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The Siegel-Jacobi Operator

By J.-H. YanG

1 Intreduction

For any positive integer g € Z*, we let H, the Siegel upper half plane of
degree g and let I'y; := Sp(g,Z) the Siegel modular group of degree g. Let
p be a rational finite dimensional representation of the general linear group
GL(g,C) on V, and let .# be a symmetric half-integral semipositive matrix
of degree h. Let J, 4(I',) be the vector space of all Jacobi forms on I'y of
index .# with respect to p (see Definition 2.1). For a positive integer r with
r < g, we let p@: GL(r,C) — GL(V,) be a rational representation of GL(r, C)
defined by

p(r)(a)v =p ((8 EO )) v, aeGLrFrC,veV,.
g—r

The Siegel-Jacobi operator Wy, :J, 4(I'y) = J,0_4(I';) is defined by

Ry Z 0
(ng,rf)(Z’ W) L }Lrgf (< 0 itEg_r> > (W90)> i
where f € J, #(Ty), Z € H, and W € €. We observe that the above limit
always exists and the Siegel-Jacobi operator is a linear mapping (cf. [14]).

The aim of this paper is to investigate some properties of the Siegel-Jacobi
operator. This article is organized as follows. In section 2, we establish the
notations and give a definition of Jacobi forms. In section 3, we obtain the
Shimura isomorphism based on ZIEGLER’s work [14]. Using this isomorphism
and the theory of singular modular forms, we obtain an injectivity or a
surjectivity of the Siegel-Jacobi operator under certain conditions. In the
final section, we define an action of the Hecke operator of I'; on J, 4(T',)
and prove that the action of the Siegel-Jacobi operator on Jacobi forms is
compatible with that of the Hecke algebra.

Notations. We denote by Z, @, R and € the ring of integers, the field
of rational numbers, the field of real numbers, and the field of complex
numbers respectively. For M = (4 D) € Sp(g,R) and Z € H,, we set
M(Z) = (AZ + B)(CZ + D)™'. [T, k] (resp. [T, p]) denotes the vector space

of all Siegel modular forms of weight k (resp. of type p). We denote by
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Z* the set of all positive integers. F®) denotes the set of all k x | matrices
with entries in a commutative ring F. For 4 € F®) and B € F*% we set
B[A] ='ABA. For any M € F®) M denotes the transpose matrix of M. E,
denotes the identity matrix of degree n.

2 Jacobi Forms

In this section, we establish the notations and define the concept of Jacobi
forms.
Let

GSp(g, R)* = {M € R | 'MJ,M =vJ, for some v >0}

be the group of similitudes of degree g, where

— 0 Eg
(2 5)

Let M € GSp(g,R)*. If ‘MJ,M = vJ,, we write v = v(M). It is easy to see
that GSp(g,IR)* acts on H, transitively by

M(Z) .= (AZ + B)(CZ + D)™,

where M = (2 }) € GSp(g, R)* and Z € H,.
For two positive integers g and h, we consider the Heisenberg group

HEY = {[(4, ), x]} | 4 u € R,k e R® s 4 42 symmetric)
endowed with the following multiplication law
(2, 1), o [(A, 1), k] 2= [(A+ X, p+ )+ &+ Xy — 2]
We define the semidirect product of GSp(g,R)" and Hﬁf’h)
G’ = GSp(g, R)* < HEP
endowed with the following multiplication law

(M, [(4, ), x]) - (M” [(’1/9 l"/)’ K,])
= (MM, [(v (M) 0+ 2, v (M) et ), v (M) e i v (M) = EED)]),

with M, M’ € GSp (g, R)* and (4, 1) := (4, )M’ Clearly the Jacobi group
G’ :=Sp(g,R) x HE" is a normal subgroup of G’. It is easy to see that G’
acts on H, x C*® transitively by

(2.1) (M, [, ), k) - (Z, W) = (M(Z),v(W + AZ + w)(CZ + D)™},

where M = (2 }) € GSp(g, R)*, v = v(M), (Z, W) € Hy x T").
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Let p be a rational representation of GL(g,C) on a finite dimensional
complex vector space V,. Let # € R™P be a symmetric half integral semi-
positive matrix of degree h. Let C*(H, x C*#,V,) be the algebra of all C*
functions on H, x €*# with values in V,. For f € C*®(H, x C*9,V,), we
define

(2.2) (flp.a [(M, [(4, ), kDINZ, W)
e-—21tvia(‘//{[W+AZ+H](CZ+D)_l C) e2nvi6(u/l(lZ’i+21‘ W +(x+p'A)))

X p(CZ + D) f(M(Z),v(W + AZ + u)(CZ + D)),

where v = v(M).

Definition 2.1. Let p and 4 be as above. Let
HEY = {[(Lp),x] € HEY | 4 p € 29, € Z0D}.

A Jacobi form of index .# with respect to p on a subgroup I' c Iy of
finite index is a holomorphic function f € C®(H, x C"®,V,) satisfying the
following conditions (A) and (B):

(A) floulf]l = f for all § € TV := T x HEM.

(B) f has a Fourier expansion of the following form:

f(Z,w)= Z Z o(T,R) - e Ho(T2) | nio(RW)

T=0 ReZ®&H
half —integral

with some Ar € Z and ¢(T, R) # 0 only if

1 1
(TF,T 5R)zo.
YR

If g = 2, the condition (B) is superfluous by Koecher principle (see [14]
Lemma 1.6). We denote by J, «(I') the vector space of all Jacobi forms of
index .# with respect to p on I'. In the special case ¥V, = €, p(4) = (det A)
(k € Z, A € GL(g,C)), we write Ji 4(I') instead of J, 4(I') and call k the
weight of a Jacobi form f € Jy 4 (T).

ZIEGLER ([14] Theorem 1.8 or [2] Theorem 1.1) proves that the vector
space J, (1) is finite dimensional.

3 The Siegel-Jacobi Operator

Let (p, V,) be a finite dimensional representation of GL(g, €). For any positive
integer r with r < g, we denote by Vl§’) the subspace of V, generated by the

values {¥,,f(Z, W) | f € J, «([,), (Z,W) € Hy x €9}, According to [10],
V() is invariant under

{(g EO ):aeGL(r,(E)}.
g—r
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Then we have a rational representation p of GL(r,C) on VIS’) defined by

() = a 0 )
p(a)v .—p<<0 Eg_r))v, a € GL(r,C),veV,”.
Following the argument of [10], we obtain

Lemma 3.1. If (p, V,) is irreducible, then (p®, V") is also irreducible.

Now we assume that .# is a symmetric positive half-integral matrix of
degree h. For any a, b € Q™8), we consider the theta series
92_,/{,,[,(2 W Z ema(2.//l((l+a)2‘(/1+a)+2 (A+a)' (W +b)))

reZhe)

with characteristic (a,b) converging uniformly on any compact subset of
H, x qChe),

We fix an element Zg € H,. Let 4" be a complete system of representatives
of the cosets (2.4)~'Z"%) Z(ig) We denote by T 4(Zo) the vector space of all
holomorphic functions ¢:C*8 — € satisfying the condition

(31) (P(W +AZO _+_'u) — e—-Znio‘(J{(/lZo‘l+2,l'W))(p(W)

for every A, u € Z"*®. The functions {92.440(Zo, W) | a € A} form a basis
of T 4(Zy) and its dimension is clearly {det(2.#)}8. If f is a Jacobi form in
Jou(Ty), it is easy to see that each component of ¢(W) = f(Zo, W) satisfies
the relation (3.1). So we may write

(3.2) fz,w)= Z faZ) RpaoZ, W), Z€ H,, W e q:(h,g)’
acN

where {f,:H; — V, | a € A"} are uniquely determined holomorphic functions
on H,.

According to [14], we have
(3 fuezh = {det (%) }_7 {p(=2)} - {det(2.)}

> z e21tia(2.//{a‘b) fb(Z)

beN

and
(3.4) foZ +8) = o~ 2mia(MaS'a) fd2), S= s € 788

By an easy argument, we see that the functions {f, | ¢ € ./} must have the
Fourier expansion of the form

(3:5) f@y= 3, oT)-&

T='T>0
half—integral
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Conversely, suppose there is given a family {f, | @ € 4} of holomorphic
functions f,: H, — V, satisfying the transformation laws (3.3), (3.4) and the
cusp condition (3.5). Then we obtain a Jacobi form in J, 4(I';) by defining
f(Z,W) via the equation (3.2).

So we obtain the Shimura isomorphism:

Theorem. (SHIMURA) The equation (3.2) gives an isomorphism between J, 4(T,)
and the vector space of V,-valued Siegel modular forms of half integral weight
satisfying the transformation laws (3.3), (3.4) and the cusp condition (3.5).

Corollary 3.2. Let 2.4 be unimodular. We assume that p satisfies the following
condition:

(3.6) p(A) = p(—A) forall A€ GL(g,C).
Then we have

(3.7) Joa(Tg) = [ B) - S2.000(Z, W) = [T, 71,
where p=p ® det™?. In particular, if k- g is even,

B8 Sl = k=21 Grao(Z, W) = [Ty k= 1.

Proof. The proof of (3.7) follows from (3.3), (3.4) and (3.5). The repre-

sentation det*: GL(g,C) —» C* defined by det‘(4) = (det(A))* satisfies the
condition (3.6). Hence (3.8) follows from (3.7). O

Notations 3.3. In corollary 3.2, we denote the isomorphism of J,,_4(I,) (resp.
Je.a(T)) onto [Ty, 7] (resp. [T,k — £1) by

So:Jp.a(Tg) = [T, p]  (resp. Sgp:Jka(Tg) = [Ty, k — g]).
We denote the Siegel operator by @,,: [Ty, p] = [, p"], 0 <r < g.
Definition 3.4. An irreducible finite dimensional representation p of GL(g, T)
is determined by its highest weight (1,42, +,4g) € Z# with Ay > -+ > Ag.

We denote this representation by p = (41, -, 4). The number k(p) := 4, is
called the weight of p.

Theorem 3.5. Let 2./ be a positive unimodular symmetric even matrix of degree
h. We assume that p is irreducible and satisfies the condition (3.6). If 2k(p) <
g + rank(#), then the Siegel-Jacobi operator Wg,_, is injective.

Proof. By corollary 3.2, we have

(3.9) Jou(Tg) = [Tg,p @ det 1] - 85 4 00(Z, W).
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By an easy computation, we have

(310) Sp(g—l) [¢] ‘Pg,g_l = (Dg,g—l [e] Sp .

According to the assumption, the irreducible representation p ® det™? of
GL(g, ©) is singular, that is, 2k(p ® det_%) < g. According to the well-known
theory of singular modular forms ([10] Satz 4), every f € [I,,p ® det‘g] isa
singular modular form. Thus the Siegel operator ®,,_; is injective (see [11]
for the proof of the injectivity of ®,,_1). Since S, and S,¢-n are isomorphisms,
the Siegel-Jacobi operator W,,_; is injective by (3.10). This completes the
proof of Theorem 3.5. a

Theorem 3.6. Let 2.4 be as above in Theorem 3.5. Assume that p is irreducible
and satisfies the condition (3.6). If 2k(p) + 1 < g + rank(.#), then the Siegel-
Jacobi operator W, ,_1 is an isomorphism.

Proof. By corollary 3.2, we have the relation (3.9). Similarly, we have the
commutation relation (3.10). Since 2k(p ® det‘%) + 1 < g by the assumption,
according to the theory of singular modular forms (cf. {3] and {11]), the
Siegel operator ®,,_; is an isomorphism. Since S,, S,¢-» and ®,,_; are all
isomorphisms, W, ,_; is an isomorphism. |

Theorem 3.7. Let 2.4 be as above in Theorem 3.5. Assume that 2k(p) >
4¢ + rank(#) and k = 0 (mod 2). Then the Siegel-Jacobi operator
Yoot u(Tg) = Joa(Tp—1) is surjective.

Proof. By corollary 3.2, we have

h h
Jk,ﬂ(rg) = [rgak - 5] ’ ‘92‘/1,0,0(27 W) = [Fgak - 5] .

By the assumption, 2(k— g) > g and k——g =0 (mod 2). According to MaAsS
[6], the Siegel operator

h h
Dy i:[Tg,k— E] - [T,k — 5]

is surjective. Consequently the surjectivity of the Siegel-Jacobi operator W, ,_
follows immediately from the commutation relation

Sg—1jc© Weg—1 = Pge—1 0 Sg. O

4 Hecke Operator

In this section, we give the action of Hecke operators on Jacobi forms and
prove that this action is compatible with that of the Siegel-Jacobi operator.
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For a positive integer I, we define

0,() = {M € Z%% | 'MJ,M = 1J,},

— 0 Eg
(3, %)

0, () is decomposed into finitely many double cosets mod Iy, ie.,

where

m
0,() = | JT,g,T; (disjoint union).
j=1

We define

m
T = z T,giT, € #®, the Hecke algebra.
j=1

Let M € Og(l). For a Jacobi form f € J, 4(I';), we define

floa(TgMTy) = 10552 3" £1 4 [(M,, [(0,0),0])],

i=1

141

where I',MT, = ;' T, M; (finite disjoint union) and k(p) denotes the weight

of p. See (2.2) in section 2 for the definition of f|, 4 [(M;, [(0,0),0])].

Proposition 4.1. Let | be a positive integer. Let M c Op(l) and f € J, 4(Ty).

Then
flo.aTgMTy) € Jpyu(ly) .

Proof. It is easy to compute it and so we omit the proof.

For a prime p, we define

Ogp = U Og(l’l)-
=0

Let ,é’g,p be the C-module generated by all left cosets I';M, M € O, and

v

# ¢ p the €C-module generated by all double cosets [{,MT',, M € Og,. Then
Hgp 15 @ commutative associative algebra. We associate to a double coset

m
IeMTIT, = Ul"gMi, M,M; € O,, (disjoint union)
i=1
the element N
JTgMT ) = z T M€ Z,,.

i=]
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We extend j linearly to the Hecke algebra # ¢p and then we have a monomor-
phism j: Jfg,p — ,Svfg,p. We now define a bilinear mapping

Hgp X Lop = Lgp
by
m m
(TgMTy) - (TgMo) = Y TyMiMo, where T MT, =|JT,M,.
i=1 i=1

This mapping is well defined because the definition does not depend on the
choice of representatives.

Let f € J, «(I'g) be a Jacobi form. For a left coset L := I'y,N with
N € Og)p, we put

(4.1) fIL = fl,.#[(N,[(0,0),0])].

We extend this operator (4.1) linearly to Svfg,p. IfT € ]Vfg,p, we write
fIT = flj(T).
Obviously we have
FIDIL=fUTL), feJoualy).

In a left coset I';M, M € O,,, we can choose a representative M of the form

—_ A B t — nko t _t
(4.2) M—(O D), AD = pME,,'BD ='DB,

(4.3) A=(8 Z’i), B=(’f’2 g&), D=<‘; g.),

where «, B1, B2, 6 € Z87!. Then we have
. A" B'
“4) M = ( 0 D‘) € O0pip.

For an integer r € Z, we define

* 1 *
4.5) (M) = T M.

If I,MT, = U;-"=1 I, M; (disjoint union), M, M; € O,,, then we define in a
natural way

._ 1< .
(4.6) (TgMTg)" = - > LM,
j=1
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We extend the above map (4.6) linearly on # ¢p and then we obtain an algebra
homomorphism

v

H . — ,}vf —1,
(47) 8P g—Lp
T — T".

It is known that the above map is a surjective map ([13] Theorem 2).
Let ‘I’g,r:Jp, wTg) — Jp{{’, _«(['x) be the modified Siegel-Jacobi operator de-
fined by

@0z w) =tmf (" D) ow), @wen xam,
& t—»00 0 Z

where pg):GL(r,(E) — GL(V,) is a finite dimensional representation of
GL(r,C) defined by

Mgy = Ee—r O

The following theorem is a variant of the Siegel version [4].
Theorem 4.2. Suppose we have
(a) a rational finite dimensional representation
p:GL(g,©) — GL(V,),
(b) a rational finite dimensional representation
po:GL(g — 1,@) — GL(V,,,),
(¢) a linear map R:V, —» V,,
satisfying the following properties (1) and (2):
(1) Rop (3 g) = po(A4) o R for all A€ GL(g —1,T).
(2) Rop (8 Ef_}) = a'R for some r € Z.
Then for any f € J, 4(T'y) and T € jfg,p, we have
(RoWp, )(fIT) = R(¥, ,f)IT".
Proof. Let f € J, 4(I'y) be a Jacobi form. Then we have the Fourier expansion

f(Z, W) — Z C(T, R)eZnia(TZ) . eZnia(RW) .
T.R
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By an easy computation, we have
0 _ 0 0 0 . p2ric(TZ+RW)
(ng,g—lf)(Z,W)—§C<(0 T>’(R)) e’ s

where (Z, W) € Hy_y x €*s~Y, T € Q¥~'5~Y runs over the set of all half
integral matrices of degree g — 1 and R runs over the set of all (g —1) x h
integral matrices.

Lemma 4.3. Let f € J, 4(T',) be a Jacobi form. Then for any ¢ € €3,

1 0
(! 2)0) e

Proof. Since p is rational, it suffices to show the above formula for integral
& € Z#7. For convenience, we put

(1 0 1
U4_<€ Eg—l)’ cer

Then My = (:Ué-l E?‘I) is an element in I',. Since f € J, 4(T,), we have

flp.«[My] = f and hence

FZWU WU =pU)f(Z,W).

g (I 757 ) cwem)

= (lyg,g—lf)(z’ W) .

Thus we have

(P2, (pUNNZ, W)

Hence this completes the proof of the above lemma. g

Let L . =T';M € ,i”g,p (M € 0,,) be fixed, where M is of the form (4.2).
We write v := v(M) = p%. Then we have

(12, W) = pD) (2L A+ A'B), W' 4),

where (Z, W) € H, x C*®).
Therefore we have

(Vo1 (FILN(Z, W)

i 1 fita> + Z[o] ‘aZ'A" _ .
1 - 1 t
p(D)™" lim f (v ( AZa  Z[AT] +BD™,(Wa, W'A")

p(D) (¥ NN ZLA] 4 BA) WA,
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And we have

&’ (Y5, NTM))Z, W)

1 * o toa*
- p((l) D()~)(‘P2,g_1f)(;(z[‘,4]+3 AN, W'A").

According to Lemma 4.3, we may take

d 0
o= (4 2).

Thus we have

(¥,

@ =p (5 )0 (f 5 ) DT MNE W),

Finally according to the assumption (c) in Theorem 4.2, we obtain

R(¥Y,_, (f[(TgM)) = R(¥S,_)|(TeM)"

Hence for any T € # ¢.p» WE have

R, ,(fIT) = RO, NIT".

This completes the proof of Theorem 4.2. a

(1
(21

(3]
“
(5]
(6]
(7]
8]
]

(10]
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