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The Siegel-Jacobi Operator 

By J.-H. YANG 

1 Introduction 

For any positive integer g E 2g +, we let Hg the Siegel upper half plane of  
degree g and let Fg := Sp(g, Z) the Siegel modular group of  degree g. Let 
p be a rational finite dimensional representation of the general linear group 
GL(g,112) on Vp and let Jr' be a symmetric half-integral semipositive matrix 
of degree h. Let Jp,,e(Fg) be the vector space of all Jacobi forms on Fg of 
index de' with respect to p (see Definition 2.1). For a positive integer r with 
r < g, we let p(r):GL(r, (12) ---* GL(Vo) be a rational representation of GL(r, (E) 
defined by 

((a 0)) 
P(r)(a)v := P 0 Eg_ r t~, a E GL(r ,~) ,v  E Vp. 

The Siegel-Jacobi operator ~g,r : Jp,~(Fg) --~ Jpl,,.~(Fr) is defined by 

(ij~g,rf)(Z,W) :_~_ lirnf ( (  0 0 i tEg_r) '(W'O)) ' 

where f ~ Jp,.e(Fg), Z c Hr and W c 112 (h,r). We observe that the above limit 
always exists and the Siegel-Jacobi operator is a linear mapping (cf. [14]). 

The aim of this paper is to investigate some properties of  the Siegel-Jacobi 
operator. This article is organized as follows. In section 2, we establish the 
notations and give a definition of  Jacobi forms. In section 3, we obtain the 
Shimura isomorphism based on ZIEGLER'S work [14]. Using this isomorphism 
and the theory of  singular modular forms, we obtain an injectivity or a 
surjectivity of  the Siegel-Jacobi operator under certain conditions. In the 
final section, we define an action of the Hecke operator of  Fg on Jp,~c(Fg) 
and prove that the action of  the Siegel-Jacobi operator on Jacobi forms is 
compatible with that of the Hecke algebra. 

Notations. We denote by 7/, Q, R and C the ring of  integers, the field 
of rational numbers, the field of  real numbers, and the field of complex 

,4o8) c Sp(g,~.) and Z E Hg, we set numbers respectively. For M = (c  
M(Z) :-- (AZ + B)(CZ + D) -1. [Fg, k] (resp. [Fg, p]) denotes the vector space 
of  all Siegel modular forms of  weight k (resp. of  type p). We denote by 
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Z + the set of all positive integers. F (k,l) denotes the set of all k • 1 matrices 
with entries in a commutative ring F. For A E F (k't) and B E Ftk,k), we set 
B[A] = tABA. For any M E F (k'l), tM denotes the transpose matrix of M. E, 
denotes the identity matrix of degree n. 

2 Jacobi Forms 

In this section, we establish the notations and define the concept of Jacobi 
forms. 

Let 

GSp(g,R) + = {M E R (2g'2gl I tMJgM = Vdg for some v > 0} 

be the group of similitudes of degree g, where 

Jg := -Eg 0 " 

Let M E GSp(g,R) +. If tMJgM = vJg, we write v = v(M). It is easy to see 
that GSp(g,R) + acts on Hg transitively by 

M(Z) := (AZ + B)(CZ + D) -1, 

where M = (~ o B) E GSp(g, IR) + and Z E Hg. 

For two positive integers g and h, we consider the Heisenberg group 

H~ 'h) := {[(~-, H),/~] ] 2, # E ~_~(h,g),/( E •(h,h), K + #t~ symmetric} 

endowed with the following multiplication law 

[(L #),  K] o [(~', #'), K'] := [(,~ + ,~', # + #'), • + ~:' + ,~'#' - #b~']. 

We define the semidirect product of GSp(g, IR) + and H~ 'h) 

GJ := GSp(g, R) + ~ H~ 'h) 

endowed with the following multiplication law 

(M, [(2, #), x]). (M', [(2', #'), x']) 

:= (M M', [(v(M')-12+2 ', v(M')-l ~ + p'), v(M')-lx + x' + v(M') -1 (2t p ' -~ t  2')]) , 

with M, M' E GSp (gh, R)+ and (2,~) := (2,p)M~. Clearly the dacobi group 
G J := Sp(g, R) b< H~' ) is a normal subgroup of G J. It is easy to see that (3 J 
acts on Hg x C ~h,g) transitively by 

(2.1) (M, [(2,/~),tc]) �9 (Z, W) := (M(Z),v(W + 2Z +#)(CZ + D)-I),  

where M = (A O~) E GSp(g,R) +, v = v(M), (Z, W) E Hg • •(h,g). 
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Let p be a rational representation of GL(g, r  on a finite dimensional 
complex vector space Vp. Let ~ '  ~ ~(h,h) be a symmetric half integral semi- 
positive matrix of degree h. Let C~(Hg x ~(h,g), Vp) be the algebra of  all C ~ 
functions on Hg x ~(h,g) with values in Vp. For f ~ C~(Hg x ~(h,g), lip), we 
define 

(2.2) (f  Ip,~ [(M, [(2,/~), tc])])(Z, W) 
:~__ e-2nvi~(J-t[W+2Z+~](CZ+O)-JC)e2nVia(~lt(2Zt2+22tW+(x+~r2))) 

x p(CZ + D)-If(M(Z),v(W + 2Z + I~)(CZ -t- D)-I) ,  

where v = v(M). 

Definition 2.1. Let p and J / b e  as above. Let 

H ~  'h) :=  { [(~, fl), to] E H~ 'h) ] )~, fl E 7z(h'g), K E 7z(h'h)}. 

A Jacobi form of index J /  with respect to p on a subgroup F c Fg of 
finite index is a holomorphic function f E C~(Hg x ~(h,g), Vp) satisfying the 
following conditions (A) and (B): 

(m) f[p,~[p] = f for all ~ 6 F J := F ~< H (g'h). 
(B) f has a Fourier expansion of the following form: 

2hi 

U 21 f (Z,W) = Z Z e(T,R)" _=~(TZ) e2,i~iRw) 
T>_O RET(g, h) 

half-integral 

with some 2r E ~E and c(T, R) ~ 0 only if 

2r 
i t  R ~_ O. 

If g >_ 2, the condition (B) is superfluous by Koecher principle (see [14] 
Lemma 1.6). We denote by Jp,~(F) the vector space of all Jacobi forms of 
index ~ with respect to p on F. In the special case Vp = C, p(A) = (det A) k 
(k E Z, A E OL(g,r  we write Jk,~(F) instead of Jp,~(F) and call k the 
weight of a Jacobi form f c Jk,~(F). 

ZIEGLER ([14] Theorem 1.8 or [2] Theorem 1.I) proves that the vector 
space Jo,~t(F) is finite dimensional. 

3 The Siegel-Jacobi Operator 

Let (p, lip) be a finite dimensional representation of GL(g, ~). For any positive 
integer r with r < g, we denote by V~ r) the subspace of lip generated by the 

values {Wg,rf(Z, W) I f c Jp,.~t(Fg), (Z, W) c Hg • c(h'g)}. According to [10], 
V~ r) is invariant under 

Eg-r ) " a GL(r, . 
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Then we have a rational representation p(r) of GL(r, (E) on V~ r) defined by 

((a 0)) 
P(r)(a)v := P 0 Eg-r V, a E GL(r, IE),v 6 . 

Following the argument of [10], we obtain 

Lemma 3.1. I f  (p, Vp) is irreducible, then (p(r), Vtvr)) is also irreducible. 

Now we assume that J /  is a symmetric positive half-integral matrix of 
degree h. For any a, b E II~ (h'g), we consider the theta series 

~2.1l,a,b(Z, W )  := Z eTtia(2~ll(('t+a)Z'(2+a)+2(2+a)'(W +b))) 
2EZ(h,g) 

with characteristic (a,b) converging uniformly on any compact subset of 
Hg x C ~h,g). 

We fix an element Z0 E Hg. Let Y be a complete system of representatives 
of the cosets (2,/[/[)-lz(h'g)/z (h'g). We denote by T~(Zo) the vector space of all 
holomorphic functions q~:~E (h'g) ~ CE satisfying the condition 

(3.1) q0(W + 2Z0 + #) ---- e-Z*tia(~ll(2z~ 

for every 2, # E Z (h'g). The functions {0:~t,~,0(Z0, W) I a E X}  form a basis 
of T~c(Zo) and its dimension is clearly {det(2J//)}g. If f is a Jacobi form in 
Jp,ue(Fg), it is easy to see that each component of ~b(W) := f(Zo, W) satisfies 
the relation (3.1). So we may write 

(3.2) f (Z ,  W) = Z fa(Z)" 02~r W),  Z E Hg, W E 112 (h'g), 
a E ./V" 

where {fa:Hg ~ Vp I a E ,/V'} are uniquely determined holomorphic functions 
on Hg. 

According to [14], we have 

(3.3) f , ( - Z  -1) = det . {p ( -Z )} .  {det(ZJ/)}-~ 

X Z e2*tia(2Jta'b) " fb (Z)  

bc,/V" 

and 

(3.4) f a (Z  + S) = e -2rtia(j'las'a) �9 f a ( Z ) ,  S = tS E Z (g'g) . 

By an easy argument, we see that the functions {f. I a 6 Y }  must have the 
Fourier expansion of the form 

(3.5) fa(Z) = ~_, c(T) " e 2'~i'~rz) . 
T=tT>O 

half-integral 
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Conversely, suppose there is given a family {fa I a E X }  of holomorphic 
functions fa:Hg ~ Vp satisfying the transformation laws (3.3), (3.4) and the 
cusp condition (3.5). Then we obtain a Jacobi form in Jp,~a(Fg) by defining 
f (Z ,  W) via the equation (3.2). 

So we obtain the Shimura isomorphism: 

Theorem. (SHIMURA) The equation (3.2) gives an isomorphism between Jp,~C(rg) 
and the vector space of  Vp-valued Siegel modular forms of half integral weight 
satisfying the transformation laws (3.3), (3.4) and the cusp condition (3.5). 

Corollary 3.2. Let 2J# be unimodular. We assume that p satisfies the following 
condition: 

(3.6) p(A) = p(-A) for all A E GL(g, C). 

Then we have 

(3.7) Jpj t ( rg)  = [rg,/5] �9 o2.~t,0,0(z, w)  ~ lug,/5], 

where/5 = p | det-~. In particular, if k . g is even, 

(3.8) 
h h 

Jkj, l(Fg) -=- [Fg, k -  ~]" 02~,0,0(Z, W) ~ [Fg, k -  ~1. 

Proof The proof of (3.7) follows from (3.3), (3.4) and (3.5). The repre- 
sentation detk:GL(g, ll2) ~ ~• defined by detk(A) = (det(A)) k satisfies the 
condition (3.6). Hence (3.8) follows from (3.7). [] 

Notations 3.3. In corollary 3.2, we denote the isomorphism of Jp,~(rg) (resp. 
Jk,~t(Fg)) onto [Fg,/5] (resp. [Fg, k -  h]) by 

Sp:Jo,~t(Fg ) ~ [Fg,/5] (resp. Sg,k:Jk,~a(rg) --* [Fg, k -  h]). 

We denote the Siegel operator by @g,r :[Fg, p] ~ [Fr, p(~)], 0 < r < g. 

Definition 3.4. An irreducible finite dimensional representation p of GL(g, rE) 
is determined by its highest weight (,~l,,~.2,...,~g) E Z g with ,~1 ~ "'" ~ )~g. 
We denote this representation by p = (21, '" ,2g).  The number  k(p) := 2g is 
called the weight of p. 

Theorem 3.5. Let 2~l be a positive unimodular symmetric even matrix of degree 
h. We assume that p is irreducible and satisfies the condition (3.6). I f  2k(p) < 
g + rank(~') ,  then the Siegel-Jacobi operator ~llg,g_l is injective. 

Proof By corollary 3.2, we have 

(3.9) Jp,~(['g) = [I'g, p | det-~] �9 ~2Jt,0,0(Z, W ) .  
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By an easy computation, we have 

(3.10) Splg-l) o ~Jg,g-1 - (I)g,g-i o Sp. 

According to the assumption, the irreducible representation p | det-~ of 
GL(g, IE) is singular, that is, 2k(p | det-~) < g. According to the well-known 
theory of singular modular forms ([10] Satz 4), every f E [Fg, p | det-~] is a 
singular modular form. Thus the Siegel operator ~g,g-1 is injective (see [11] 
for the proof of the injectivity of (I)g,g_l). Since S o and Sp(g--l) a r e  isomorphisms, 
the Siegel-Jacobi operator q'g,g-i is injective by (3.10). This completes the 
proof of Theorem 3.5. [] 

Theorem 3.6. Let 2J// be as above in Theorem 3.5. Assume that p is irreducible 
and satisfies the condition (3.6). I f  2k(p) + 1 < g + rank(J/) ,  then the Siegel- 
Jacobi operator ~g,g--1 is an isomorphism. 

Proof. By corollary 3.2, we have the relation (3.9). Similarly, we have the 
commutation relation (3.10). Since 2k(p | det- l )  + 1 < g by the assumption, 
according to the theory of singular modular forms (cf. [3] and [11]), the 
Siegel operator Og,g-1 is an isomorphism. Since Sp, Sp~-l~ and ~g,g-1 are all 
isomorphisms, ~g,g-1 is an isomorphism. [] 

Theorem 3.7. Let 2all/ be as above in Theorem 3.5. Assume that 2k(p) > 
4g + rank(J//) and k - 0 (mod 2). Then the Siegel-Jacobi operator 
trtJg,g_l : Jk,jc(rg ) --~ Jk,JC(Fg_l) is surjective. 

Proof. By corollary 3.2, we have 

h h 
Jk,~(Fg) = [rg, k - ~] " 82~,0,0(Z, W) ~ [rg, k - ~]. 

By the assumption, 2 ( k -  h) > g and k -  h _ 0 (rood 2). According to MAASS 
[6], the Siegel operator 

h h 
(I)g,g-1 ; [ r g ,  k - ~] ~ [ F g - 1 ,  k - ~1 

is surjective. Consequently the surjectivity of the Siegel-Jacobi operator ~t/g,g_l 
follows immediately from the commutation relation 

Sg- l ,k  o ~IJg,g_l = (1)g,g_ 1 o Sg,k. [] 

4 Heeke Operator 

In this section, we give the action of Hecke operators on Jacobi forms and 
prove that this action is compatible with that of  the Siegel-Jacobi operator. 
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For a positive integer l, we define 

Og(l) := {M E 7Z (2g'ag) [tMJgM = lJg}, 

where 
0 Eg)  

Jg := -Eg 0 " 

Og(/) is decomposed into finitely many double cosets mod Fg, i.e., 

m 

Og(l) = U rggjrg (disjoint union). 
]=1 

We define 
m 

T(1) := Z FggjFg E ~r the Hecke algebra. 
j = l  

Let M E Og(l). For a Jacobi form f E Jp,~(Fg), we define 

m 

f[p,~r(rgMrg) :=/gk(p)-~ts+l) Z f[P,~ [(Mi, [(0, 0), 0])], 
i = 1  
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Proposition 4.1. Let l be a positive integer. Let M E Og(1) and f E Jp,~(Fg). 
Then 

flp,~a(FgMFg) E Jp,l~C(Fg). 

Proof It is easy to compute it and so we omit the proof. [] 

For a prime p, we define 

oo 

Og,p ;-~ U Og (pl)' 
l=0 

Let ~g,p be the C-module generated by all left cosets FgM, M E Og,p and 
v 

~g,p the C-module generated by all double cosets FgMI'g, M E Og,p. Then 
v 

~g,p is a commutative associative algebra. We associate to a double coset 

m 

FgMFg = UI 'gMi,  M, Mi E Og,p (disjoint union) 
i = 1  

the element 
m 

j(FgMrg) = ~_, FgMi C .~'g.p . 
i = 1  

where I'gMI'g = U m FgMi (finite disjoint union) and k(p) denotes the weight 
of p. See (2.2) in section 2 for the definition of flp,~[(Mi, [(0,0), 0])]. 
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We extend j linearly to the Hecke algebra ~g,p and then we have a monomor-  
v v 

phism j:~,'fg,p ~ ~g,p. We now define a bilinear mapping 

by 

m 

(FgMFg) " (FgMo) = rgMiMo, where FgMrg  = U FgMi. 
i=1 i=l 

This mapping is well defined because the definition does not depend on the 
choice of  representatives. 

Let f �9 Jp,~l(Fg) be a Jacobi form. For a left coset L :-- FgN with 
N �9 Og,p, w e  put 

(4.1) f lL := flp,~[(N, [(0,0),0])]. 

We extend this operator (4.1) linearly t o  ~g,p. I f  T �9 ~r we write 

Obviously we have 

f iT  := f l j (T) .  

( f lT)IL = f I(TL),  f �9 Jp,~C(Fg). 

In a left coset FgM, M E Og,p, we can choose a representative M of the form 

0 ' tAD = tBD = tDB' 

(0 ") (b %) 0) 
(4.3) A =  A* ' B =  132 B* ' D =  5 D" ' 

where e, fib f12, 5 E Z g-1. Then we have 

(4.4) M" := D" �9 Og-l'P" 

For an integer r �9 Z, we define 

1 
(4.5) (rgM)" := -diFg_lM . 

m I f  FgMFg = Uj=I FgMj (disjoint union), M, Mj �9 Og,p, then we define in a 
natural way 

m 

1 Zr _lM; (4.6) ( r g M F J  = ~ . 
j=l  
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We extend the above map (4.6) linearly on ~r and then we obtain an algebra 
homomorphism 

(4.7) 
~g,p ~ ,k~g_ 1,p 

T , , T ~ . 

It is known that the above map is a surjeetive map ([13] Theorem 2). 

Let W~ :Jp,~t(Fg) --* Jp~r),jt(Fr) be the modified Siegel-Jacobi operator de- 
fined by 

((i tEg-r 0 ) ,(0, W ) )  ' (Z,W) EHr• (V~,,f)(Z, W) := l i m f  0 Z 

where p(0~):GL(r,C) ~ GL(Vp) is a finite dimensional representation of 
GL(r, ~)  defined by 

o) 
pff)(A) = p  0 , A E GL( r , r  

The following theorem is a variant of the Siegel version [4]. 

Theorem 4.2. Suppose we have 

(a) a rational finite dimensional representation 

p: GL(g, IE) --. GL(Vo) , 

(b) a rational finite dimensional representation 

p0:GL(g - 1, (E) ~ GL(Vp0), 

(c) a linear map R: Vp ~ Vpo, 

satisfying the following properties (1) and (2) : 

(1) R o p (  10A) =po(A) oRforal l  A E G L ( g -  1,1~). 

(; ~ ) = a r R f  ~176  (2) R o p e,_, 

Then for any f E Jp,~(Fg) and T e ~g,p, we have 

(R o qJ~,g_l)(flT) = o * R(Wg,g_lf)[ T . 

Proof Let f ~ Jp,~(Fg) be a Jacobi form. Then we have the Fourier expansion 

f(Z, W) = Z c(T, R)e 2~ia(rz) . e 2~ia(Rw) . 
T,R 
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By an easy computation, we have 

(trtt:,g_lf)(Z,W)=Ec(( : 0 ) , ( 0 ) )  "e2nia(TZ+RW), 
T,R 

where (Z, W) E Hg_ 1 X ~(h,g-1), T E Q(g--l,g--1) runs over the set of all half 
integral matrices of  degree g - 1 and R runs over the set of all (g - 1) x h 
integral matrices. 

Lemma 4.3. Let f E Jp,~t(Fg) be a Jacobi forrn. Then for any ~ E r 

o ( ( ,  o 
k~lg,g-- l P ~ Eg-1 = ~tJg,g - l f  " 

Proof Since p is rational, it suffices to show the above formula for integral 
E 7~f1-1. For convenience, we put 

( 1  0 ) ,  ~ E z g - 1  
U= ~ Eg-1 

(, -1 o ) is an element in Vg. Since f E Jpjt(rg), we have Then My := . % eg_l, 

flo,~ [Mu] = f and hence 

f(Z[U-~], WU -~) = p(U)f(Z, W). 

Thus we have 

0 (kIIg,g_ 1 (p(U)f))(Z, W) ) - z ~  , ( -w~,  w ) /  

-- (W~ W). 

Hence this completes the proof of the above lemma. [] 
v 

Let L := FgM E ~eg,p (M E Og,p) be fixed, where M is of the form (4.2). 
We write v := v (M) = pk0. Then we have 

(flL)(Z, W) = p(D)-lf( 1 (2 [tA] + AtB), ITVtA), 
v 

where (Z, W) E Hg • ~(h,g). 
Therefore we have 

(~,g-l(flL))(Z, W) 

= P(D) - l ' im f (~ (  oo A'Za t~ZtA* WtA*)) 
Z[tA *] ) + BD-I'(Wa' 

P(D) -1 (W~,g-lf)(~ (Z [tA*] + B'tA*), WtA*). 
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And we have 

dr ((q~~ W) 

0 
~--- p (10 O*) (~~ 

According to Lemma 4.3, we may take 

o( 0 o.) 
Thus we have 

o o)  (, 
(~g,g--I (fiE))( Z, W) = p D* " p 0 

Finally according to the assumption (c) in Theorem 4.2, we obtain 

R(O~,g_l(fl(FgM))) o * = R(Wg,g_I)I(FgM ) �9 

Hence for any T E ~t'~g,p, we have 

g(vOg,g_l (f iT))  = o * R(tPg,g_lf) l T . 

This completes the proof of  Theorem 4.2. 

o) o 
D* ((tPg,g_lf)l(Fg_lM ))(Z, W) .  

[] 
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