7)/3% 1. Then the following relations

f1 Fr,—1 I Fio,1
f2 fr,—2 f3 Fi,2
=M : and S =a)™HT

fi o £ o
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Theorem (continued)

(i) Let m,n € {1,--- ,t}. The quantity amn(l) in (3) is computed in terms of the
pairing as follows:

amn(l) = —{T1f7, frm }-
Moreover amn(l) = —anm(l) and ann(l) = 0.

(3ii) Let i,n € {1,--- ,t} with i # n. Let v be a prime (# p) such that
A(i,7) # A(n,r) and put

() = ani(r)
i(n) : A, 7) — A(n,r)

Then x;(n) is independent of the choice of r.
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Theorem (continued)

(iv) For each n with 1 <n <t, let

t

—— Z zi(n)fi + fr.

itn

Then hy, is a Hecke eigenform with respect to Si}+(p)/Dk*l (]\J;’jk (p)) having
the same eigenvalues as those of fn. More explicitly one has

Ti(hn) = A(n, Db + D~ (gn.1)
where gy, | is the modular form defined in (3) and computed as

w(—s,n
gni=— > (skfl )f27k,sl

1<s<t
s>t
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Theorem (continued)

where wu(-,m) is the Fourier coefficient of fr.
(v) The set

{[fl]v' ) [ft]v [hl]v' ) [ht]}

forms a basis for S;C’+(p)/Dk*1(Mé’jk(p)) where [f] stands for the class of f.
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Algebraicity of dual forms

Letp € {1,2,3,5,7,13}, 2< k € 2Z, t = dimS,:r(p), andn € {1,--- ,t}. Then the
coefficients of f;; are in Ky, .
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city of dual forms

Let p =5 and k = 12. In this case t = dim SE (5) = 3 and the space SE(5) is
spanned by

f2,-3(2) = AT (2)* = (n(2)n(52))"? = ¢* —12¢" + -+,
fi2,—2(2) = AF ()% (55 (2) + 12) = ¢° + 44¢* — 288¢° +306¢5 + -+ -,
fiz,-1(2) = AF ()2 (G5 (2)? + 1255 (2) — 178) = ¢ + 2608¢" + - - .

The Hecke eigenforms are given by

f1 = fi2,—1 —24f12,—2 + 252f12, 3,
fo = fi2,-1 + (=10 + 6V151) f12, 2 + (—110 + 32V'151) f12, 3,
f3 = fi2,—-1+ (—10 — 6V 151)f12,—2 + (—110 — 32V 151)}“127,37

so that Ky =Q and Ky, = Ky, = Q(v/151).
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city of dual forms

The dual forms are given by

fi= 113771f12,1 - 12§§4f12,2 + 5?;131 f12,3,
. 3(2869 4 43/151) 512(2416 + 181/151)
= 19781 121 98905 122
177147(—453 + 7v/151)
395620 fz3,
. 3(2869 — 43/151) 512(2416 — 1811/151)
f3 = fiz2,1 + f12,2
19781 98905
177147(—453 — 7+/151)
395620 123

so that Ky» = Ky, for each i € {1,2,3}.
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Outline

© Weakly holomorphic Hecke eigenforms

o Explicit construction of mock modular forms
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Weak Maass form

A weak Maass form of weight k on a congruence subgroup I" is any smooth
function f : H — C satisfying;:

o Forall'y:(‘ig)EFandzEH,wehave
Fvz) = (det 1) ™*/%(cz + d)* £(2)

@ We have that Ay f := [—y? ((.%22 4F BL;Q) + iky (% +z%)]f = \f for some
AeC.

@ The function f(z) has at most linear exponential growth at all cusps.
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A weak Maass form of weight k on a congruence subgroup I" is any smooth
function f : H — C satisfying;:

o Forall'y:(‘ig)EFandzEH,wehave
Fvz) = (det 1) ™*/%(cz + d)* £(2)

@ We have that Ay f := [—y? ((.%22 4F BL;Q) + iky (% +z%)]f = \f for some
AeC.

@ The function f(z) has at most linear exponential growth at all cusps.

A weak Maass form f is called harmonic if Agf = 0.
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Differential Operator

Bruinier-Funke (2004)
If h is a harmonic weak Maass form of weight k, then it follows from Ay (h) =0

¥l <l

and
Ap =8 ok, where &y = 2iy"”

that & (h) € My_4.
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Bruinier-Funke (2004)
If h is a harmonic weak Maass form of weight k, then it follows from Ay (h) =0

Ew 1= 2iy"

¥l <l

and
where

Ay =~ 0 &y,

that & (h) € My_4.
Hy,(Tg(N)) := the space of harmonic weak Maass forms h of weight k on I'o(N)

satisfying & (h) € So_k(N).
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Definition

§(z) € Ha_(To(p)) is called “good” for the Hecke eigenform
fe(z) := f(—2) € Sk(p) if it satisfies the following:
@ The principal part of § at the cusp oo belongs to K¢[g~1]. Here K denotes
the number field obtained by adjoining to Q the Fourier cofficients of f.

@ The principal part of § at the cusp 0 is constant.

© We have &5 1§ = ﬁ
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Good Maass form

o The existence of §, which is good for a Hecke eigenform f€ is garanteed by
Bruinier, Ono and Rhoades’ work.

o Let §o be good for a Hecke eigenform f¢ and denote ¢ = dim S,j (p) and
t' = dim S, (p). Let Mgik(p) be the space of weakly holomorphic modular

forms of weight 2 — k for I'g(p) with poles allowed only at the cusp oco. For
p €{1,2,3,5,7,13}, it follows from Ahn and Choi’s work that

max{ordeo f | f #0 € Mgik(p)} =—-1-t-t,

and for each integer m with —m < —1 — ¢t — ¢/, there exists

7
fg_k m=a"+ O(g t ") e Mg_k(p) with integral Fourier coefficients. By
subtracting a suitable linear combination of fg,k m S from Fo we can take a

unique § which is good for f¢ and gt = O(q*t*t,).
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e Guerzhoy, Kent and Ono provided a direct method for relating the coefficients
of f¢ and § by means of p-adic coupling and an algebraic regularized mock
modular form §}. More precisely, if we let a be the coefficient of ¢! in T,
then Fy := Dk’l;&’g is given by

Fo=D'15" —af= > ca(n)q"
n>>—oo

@ Moreover F,, has coefficients in Kf and

*) ()

w—4o00 ca(lw)

Here [ is a prime number and 3, 8’ are the roots of the equation
X% —ap()X +x(DIF~! = (X — B)(X — B) ordered so that ord;(8) < ord;(8),
X is a trivial character modulo p, and we assume that 8 # 0 in the case | = p.
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Good Maass form

o The structure of half-integral weight weakly holomorphic Hecke eigenforms
was developed and half-integral weight p-adic coupling was investigated by
Bringmann, Guerzhoy and Kane.
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Regula

e For T > 0, we denote by Fr the truncated fundamental domain for SLz(Z)
Fr={zeH|[s| <1/2,]2| > 1, and y < T}.
e Moreover, we define the truncated fundamental domain for I'g(p) by
Fr(To(p)) = U yFr.
YETo(P)\SL2(Z)

e For f,g € M,'c (p), we define the regularized inner product (f,g)*® as the
constant term in the Laurent expansion at s = 0 of the function
1

—  lim xdy‘
[SL2(Z) : To(p)] T—oo J £r(To (p))

f<z>@y'“-sdy—2
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Regularized inner product

e By Borcherds and independently Bruinier, Ono, and Rhoades, (f, g)*®8 exists
if f or g is a holomorphic modular form. If both f and g are holomorphic
modular forms such that fg is a cusp form, then (f, )" reduces to the
Petersson inner product (f, g).
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n of level 1

Let 2 < k € 2Z, and t = dimS:(l), Then for each n € {1,--- ,t},

(2, fn)™e®
(f”h f’ﬂ)

is equal to D*~1F for a unique § € Ha_1,(To(1)) which is good for fS and
§t=0(").

—hn +

n
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Let p =1 and k = 12. In this case we have t = dim SE(I) = 1. Using
A(z) = n(2)%* € S1,(1) and the Hauptmodul j1(z) = Ea(z)3/A(z) — 744 for
I (1) one can express fi2,m (=1 < m < 1) as follows:

f12.-1(2) = A(2) = q — 24¢% + 252¢% — 1472¢* 4 4830¢° + - - -
f12,0(2) = A(j1 + 24) = 1 4 19656042 + 16773120¢> + - - -

1
fi2.1(2) = A(j12 + 2451 — 393444) = ot 477095362 + - - .
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nple of good N

f1i=fiz,-1 and hi = f{ = fi21

oo
Fo=—hi=—fio1=—q " — Z a12(1,n)q",
n=2
If we take [ = 3 and w = 1 in (*), by using Sturm bound one verifies that

— >0 a12(1, 3n)g"

—ai12(1,3)
_27947672851540608 ,  340389905850815087232
39862705122 © 30862705122
=A (mod 3'9).
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rem (S. Choi and K.)

p€{2,3,5,7,13}, 2 < k € 2Z, t = dim S (p), t’ = dim S;, (p)

@ Let A be at Xt matriz whose ij-entry is given by CT(f;- f,_, t’+]') where
CT(f) denotes the constant term of the Fourier expansion of f. Then the
matriz A is invertible.

@ Let B;; be the ij-entry of the matrixz A~ Take a unique weakly holomorphic
modular form w, € M;tk(p) such that wy, — 22:1 Binfo_g vig € O(q™Y).
Then

* reg t
4 IR et 4 D Binfa_ppris)
(fns fn) =1 ’
is equal to DP=1F for a unique § € Ha_1,(To(p)) which is good for fS and
Ft=0("*").
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nple of good N

p=>5; k=10 =t =dimS;},(5) = 1, ¢’ = dim S;,(5) = 2.

Ef = 1753 (Es + Eel6Ws), Ey := 125z (Ea — Ea[aW5),

f10,-1 = AT EF = q — 8¢% — 114¢® — 448¢* — 625¢° +912¢° + - - - |

42 . 1
fro1 = ATEF (G5 +8jF —90) = . 192¢% — 14511¢% + - - - ,

1 8
fos2=(AF)7? = 5 4+ = +44+ 192 + 726" + 2472¢° + - - ,
q q

1 114
fos3=(A) 20 —8) = F T LTz sl
_ s 1 2 120
fes =D E = p + R 1740 — 14855q 4 - - -,
f1=fio,-1, k1 =f7 = fro1 and w1 = P11f-83+26811f-8,2,
h -1 1
where 511 = Grt ) 20
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- 4 -
Fo = —h1+ D%(w1 + B11f g 5) + wh= > caln)g”
n=-—3
Take | = 3 and w = 1 in (*). Using Sturm bound one verifies that

Y1 Ca(3n)q"

ca(3)
6561 18528264 , 808269273 5 68622811200 ,
6308¢ 1577 ! 1577 ¢ 1577
=f1 (mod 3%).
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Thank you for your attention.
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