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Abstract. The Siegel–Jacobi space is a non-symmetric homogeneous space
which is very important geometrically and arithmetically. In this paper, we
discuss the theory of the geometry and the arithmetic of the Siegel–Jacobi
space.
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1. Introduction

For a given fixed positive integer n, we let

Hn = {Ω ∈ C(n,n) | Ω = tΩ, ImΩ > 0 }
be the Siegel upper half-plane of degree n and let

Sp(n,R) = {M ∈ R(2n,2n) | tMJnM = Jn }
be the symplectic group of degree n, where F (k,l) denotes the set of all k × l
matrices with entries in a commutative ring F for two positive integers k and l,
tM denotes the transposed matrix of a matrix M and

Jn =

(
0 In
−In 0

)
.
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Then Sp(n,R) acts on Hn transitively by

M · Ω = (AΩ+ B)(CΩ +D)−1, (1.1)

where M =

(
A B
C D

)
∈ Sp(n,R) and Ω ∈ Hn. Let

Γn = Sp(n,Z) =
{(

A B
C D

)
∈ Sp(n,R)

∣∣ A,B,C,D integral

}
be the Siegel modular group of degree n. This group acts on Hn properly dis-
continuously. C.L. Siegel investigated the geometry of Hn and automorphic forms
on Hn systematically. Siegel [57] found a fundamental domain Fn for Γn\Hn and
described it explicitly. Moreover he calculated the volume of Fn. We also refer to
[23], [38], [58] for some details on Fn.

For two positive integers m and n, we consider the Heisenberg group

H
(n,m)
R =

{
(λ, μ;κ) | λ, μ ∈ R(m,n), κ ∈ R(m,m), κ+ μ tλ symmetric

}
endowed with the following multiplication law(

λ, μ;κ
)
◦
(
λ′, μ′;κ′) =

(
λ+ λ′, μ+ μ′;κ+ κ′ + λ tμ′ − μ tλ′)

with
(
λ, μ;κ

)
,
(
λ′, μ′;κ′) ∈ H

(n,m)
R . We define the Jacobi group GJ of degree n and

index m that is the semidirect product of Sp(n,R) and H
(n,m)
R

GJ = Sp(n,R)�H
(n,m)
R

endowed with the following multiplication law(
M, (λ, μ;κ)

)
·
(
M ′, (λ′, μ′;κ′ )

)
=

(
MM ′, (λ̃+ λ′, μ̃+ μ′;κ+ κ′ + λ̃ tμ′ − μ̃ tλ′ )

)
with M,M ′ ∈ Sp(n,R), (λ, μ;κ), (λ′, μ′;κ′) ∈ H

(n,m)
R and (λ̃, μ̃) = (λ, μ)M ′. Then

GJ acts on Hn × C(m,n) transitively by(
M, (λ, μ;κ)

)
· (Ω, Z) =

(
M · Ω, (Z + λΩ + μ)(CΩ +D)−1

)
, (1.2)

whereM =

(
A B
C D

)
∈ Sp(n,R), (λ, μ;κ) ∈ H

(n,m)
R and (Ω, Z) ∈ Hn×C(m,n).We

note that the Jacobi group GJ is not a reductive Lie group and the homogeneous
space Hn × C(m,n) is not a symmetric space. From now on, for brevity we write
Hn,m = Hn × C(m,n). The homogeneous space Hn,m is called the Siegel–Jacobi
space of degree n and index m.

The aim of this paper is to discuss and survey the geometry and the arith-
metic of the Siegel–Jacobi space Hn,m. This article is organized as follows. In Sec-
tion 2, we provide Riemannian metrics which are invariant under the action (1.2)
of the Jacobi group and their Laplacians. In Section 3, we discuss GJ -invariant
differential operators on the Siegel–Jacobi space and give some related results.
In Section 4, we describe the partial Cayley transform of the Siegel–Jacobi disk
onto the Siegel–Jacobi space which gives a partially bounded realization of the
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Siegel–Jacobi space. We provide a compatibility result of a partial Cayley trans-
form. In Section 5, we provide Riemannian metrics on the Siegel–Jacobi disk which
is invariant under the action (4.8) of the Jacobi group GJ∗ and their Laplacians
using the partial Cayley transform. In Section 6, we find a fundamental domain
for the Siegel–Jacobi space with respect to the Siegel–Jacobi modular group. In
Section 7, we give the canonical automorphic factor for the Jacobi group GJ which
is obtained by a geometrical method and review the concept of Jacobi forms. In
Section 8, we characterize singular Jacobi forms in terms of a certain differential
operator and their weights. In Section 9, we define the notion of the Siegel–Jacobi
operator. We give the result about the compatibility with the Hecke–Jacobi op-
erator. In Section 10, we differentiate a given Jacobi form with respect to the
toroidal variables by applying a homogeneous pluriharmonic differential operator
to a Jacobi form and then obtain a vector-valued modular form of a new weight.
As an application, we provide an identity for an Eisenstein series. In Section 11,
we discuss the notion of Maass–Jacobi forms. In Section 12, we construct the
Schrödinger–Weil representation and give some results on theta sums constructed
from the Schrödinger–Weil representation. In Section 13, we give some remarks
and propose some open problems about the geometry and the arithmetic of the
Siegel–Jacobi space.

Notation. We denote by Q, R and C the field of rational numbers, the field of real
numbers and the field of complex numbers respectively. We denote by Z and Z+

the ring of integers and the set of all positive integers respectively. The symbol
“:=” means that the expression on the right is the definition of that on the left.
For two positive integers k and l, F (k,l) denotes the set of all k × l matrices with
entries in a commutative ring F . For a square matrix A ∈ F (k,k) of degree k, σ(A)
denotes the trace of A. For any M ∈ F (k,l), tM denotes the transpose of a matrix
M . In denotes the identity matrix of degree n. For A ∈ F (k,l) and B ∈ F (k,k), we
set B[A] = tABA. For a complex matrix A, A denotes the complex conjugate of
A. For A ∈ C(k,l) and B ∈ C(k,k), we use the abbreviation B{A} = tABA. For a
number field F , we denote by AF the ring of adeles of F . If F = Q, the subscript
will be omitted.

2. Invariant metrics and Laplacians on the Siegel–Jacobi space

For Ω = (ωij) ∈ Hn, we write Ω = X+ iY with X = (xij), Y = (yij) real. We put

dΩ = (dωij) and dΩ = (dωij). We also put

∂

∂Ω
=

(
1 + δij

2

∂

∂ωij

)
and

∂

∂Ω
=

(
1 + δij

2

∂

∂ωij

)
.

C.L. Siegel [57] introduced the symplectic metric ds2n;A on Hn invariant under the

action (1.1) of Sp(n,R) that is given by

ds2n;A = Aσ(Y −1dΩY −1dΩ), A > 0 (2.1)
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and H. Maass [37] proved that its Laplacian is given by

Δn;A =
4

A
σ

(
Y

t(
Y

∂

∂Ω

)
∂

∂Ω

)
. (2.2)

And

dvn(Ω) = (det Y )−(n+1)
∏

1≤i≤j≤n

dxij

∏
1≤i≤j≤n

dyij (2.3)

is a Sp(n,R)-invariant volume element on Hn (cf. [59], p. 130).

For a coordinate (Ω, Z) ∈ Hn,m with Ω = (ωμν) and Z = (zkl), we put

dΩ, dΩ, ∂
∂Ω ,

∂
∂Ω

as before and set

Z = U + iV, U = (ukl), V = (vkl) real,

dZ = (dzkl), dZ = (dzkl),

∂

∂Z
=

⎛⎜⎝
∂

∂z11
. . . ∂

∂zm1

...
. . .

...
∂

∂z1n
. . . ∂

∂zmn

⎞⎟⎠ ,
∂

∂Z
=

⎛⎜⎝
∂

∂z11
. . . ∂

∂zm1

...
. . .

...
∂

∂z1n
. . . ∂

∂zmn

⎞⎟⎠ .

Yang proved the following theorems in [71].

Theorem 2.1. For any two positive real numbers A and B,

ds2n,m;A,B = Aσ
(
Y −1dΩY −1dΩ

)
+ B

{
σ
(
Y −1 tV V Y −1dΩY −1dΩ

)
+ σ

(
Y −1 t(dZ) dZ

)
− σ

(
V Y −1dΩY −1 t(dZ)

)
− σ

(
V Y −1dΩY −1 t(dZ)

)}
is a Riemannian metric on Hn,m which is invariant under the action (1.2) of GJ .
In fact, ds2n,m;A,B is a Kähler metric of Hn,m.

Proof. See Theorem 1.1 in [71]. �

Theorem 2.2. The Laplacian Δm,m;A,B of the GJ -invariant metric ds2n,m;A,B is
given by

Δn,m;A,B =
4

A
M1 +

4

B
M2, (2.4)

where

M1 = σ

(
Y

t(
Y

∂

∂Ω

)
∂

∂Ω

)
+ σ

(
V Y −1 tV

t(
Y

∂

∂Z

)
∂

∂Z

)
+ σ

(
V

t(
Y

∂

∂Ω

)
∂

∂Z

)
+ σ

(
tV

t(
Y

∂

∂Z

)
∂

∂Ω

)
and

M2 = σ

(
Y

∂

∂Z

t( ∂

∂Z

))
.
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Furthermore M1 and M2 are differential operators on Hn,m invariant under the
action (1.2) of GJ .

Proof. See Theorem 1.2 in [71]. �

Remark 2.1. Erik Balslev [2] developed the spectral theory of Δ1,1;1,1 on H1,1 for
certain arithmetic subgroups of the Jacobi modular group to prove that the set of
all eigenvalues of Δ1,1;1,1 satisfies the Weyl law.

Remark 2.2. The sectional curvature of (H1,1, ds
2
1,1;A,B) is − 3

A and hence is inde-

pendent of the parameter B. We refer to [76] for more detail.

Remark 2.3. For an application of the invariant metric ds2n,m;A,B we refer to [79].

3. Invariant differential operators on the Siegel–Jacobi space

Before we discuss GJ -invariant differential operators on the Siegel–Jacobi space
Hn,m, we review differential operators on the Siegel upper half-plane Hn invariant
under the action (1.1).

For brevity, we write G = Sp(n,R). The isotropy subgroup K at iIn for the
action (1.1) is a maximal compact subgroup given by

K =

{(
A −B
B A

) ∣∣∣ A tA+B tB = In, A tB = B tA, A,B ∈ R(n,n)

}
.

Let k be the Lie algebra of K. Then the Lie algebra g of G has a Cartan decom-
position g = k⊕ p, where

g =

{(
X1 X2

X3 − tX1

) ∣∣∣ X1, X2, X3 ∈ R(n,n), X2 = tX2, X3 = tX3

}
,

k =

{(
X −Y
Y X

)
∈ R(2n,2n)

∣∣∣ tX +X = 0, Y = tY

}
,

p =

{(
X Y
Y −X

) ∣∣∣ X = tX, Y = tY, X, Y ∈ R(n,n)

}
.

The subspace p of g may be regarded as the tangent space of Hn at iIn. The
adjoint representation of G on g induces the action of K on p given by

k · Z = kZ tk, k ∈ K, Z ∈ p. (3.1)

Let Tn be the vector space of n × n symmetric complex matrices. We let
Ψ : p −→ Tn be the map defined by

Ψ

((
X Y
Y −X

))
= X + i Y,

(
X Y
Y −X

)
∈ p. (3.2)

We let δ : K −→ U(n) be the isomorphism defined by

δ

((
A −B
B A

))
= A + i B,

(
A −B
B A

)
∈ K, (3.3)
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where U(n) denotes the unitary group of degree n. We identify p (resp. K) with
Tn (resp. U(n)) through the map Ψ (resp. δ). We consider the action of U(n) on
Tn defined by

h · ω = hω th, h ∈ U(n), ω ∈ Tn. (3.4)

Then the adjoint action (3.1) of K on p is compatible with the action (3.4) of U(n)
on Tn through the map Ψ. Precisely for any k ∈ K and Z ∈ p, we get

Ψ(k Z tk) = δ(k)Ψ(Z) tδ(k). (3.5)

The action (3.4) induces the action of U(n) on the polynomial algebra Pol(Tn)
and the symmetric algebra S(Tn) respectively.

We denote by Pol(Tn)
U(n)

(
resp. S(Tn)

U(n)
)

the subalgebra of Pol(Tn)(
resp. S(Tn)

)
consisting of U(n)-invariants. The following inner product ( , )

on Tn defined by

(Z,W ) = tr
(
ZW

)
, Z,W ∈ Tn

gives an isomorphism as vector spaces

Tn
∼= T ∗

n , Z �→ fZ , Z ∈ Tn, (3.6)

where T ∗
n denotes the dual space of Tn and fZ is the linear functional on Tn

defined by

fZ(W ) = (W,Z), W ∈ Tn.

It is known that there is a canonical linear bijection of S(Tn)
U(n) onto the alge-

bra D(Hn) of differential operators on Hn invariant under the action (1.1) of G.
Identifying Tn with T ∗

n by the above isomorphism (3.6), we get a canonical linear
bijection

Θn : Pol(Tn)
U(n) −→ D(Hn) (3.7)

of Pol(Tn)
U(n) onto D(Hn). The map Θn is described explicitly as follows. Similarly

the action (3.1) induces the action of K on the polynomial algebra Pol(p) and the
symmetric algebra S(p) respectively. Through the map Ψ, the subalgebra Pol(p)K

of Pol(p) consisting of K-invariants is isomorphic to Pol(Tn)
U(n). We put N =

n(n+1). Let {ξα | 1 ≤ α ≤ N } be a basis of a real vector space p. If P ∈ Pol(p)K ,
then (

Θn(P )f
)
(gK) =

[
P

(
∂

∂tα

)
f

(
g exp

(
N∑

α=1

tαξα

)
K

)]
(tα)=0

, (3.8)

where f ∈ C∞(Hn). We refer to [20, 21] for more detail. In general, it is hard to
express Φ(P ) explicitly for a polynomial P ∈ Pol(p)K .

According to the work of Harish-Chandra [18, 19], the algebra D(Hn) is gen-
erated by n algebraically independent generators and is isomorphic to the commu-
tative algebra C[x1, . . . , xn] with n indeterminates. We note that n is the real rank
of G. Let gC be the complexification of g. It is known that D(Hn) is isomorphic to
the center of the universal enveloping algebra of gC.
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Using a classical invariant theory (cf. [22, 61], we can show that Pol(Tn)
U(n)

is generated by the following algebraically independent polynomials

qj(ω) = tr
((

ωω
)j )

, ω ∈ Tn, j = 1, 2, . . . , n. (3.9)

For each j with 1 ≤ j ≤ n, the image Θn(qj) of qj is an invariant differential
operator on Hn of degree 2j. The algebra D(Hn) is generated by n algebraically
independent generators Θn(q1),Θn(q2), . . . ,Θn(qn). In particular,

Θn(q1) = c1 tr

(
Y

t(
Y

∂

∂Ω

)
∂

∂Ω

)
for some constant c1. (3.10)

We observe that if we take ω = x+ i y ∈ Tn with real x, y, then q1(ω) = q1(x, y) =
tr
(
x2 + y2

)
and

q2(ω) = q2(x, y) = tr
((

x2 + y2
)2

+ 2 x
(
xy − yx)y

)
.

It is a natural question to express the images Θn(qj) explicitly for j =
2, 3, . . . , n. We hope that the images Θn(qj) for j = 2, 3, . . . , n are expressed in the
form of the trace as Φ(q1).

H. Maass [38] found algebraically independent generators H1, H2, . . . , Hn of

D(Hn). We will describe H1, H2, . . . , Hn explicitly. For M =

(
A B
C D

)
∈ Sp(n,R)

and Ω = X + iY ∈ Hn with real X,Y , we set

Ω∗ = M ·Ω = X∗ + iY∗ with X∗, Y∗ real.

We set

K =
(
Ω− Ω

) ∂

∂Ω
= 2 i Y

∂

∂Ω
,

Λ =
(
Ω− Ω

) ∂

∂Ω
= 2 i Y

∂

∂Ω
,

K∗ =
(
Ω∗ − Ω∗

) ∂

∂Ω∗
= 2 i Y∗

∂

∂Ω∗
,

Λ∗ =
(
Ω∗ − Ω∗

) ∂

∂Ω∗
= 2 i Y∗

∂

∂Ω∗
.

Then it is easily seen that

K∗ = t(CΩ +D)−1 t
{
(CΩ +D) tK

}
, (3.11)

Λ∗ = t(CΩ +D)−1 t
{
(CΩ +D) tΛ

}
(3.12)

and

t
{
(CΩ +D) tΛ

}
= Λ t(CΩ +D)− n+ 1

2

(
Ω− Ω

)
tC. (3.13)

Using Formulas (3.11), (3.12) and (3.13), we can show that

Λ∗K∗ +
n+ 1

2
K∗ = t(CΩ +D)−1

t{
(CΩ +D)

t(
ΛK +

n+ 1

2
K

)}
. (3.14)
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Therefore we get

tr

(
Λ∗K∗ +

n+ 1

2
K∗

)
= tr

(
ΛK +

n+ 1

2
K

)
. (3.15)

We set

A(1) = ΛK +
n+ 1

2
K. (3.16)

We define A(j) (j = 2, 3, . . . , n) recursively by

A(j) = A(1)A(j−1) − n+ 1

2
ΛA(j−1) +

1

2
Λ tr

(
A(j−1)

)
+

1

2

(
Ω− Ω

) t{(
Ω− Ω

)−1 t
(

tΛ tA(j−1)
)}

.

(3.17)

We set

Hj = tr
(
A(j)

)
, j = 1, 2, . . . , n. (3.18)

As mentioned before, Maass proved that H1, H2, . . . , Hn are algebraically inde-
pendent generators of D(Hn).

In fact, we see that

−H1 = Δn;1 = 4 tr

(
Y

t(
Y

∂

∂Ω

)
∂

∂Ω

)
. (3.19)

is the Laplacian for the invariant metric ds2n;1 on Hn.

Example 3.1. We consider the case when n = 1. The algebra Pol(T1)
U(1) is gener-

ated by the polynomial

q(ω) = ω ω, ω = x+ iy ∈ C with x, y real.

Using Formula (3.8), we get

Θ1(q) = 4 y2
(

∂2

∂x2
+

∂2

∂y2

)
.

Therefore D(H1) = C
[
Θ1(q)

]
= C[H1].

Example 3.2. We consider the case when n = 2. The algebra Pol(T2)
U(2) is gener-

ated by the polynomial

q1(ω) = σ
(
ω ω

)
, q2(ω) = σ

((
ω ω

)2)
, ω ∈ T2.

Using Formula (3.8), we may express Θ2(q1) and Θ2(q2) explicitly. Θ2(q1) is
expressed by Formula (3.10). The computation of Θ2(q2) might be quite tedious.
We leave the detail to the reader. In this case, Θ2(q2) was essentially computed in
[11], Proposition 6. Therefore

D(H2) = C
[
Θ2(q1),Θ2(q2)

]
= C[H1, H2].

In fact, the center of the universal enveloping algebra U (gC) was computed in [11].

G. Shimura [56] found canonically defined algebraically independent genera-
tors of D(Hn). We will describe his way of constructing those generators roughly.
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Let KC, gC, kC, pC, . . . denote the complexication of K, g, k, p, . . . respectively.
Then we have the Cartan decomposition

gC = kC + pC, pC = p+C + p−C
with the properties

[kC, p
±
C ] ⊂ p±C , [p+C , p

+
C ] = [p−C , p

−
C ] = {0}, [p+C , p

−
C ] = kC,

where

gC =

{(
X1 X2

X3 − tX1

) ∣∣∣ X1, X2, X3 ∈ C(n,n), X2 = tX2, X3 = tX3

}
,

kC =

{(
A −B
B A

)
∈ C(2n,2n)

∣∣∣ tA+A = 0, B = tB

}
,

pC =

{(
X Y
Y −X

)
∈ C(2n,2n)

∣∣∣ X = tX, Y = tY

}
,

p+C =

{(
Z iZ
iZ −Z

)
∈ C(2n,2n)

∣∣∣ Z = tZ ∈ C(n,n)

}
,

p−C =

{(
Z −iZ
−iZ −Z

)
∈ C(2n,2n)

∣∣∣ Z = tZ ∈ C(n,n)

}
.

For a complex vector space W and a nonnegative integer r, we denote by
Polr(W ) the vector space of complex-valued homogeneous polynomial functions
on W of degree r. We put

Polr(W ) :=

r∑
s=0

Pols(W ).

Mlr(W ) denotes the vector space of all C-multilinear maps ofW×· · ·×W (r copies)
into C. An element Q of Mlr(W ) is called symmetric if

Q(x1, . . . , xr) = Q(xπ(1), . . . , xπ(r))

for each permutation π of {1, 2, . . . , r}. Given P ∈ Polr(W ), there is a unique
element symmetric element P∗ of Mlr(W ) such that

P (x) = P∗(x, . . . , x) for all x ∈ W. (3.20)

Moreover the map P �→ P∗ is a C-linear bijection of Polr(W ) onto the set of all
symmetric elements of Mlr(W ). We let Sr(W ) denote the subspace consisting of
all homogeneous elements of degree r in the symmetric algebra S(W ). We note
that Polr(W ) and Sr(W ) are dual to each other with respect to the pairing

〈α, x1 · · ·xr〉 = α∗(x1, . . . , xr) (xi ∈W, α ∈ Polr(W )). (3.21)

Let p∗C be the dual space of pC, that is, p
∗
C = Pol1(pC). Let {X1, . . . , XN} be a

basis of pC and {Y1, . . . , YN} be the basis of p∗C dual to {Xν}, where N = n(n+1).
We note that Polr(pC) and Polr(p

∗
C) are dual to each other with respect to the

pairing

〈α, β〉 =
∑

α∗(Xi1 , . . . , Xir )β∗(Yi1 , . . . , Yir ), (3.22)
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where α ∈ Polr(pC), β ∈ Polr(p
∗
C) and (i1, . . . , ir) runs over {1, . . . , N}r. Let

U (gC) be the universal enveloping algebra of gC and U p(gC) its subspace spanned
by the elements of the form V1 · · ·Vs with Vi ∈ gC and s ≤ p. We recall that there
is a C-linear bijection ψ of the symmetric algebra S(gC) of gC onto U (gC) which
is characterized by the property that ψ(Xr) = Xr for all X ∈ gC. For each
α ∈ Polr(p

∗
C) we define an element ω(α) of U (gC) by

ω(α) :=
∑

α∗(Yi1 , . . . , Yir )Xi1 · · ·Xir , (3.23)

where (i1, . . . , ir) runs over {1, . . . , N}r. If Y ∈ pC, then Y r as an element of
Polr(p

∗
C) is defined by

Y r(u) = Y (u)r for all u ∈ p∗C.

Hence (Y r)∗(u1, . . . , ur) = Y (u1) · · ·Y (ur). According to (2.25), we see that if
α(

∑
tiYi) = P (t1, . . . , tN ) for ti ∈ C with a polynomial P , then

ω(α) = ψ(P (X1, . . . , XN )). (3.24)

Thus ω is a C-linear injection of Pol(p∗C) into U (gC) independent of the choice of
a basis. We observe that ω

(
Polr(p

∗
C)

)
= ψ(Sr(pC)). It is a well-known fact that if

α1, . . . , αm ∈ Polr(p
∗
C), then

ω(α1 · · ·αm)− ω(αm) · · ·ω(α1) ∈ U r−1(gC). (3.25)

We have a canonical pairing

〈 , 〉 : Polr(p+C )× Polr(p
−
C ) −→ C (3.26)

defined by

〈f, g〉 =
∑

f∗(X̃i1 , . . . , X̃ir)g∗(Ỹi1 , . . . , Ỹir ), (3.27)

where f∗ (resp. g∗) are the unique symmetric elements of Mlr(p
+
C ) (resp. Mlr(p

−
C )),

and {X̃1, . . . , X̃Ñ} and {Ỹ1, . . . , ỸÑ} are dual bases of p+C and p−C with respect to

the Killing form B(X,Y ) = 2(n + 1) tr(XY ), Ñ = n(n+1)
2 , and (i1, . . . , ir) runs

over
{
1, . . . , Ñ

}r
.

The adjoint representation of KC on p±C induces the representation of KC on

Polr(p
±
C ). Given a KC-irreducible subspace Z of Polr(p

+
C ), we can find a unique

KC-irreducible subspace W of Polr(p
−
C ) such that Polr(p

−
C ) is the direct sum of

W and the annihilator of Z. Then Z and W are dual with respect to the pairing
(3.26). Take bases {ζ1, . . . , ζκ} of Z and {ξ1, . . . , ξκ} of W that are dual to each
other. We set

fZ(x, y) =

κ∑
ν=1

ζν(x) ξν (y) (x ∈ p+C , y ∈ p−C ). (3.28)

It is easily seen that fZ belongs to Pol2r(pC)
K and is independent of the choice

of dual bases {ζν} and {ξν}. Shimura [56] proved that there exists a canonically
defined set {Z1, . . . , Zn} with aKC-irreducible subspace Zr of Polr(p

+
C ) (1 ≤ r ≤ n)

such that fZ1 , . . . , fZn are algebraically independent generators of Pol(pC)
K . We
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can identify p+C with Tn. We recall that Tn denotes the vector space of n × n
symmetric complex matrices. We can take Zr as the subspace of Polr(Tn) spanned
by the functions fa;r(Z) = detr(

taZa) for all a ∈ GL(n,C), where detr(x) denotes
the determinant of the upper left r × r submatrix of x. For every f ∈ Pol(pC)

K ,
we let Ω(f) denote the element of D(Hn) represented by ω(f). Then D(Hn) is the
polynomial ring C[ω(fZ1), . . . , ω(fZn)] generated by n algebraically independent
elements ω(fZ1), . . . , ω(fZn).

Now we investigate differential operators on the Siegel–Jacobi space Hn,m

invariant under the action (1.2) of GJ . The stabilizer KJ of GJ at (iIn, 0) is
given by

KJ =
{(

k, (0, 0;κ)
) ∣∣ k ∈ K, κ = tκ ∈ R(m,m)

}
.

Therefore Hn×C(m,n) ∼= GJ/KJ is a homogeneous space which is not symmetric.
The Lie algebra gJ of GJ has a decomposition

gJ = kJ + pJ ,

where

gJ =
{(

Z, (P,Q,R)
) ∣∣ Z ∈ g, P,Q ∈ R(m,n), R = tR ∈ R(m,m)

}
,

kJ =
{(

X, (0, 0, R)
) ∣∣ X ∈ k, R = tR ∈ R(m,m)

}
,

pJ =
{(

Y, (P,Q, 0)
) ∣∣ Y ∈ p, P,Q ∈ R(m,n)

}
.

Thus the tangent space of the homogeneous space Hn ×C(m,n) at (iIn, 0) is iden-
tified with pJ .

If α =

((
X1 Y1

Z1 −tX1

)
, (P1, Q1, R1)

)
and β =

((
X2 Y2

Z2 −tX2

)
, (P2, Q2, R2)

)
are elements of gJ , then the Lie bracket [α, β] of α and β is given by

[α, β] =

((
X∗ Y ∗

Z∗ −tX∗

)
, (P ∗, Q∗, R∗)

)
, (3.29)

where

X∗ = X1X2 −X2X1 + Y1Z2 − Y2Z1,

Y ∗ = X1Y2 −X2Y1 + Y2
tX1 − Y1

tX2,

Z∗ = Z1X2 − Z2X1 +
tX2Z1 − tX1Z2,

P ∗ = P1X2 − P2X1 +Q1Z2 −Q2Z1,

Q∗ = P1Y2 − P2Y1 +Q2
tX1 −Q1

tX2,

R∗ = P1
tQ2 − P2

tQ1 +Q2
tP1 −Q1

tP2

Lemma 3.1.
[kJ , kJ ] ⊂ kJ , [kJ , pJ ] ⊂ pJ .

Proof. The proof follows immediately from Formula (3.29). �
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Lemma 3.2. Let

kJ =

((
A −B
B A

)
, (0, 0, κ)

)
∈ KJ

with

(
A −B
B A

)
∈ K, κ = tκ ∈ R(m,m) and

α =

((
X Y
Y −X

)
, (P,Q, 0)

)
∈ pJ

with X = tX, Y = tY ∈ R(n,n), P,Q ∈ R(m,n). Then the adjoint action of KJ

on pJ is given by

Ad(kJ)α =

((
X∗ Y∗
Y∗ −X∗

)
, (P∗, Q∗, 0)

)
, (3.30)

where

X∗ = AX tA−
(
BX tB +BY tA+AY tB

)
, (3.31)

Y∗ =
(
AX tB +AY tA+BX tA

)
−BY tB, (3.32)

P∗ = P tA−Q tB, (3.33)

Q∗ = P tB +Q tA. (3.34)

Proof. We leave the proof to the reader. �
We recall that Tn denotes the vector space of all n × n symmetric complex

matrices. For brevity, we put Tn,m := Tn × C(m,n). We define the real linear
isomorphism Φ : pJ −→ Tn,m by

Φ

((
X Y
Y −X

)
, (P,Q, 0)

)
=

(
X + i Y, P + i Q

)
, (3.35)

where

(
X Y
Y −X

)
∈ p and P,Q ∈ R(m,n).

Let S(m,R) denote the additive group consisting of all m×m real symmetric
matrices. Now we define the isomorphism θ : KJ −→ U(n)× S(m,R) by

θ(h, (0, 0, κ)) = (δ(h), κ), h ∈ K, κ ∈ S(m,R), (3.36)

where δ : K −→ U(n) is the map defined by (3.3). Identifying R(m,n) × R(m,n)

with C(m,n), we can identify pJ with Tn × C(m,n).

Theorem 3.1. The adjoint representation of KJ on pJ is compatible with the nat-
ural action of U(n)× S(m,R) on Tn,m defined by

(h, κ) · (ω, z) := (hω th, z th), h ∈ U(n), κ ∈ S(m,R), (ω, z) ∈ Tn,m (3.37)

through the maps Φ and θ. Precisely, if kJ ∈ KJ and α ∈ pJ , then we have the
following equality

Φ
(
Ad

(
kJ

)
α
)
= θ

(
kJ

)
· Φ(α). (3.38)

Here we regard the complex vector space Tn,m as a real vector space.
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Proof. Let

kJ =

((
A −B
B A

)
, (0, 0, κ)

)
∈ KJ

with

(
A −B
B A

)
∈ K, κ = tκ ∈ R(m,m) and

α =

((
X Y
Y −X

)
, (P,Q, 0)

)
∈ pJ

with X = tX, Y = tY ∈ R(n,n), P,Q ∈ R(m,n). Then we have

θ
(
kJ

)
· Φ(α) =

(
A + i B, κ

)
·
(
X + i Y, P + i Q

)
=

(
(A+ iB)(X + iY ) t(A+ iB), (P + iQ) t(A+ iB)

)
=

(
X∗ + i Y∗, P∗ + i Q∗

)
= Φ

((
X∗ Y∗
Y∗ −X∗

)
, (P∗, Q∗, 0)

)
= Φ

(
Ad

(
kJ

)
α
)

(by Lemma 3.2),

where X∗, Y∗, Z∗ and Q∗ are given by the formulas (3.31), (3.32), (3.33) and (3.34)
respectively. �

We now study the algebra D(Hn,m) of all differential operators on Hn,m

invariant under the natural action (1.2) of GJ . The action (3.37) induces the action

of U(n) on the polynomial algebra Poln,m := Pol (Tn,m). We denote by PolU(n)
n,m

the subalgebra of Poln,m consisting of all U(n)-invariants. Similarly the action
(3.30) of K induces the action of K on the polynomial algebra Pol

(
pJ

)
. We see

that through the identification of pJ with Tn,m, the algebra Pol
(
pJ

)
is isomorphic

to Poln,m. The following U(n)-invariant inner product ( , )∗ of the complex vector
space Tn,m defined by(

(ω, z), (ω′, z′)
)
∗ = tr

(
ωω′ )+ tr

(
z tz′

)
, (ω, z), (ω′, z′) ∈ Tn,m

gives a canonical isomorphism

Tn,m
∼= T ∗

n,m, (ω, z) �→ fω,z, (ω, z) ∈ Tn,m,

where fω,z is the linear functional on Tn,m defined by

fω,z

(
(ω′, z′ )

)
=

(
(ω′, z′), (ω, z)

)
∗, (ω′, z′ ) ∈ Tn,m.

According to Helgason ([21], p. 287), one gets a canonical linear bijection of
S(Tn,m)U(n) onto D(Hn,m). Identifying Tn,m with T ∗

n,m by the above isomorphism,
one gets a natural linear bijection

Θn,m : PolU(n)
n,m −→ D(Hn,m)
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of PolU(n)
n,m onto D(Hn,m). The map Θn,m is described explicitly as follows. We put

N� = n(n+1)+2mn. Let
{
ηα | 1 ≤ α ≤ N�

}
be a basis of pJ . If P ∈ Pol

(
pJ

)K
=

PolU(n)
n,m , then(
Θn,m(P )f

)
(gKJ) =

[
P

(
∂

∂tα

)
f

(
g exp

(
N�∑
α=1

tαηα

)
KJ

)]
(tα)=0

, (3.39)

where g ∈ GJ and f ∈ C∞(Hn,m). In general, it is hard to express Θn,m(P )

explicitly for a polynomial P ∈ Pol
(
pJ

)K
.

We propose the following natural problems.

Problem 1. Find a complete list of explicit generators of PolU(n)
n,m .

Problem 2. Find all the relations among a set of generators of PolU(n)
n,m .

Problem 3. Find an easy or effective way to express the images of the above invari-

ant polynomials or generators of PolU(n)
n,m under the Helgason map Θn,m explicitly.

Problem 4. Find a complete list of explicit generators of the algebra D(Hn,m). Or
construct explicit GJ -invariant differential operators on Hn,m.

Problem 5. Find all the relations among a set of generators of D(Hn,m).

Problem 6. Is PolU(n)
n,m finitely generated?

Problem 7. Is D(Hn,m) finitely generated?

We will give answers to Problems 1, 2 and 6.

We put ϕ(2k) = tr((ww̄)k). Moreover, for 1 ≤ a, b ≤ m and k ≥ 0, we put

ψ
(0,2k,0)
ba = (z̄(ww̄)k tz)ba, ψ

(1,2k,0)
ba = (zw̄(ww̄)k tz)ba,

ψ
(0,2k,1)
ba = (z̄(ww̄)kw tz̄)ba, ψ

(1,2k,1)
ba = (zw̄(ww̄)kw tz̄)ba.

Then we have the following relations:

ϕ(2k) = ϕ̄(2k), ψ
(1,2k,1)
ab = ψ

(0,2k+2,0)
ba , ψ

(1,2k,0)
ab = ψ

(1,2k,0)
ba = ψ̄

(0,2k,1)
ab = ψ̄

(0,2k,1)
ba .
(3.40)

Then we have the following theorem:

Theorem 3.2. The algebra PolU(n)
n,m is generated by the following polynomials :

ϕ(2k+2), Reψ
(0,2k,0)
ab , Imψ

(0,2k,0)
cd , Reψ

(1,2k,0)
ab , Imψ

(1,2k,0)
ab .

Here the indices run as follows:

0 ≤ k ≤ n− 1, 1 ≤ a ≤ b ≤ m, 1 ≤ c < d ≤ m.

This is seen from the following theorem by using (3.40):
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Theorem 3.3. The algebra PolU(n)
n,m is generated by ϕ(2k+2), ψ

(0,2k,0)
ba , ψ

(0,2k,1)
ba , and

ψ
(1,2k,0)
ba . Here the indices run as follows :

0 ≤ k ≤ n− 1, 1 ≤ a, b ≤ m.

Proof. See Theorem 3.3 in [26]. �

Problem 2, that is, the second fundamental theorem for PolU(n)
n,m is stated as

follows. We consider indeterminates ω̃(2k+2) and ψ̃
(ε,2k,ε′)
ba corresponding to ω(2k+2)

and ψ
(ε,2k,ε′)
ba , respectively. For these, we assume the relations

ψ̃
(1,2k,1)
ba = ψ̃

(0,2k+2,0)
ab , ψ̃

(1,2k,0)
ab = ψ̃

(1,2k,0)
ba , ψ̃

(0,2k,1)
ab = ψ̃

(0,2k,1)
ba .

We denote by Q̃ the polynomial algebra in the following indeterminates:

ω̃(2k+2), ψ̃
(0,2k,0)
ba , ψ̃

(0,2k,1)
ba , ψ̃

(1,2k,0)
ba .

Here the indices run as follows:

0 ≤ k ≤ n− 1, 1 ≤ a, b ≤ m.

The relations among the generators of PolU(n)
n,m are described as follows:

Theorem 3.4. The kernel of the natural map from Q̃ to PolU(n)
n,m is generated by the

entries of A
(q)
(c,ε),(c′,ε′)B

(q) with

q ∈ {2, 3, . . . , n+ 1}, ε = (ε1, . . . , εq), ε′ = (ε′1, . . . , ε
′
q) ∈ {0, 1}q,

c = (c1, . . . , cq), c′ = (c′1, . . . , c
′
q) ∈ {1, . . . ,m}q.

Here the notation is as follows. We put

Δ
(q),(λ1,λ2)
(c,ε),(c′,ε′) =

∑
l1+···+lq=λ1+λ2

K(λ1,λ2),(l1,...,lq)

∑
σ∈Sq

sgn(σ)ψ̃
(ε1,2l1,ε

′
1)

c1c′σ(1)
· · · ψ̃(εq,2lq,ε

′
q)

cqc′σ(q)
.

Here Kλ,μ means the Kostka number. Namely, in general, we define Kλ,μ by

sλ(u1, . . . , uq) =
∑

l1,...,lq≥0

Kλ,(l1,...,lq)u
l1
1 · · ·ulq

q ,

where sλ is the Schur polynomial. In other words, Δ
(q),(λ1,λ2)
(c,ε),(c′,ε′) is the image of the

Schur polynomial s(λ1,λ2)(u1, . . . , uq) under the linear map

ul1
1 · · ·ulq

q �→
∑
σ∈Sq

sgn(σ)ψ̃
(ε1,2l1,ε

′
1)

c1c′σ(1)
· · · ψ̃(εq,2lq,ε

′
q)

cqc′σ(q)
.

Moreover we replace ψ̃
(1,2n−2,1)
ba in Δ

(q),(λ1,λ2)
(c,ε),(c′,ε′) by

n∑
k=1

(−1)k−1ω̃(2k)ψ̃0,2n−2k,0
ab .
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Finally A
(q)
(c,ε),(c′,ε′) and B(q) are the following matrices (an alternating matrix of

size q′ + 2 and a (q′ + 2)× 1 matrix):

A
(q)
(c,ε),(c′,ε′) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 Δ
(q),(0,0)
(c,ε),(c′,ε′) Δ

(q),(1,0)
(c,ε),(c′,ε′) . . . Δ

(q),(q′,0)
(c,ε),(c′,ε′)

−Δ(q),(0,0)
(c,ε),(c′,ε′) 0 Δ

(q),(1,1)
(c,ε),(c′,ε′) . . . Δ

(q),(q′,1)
(c,ε),(c′,ε′)

−Δ(q),(1,0)
(c,ε),(c′,ε′) −Δ(r),(1,1)

(c,ε),(c′,ε′) 0 . . . Δ
(q),(q′,2)
(c,ε),(c′,ε′)

...
...

...
. . .

...

−Δ(q),(q′,0)
(c,ε),(c′,ε′) −Δ(q),(q′,1)

(c,ε),(c′,ε′) −Δ(q),(c′,2)
(c,ε),(c′,ε′) . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

B(q) =

⎛⎜⎜⎜⎜⎜⎝
(−1)q′ω̃(q′)

...

ω̃(2)

−ω̃(1)

ω̃(0)

⎞⎟⎟⎟⎟⎟⎠ .

Here we put q′ = n+ 1− q.

The proof of Theorem 3.4 is complicated, but it is deduced from the second
fundamental theorem of invariant theory for vector invariants (this is quite parallel
with the fact that Theorem 3.3 follows from the first fundamental theorem of
invariant theory for vector invariants). The detail will be given in the forthcoming
paper.

Remark 3.1. Itoh, Ochiai and Yang [26] solved all the problems (Problem 1–
Problem 7) proposed in this section when n = m = 1.

We present some interesting U(n)-invariants. For an m × m matrix S, we

define the following invariant polynomials in PolU(n)
n,m :

m
(1)
j;S(ω, z) = Re

(
tr
(
ωω + tzSz

)j )
, 1 ≤ j ≤ n,

m
(2)
j;S(ω, z) = Im

(
tr
(
ωω + tzSz

)j )
, 1 ≤ j ≤ n,

q
(1)
k;S(ω, z) = Re

(
tr
(
( tz S z)k

))
, 1 ≤ k ≤ m,

q
(2)
k;S(ω, z) = Im

(
tr
(
( tz S z)k

))
, 1 ≤ k ≤ m,

θ
(1)
i,k,j;S(ω, z) = Re

(
tr
(
(ωω)i ( tz S z)k (ωω + tz S z )j

))
,

θ
(2)
i,k,j;S(ω, z) = Im

(
tr
(
(ωω)i ( tz S z)k (ωω + tz S z )j

))
,

where 1 ≤ i, j ≤ n and 1 ≤ k ≤ m.
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We define the following U(n)-invariant polynomials in PolU(n)
n,m .

r
(1)
jk (ω, z) = Re

(
det

(
(ωω)j ( tzz)k

))
, 1 ≤ j ≤ n, 1 ≤ k ≤ m,

r
(2)
jk (ω, z) = Im

(
det

(
(ωω)j ( tzz)k

))
, 1 ≤ j ≤ n, 1 ≤ k ≤ m.

4. The partial Cayley transform

Let

Dn =
{
W ∈ C(n,n) | W = tW, In −WW > 0

}
be the generalized unit disk. We set

G∗ = T−1Sp(n,R)T, T :=
1√
2

(
In In
iIn −iIn

)
.

It is easily seen that

G∗ =

{(
P Q
Q P

)
∈ C(2n,2n)

∣∣∣ tPP − tQQ = In,
tPQ = tQP

}
.

Then G∗ acts on Dn transitively by(
P Q

Q P

)
·W = (PW +Q)(QW + P )−1,

(
P Q

Q P

)
∈ G∗, W ∈ Dn. (4.1)

It is well known that the action (1.1) is compatible with the action (4.1) through
the Cayley transform Φ : Dn −→ Hn given by

Φ(W ) := i (In +W )(In −W )−1, W ∈ Dn. (4.2)

In other words, if M ∈ Sp(n,R) and W ∈ Dn, then

M ·Φ(W ) = Φ(M∗ ·W ), (4.3)

where M∗ = T−1MT . We refer to [31] for generalized Cayley transforms of
bounded symmetric domains.

For brevity, we write Dn,m := Dn ×C(m,n). This homogeneous space Dn,m is
called the Siegel–Jacobi disk of degree n and index m. For a coordinate (W, η) ∈
Dn,m with W = (wμν ) ∈ Dn and η = (ηkl) ∈ C(m,n), we put

dW = (dwμν ), dW = (dwμν),

dη = (dηkl), dη = (dηkl)

and

∂

∂W
=

(
1 + δμν

2

∂

∂wμν

)
,

∂

∂W
=

(
1 + δμν

2

∂

∂wμν

)
,

∂

∂η
=

⎛⎜⎝
∂

∂η11
. . . ∂

∂ηm1

...
. . .

...
∂

∂η1n
. . . ∂

∂ηmn

⎞⎟⎠ ,
∂

∂η
=

⎛⎜⎜⎝
∂

∂η11
. . . ∂

∂ηm1

...
. . .

...
∂

∂η1n
. . . ∂

∂ηmn

⎞⎟⎟⎠ .
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We can identify an element g = (M, (λ, μ;κ)) of GJ , M =

(
A B
C D

)
∈

Sp(n,R) with the element⎛⎜⎜⎝
A 0 B A tμ−B tλ
λ Im μ κ
C 0 D C tμ−D tλ
0 0 0 Im

⎞⎟⎟⎠
of Sp(m+ n,R).

We set

T∗ =
1√
2

(
Im+n Im+n

iIm+n −iIm+n

)
.

We now consider the group GJ∗ defined by

GJ
∗ := T−1

∗ GJT∗.

If g = (M, (λ, μ;κ)) ∈ GJ withM =

(
A B
C D

)
∈ Sp(n,R), then T−1

∗ gT∗ is given by

T−1
∗ gT∗ =

(
P∗ Q∗
Q∗ P ∗

)
,

where

P∗ =

(
P 1

2 {Q t(λ+ iμ)− P t(λ− iμ)}
1
2 (λ+ iμ) Ih + iκ2

)
,

Q∗ =

(
Q 1

2 {P t(λ− iμ)−Q t(λ+ iμ)}
1
2 (λ− iμ) −iκ2

)
,

and P, Q are given by the formulas

P =
1

2
{(A+D) + i (B − C)} (4.4)

and

Q =
1

2
{(A−D)− i (B + C)} . (4.5)

From now on, we write((
P Q
Q P

)
,

(
1

2
(λ+ iμ),

1

2
(λ− iμ); −iκ

2

))
:=

(
P∗ Q∗
Q∗ P ∗

)
.

In other words, we have the relation

T−1
∗

((
A B
C D

)
, (λ, μ;κ)

)
T∗ =

((
P Q
Q P

)
,

(
1

2
(λ+ iμ),

1

2
(λ− iμ); −iκ

2

))
.

Let

H
(n,m)
C :=

{
(ξ, η ; ζ) | ξ, η ∈ C(m,n), ζ ∈ C(m,m), ζ + η tξ symmetric

}
be the complex Heisenberg group endowed with the following multiplication

(ξ, η ; ζ) ◦ (ξ′, η′; ζ′) := (ξ + ξ′, η + η′ ; ζ + ζ′ + ξ tη′ − η tξ′)).
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We define the semidirect product

SL(2n,C)�H
(n,m)
C

endowed with the following multiplication((
P Q
R S

)
, (ξ, η ; ζ)

)
·
((

P ′ Q′

R′ S′

)
, (ξ′, η′; ζ′)

)
=

((
P Q
R S

) (
P ′ Q′

R′ S′

)
, (ξ̃ + ξ′, η̃ + η′; ζ + ζ′ + ξ̃ tη′ − η̃ tξ′)

)
,

where ξ̃ = ξP ′ + ηR′ and η̃ = ξQ′ + ηS′.

If we identify H
(n,m)
R with the subgroup{

(ξ, ξ; iκ) | ξ ∈ C(m,n), κ ∈ R(m,m)
}

of H
(n,m)
C , we have the following inclusion

GJ
∗ ⊂ SU(n, n)�H

(n,m)
R ⊂ SL(2n,C)�H

(n,m)
C .

We define the mapping Θ : GJ −→ GJ
∗ by

Θ

((
A B
C D

)
, (λ, μ;κ)

)
=

((
P Q
Q P

)
,

(
1

2
(λ + iμ),

1

2
(λ− iμ); −iκ

2

))
, (4.6)

where P and Q are given by (4.4) and (4.5). We can see that if g1, g2 ∈ GJ , then
Θ(g1g2) = Θ(g1)Θ(g2).

According to [69, p. 250], GJ
∗ is of the Harish-Chandra type (cf. [53, p. 118]).

Let

g∗ =

((
P Q
Q P

)
, (λ, μ; κ)

)
be an element of GJ∗ . Since the Harish-Chandra decomposition of an element(
P Q
R S

)
in SU(n, n) is given by(
P Q
R S

)
=

(
In QS−1

0 In

)(
P −QS−1R 0

0 S

)(
In 0

S−1R In

)
,

the P+
∗ -component of the following element

g∗ ·
((

In W
0 In

)
, (0, η; 0)

)
, W ∈ Dn

of SL(2n,C)�H
(n,m)
C is given by((

In (PW +Q)(QW + P )−1

0 In

)
,
(
0, (η + λW + μ)(QW + P )−1 ; 0

))
. (4.7)

We can identify Dn,m with the subset{((
In W
0 In

)
, (0, η; 0)

) ∣∣∣ W ∈ Dn, η ∈ C(m,n)

}
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of the complexification of GJ
∗ . Indeed, Dn,m is embedded into P+

∗ given by

P+
∗ =

{((
In W
0 In

)
, (0, η; 0)

) ∣∣∣ W = tW ∈ C(n,n), η ∈ C(m,n)

}
.

This is a generalization of the Harish-Chandra embedding (cf. [53, p. 119]). Then
we get the natural transitive action of GJ

∗ on Dn,m defined by((
P Q
Q P

)
,
(
ξ, ξ; iκ

))
· (W, η)

=
(
(PW +Q)(QW + P )−1, (η + ξW + ξ)(QW + P )−1

)
,

(4.8)

where

(
P Q
Q P

)
∈ G∗, ξ ∈ C(m,n), κ ∈ R(m,m) and (W, η) ∈ Dn,m.

The author [72] proved that the action (1.2) of GJ on Hn × C(m,n) is com-
patible with the action (4.8) of GJ∗ on Dn,m through the partial Cayley transform
Ψ : Dn,m −→ Hn,m defined by

Ψ(W, η) :=
(
i(In +W )(In −W )−1, 2 i η (In −W )−1

)
. (4.9)

In other words, if g0 ∈ GJ and (W, η) ∈ Dn,m,

g0 ·Ψ(W, η) = Ψ(g∗ · (W, η)), (4.10)

where g∗ = T−1
∗ g0T∗. Ψ is a biholomorphic mapping of Dn,m onto Hn × C(m,n)

which gives the partially bounded realization of Hn×C(m,n) by Dn,m. The inverse
of Ψ is

Ψ−1(Ω, Z) =
(
(Ω− iIn)(Ω + iIn)

−1, Z(Ω + iIn)
−1

)
. (4.11)

5. Invariant metrics and Laplacians on the Siegel–Jacobi disk

For W = (wij) ∈ Dn, we write dW = (dwij) and dW = (dwij). We put

∂

∂W
=

(
1 + δij

2

∂

∂wij

)
and

∂

∂W
=

(
1 + δij

2

∂

∂wij

)
.

Using the Cayley transform Ψ : Dn −→ Hn, Siegel [57] showed that

ds2∗ = 4 σ
(
(In −WW )−1dW (In −WW )−1dW

)
(5.1)

is a G∗-invariant Riemannian metric on Dn and Maass [37] showed that its Lapla-
cian is given by

Δ∗ = σ

(
(In −WW )

t
(
(In −WW )

∂

∂W

)
∂

∂W

)
. (5.2)

Yang [73] proved the following theorems.
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Theorem 5.1. For any two positive real numbers A and B, the following metric
ds̃2n,m;A,B defined by

ds2Dn,m;A,B = 4Aσ
(
(In −WW )−1dW (In −WW )−1dW

)
+ 4B

{
σ
(
(In −WW )−1 t(dη)β

)
+ σ

(
(ηW − η)(In −WW )−1dW (In −WW )−1 t(dη)

)
+ σ

(
(ηW − η)(In −WW )−1dW (In −WW )−1 t(dη)

)
− σ

(
(In −WW )−1 tη η (In −WW )−1WdW (In −WW )−1dW

)
− σ

(
W (In −WW )−1 tη η (In −WW )−1dW (In −WW )−1dW

)
+ σ

(
(In −WW )−1tη η (In −WW )−1dW (In −WW )−1dW

)
+ σ

(
(In −W )−1 tη ηW (In −WW )−1dW (In −WW )−1dW

)
+ σ

(
(In −W )−1(In −W )(In −WW )−1 tη η (In −WW )−1

× (In −W )(In −W )−1dW (In −WW )−1dW
)

− σ
(
(In −WW )−1(In −W )(In −W )−1 tη η (In −W )−1

× dW (In −WW )−1dW
)}

is a Riemannian metric on Dn,m which is invariant under the action (4.8) of the
Jacobi group GJ

∗ .

Proof. See Theorem 1.3 in [73]. �

Theorem 5.2. The following differential operators S1 and S2 on Dn,m defined by

S1 = σ

(
(In −WW )

∂

∂η

t( ∂

∂η

))
and

S2 = σ

(
(In −WW )

t(
(In −WW )

∂

∂W

)
∂

∂W

)
+ σ

(
t(η − ηW )

t( ∂

∂η

)
(In −WW )

∂

∂W

)
+ σ

(
(η − ηW )

t(
(In −WW )

∂

∂W

)
∂

∂η

)
− σ

(
ηW (In −WW )−1 tη

t( ∂

∂η

)
(In −WW )

∂

∂η

)
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− σ

(
ηW (In −WW )−1 tη

t( ∂

∂η

)
(In −WW )

∂

∂η

)
+ σ

(
η(In −WW )−1tη

t( ∂

∂η

)
(In −WW )

∂

∂η

)
+ σ

(
ηWW (In −WW )−1 tη

t( ∂

∂η

)
(In −WW )

∂

∂η

)
are invariant under the action (4.8) of GJ

∗ . The following differential operator

ΔDn,m;A,B :=
1

A
S2 +

1

B
S1 (5.3)

is the Laplacian of the invariant metric ds2Dn,m;A,B on Dn,m.

Proof. See Theorem 1.4 in [73]. �

Itoh, Ochiai and Yang [26] proved that the following differential operator on
Dn,m defined by

S3 = det(In −WW ) det

(
∂

∂η

t( ∂

∂η

))
is invariant under the action (4.8) of GJ∗ on Dn,m. Furthermore the authors [26]
proved that the following matrix-valued differential operator on Dn,m defined by

J :=
t( ∂

∂η

)
(In −WW )

∂

∂η

and each (k, l)-entry Jkl of J given by

Jkl =
n∑

i,j=1

(
δij −

n∑
r=1

wir wjr

)
∂2

∂ηki∂ηlj
, 1 ≤ k, l ≤ m

are invariant under the action (4.8) of GJ
∗ on Dn,m.

S∗ = [S1, S2] = S1S2 − S2S1

is an invariant differential operator of degree three on Dn,m and

Qkl = [S3, Jkl] = S3Jkl − JklS3, 1 ≤ k, l ≤ m

is an invariant differential operator of degree 2n+ 1 on Dn,m.

Indeed it is very complicated and difficult at this moment to express the gen-
erators of the algebra of all GJ

∗ -invariant differential operators on Dn,m explicitly.
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6. A fundamental domain for the Siegel–Jacobi space

Let

Pn =
{
Y ∈ R(n,n) | Y = tY > 0

}
be an open connected cone in RN with N = n(n+ 1)/2. Then the general linear
group GL(n,R) acts on Pn transitively by

g ◦ Y := gY tg, g ∈ GL(n,R), Y ∈Pg. (6.1)

Thus Pn is a symmetric space diffeomorphic to GL(n,R)/O(n).

The fundamental domain Rn for GL(n,Z)\Pn which was found by H. Mi-
nokwski [42] is defined as a subset of Pn consisting of Y = (yij) ∈ Pn satisfying
the following conditions (M.1) and (M.2):

(M.1) aY ta ≥ ykk for every a = (ai) ∈ Zn in which ak, . . . , an are relatively
prime for k = 1, 2, . . . , n.

(M.2) yk,k+1 ≥ 0 for k = 1, . . . , n− 1.

We say that a point of Rn is Minkowski reduced.

Let Γn = Sp(n,Z) be the Siegel modular group of degree n. Siegel determined
a fundamental domain Fn for Γn\Hn. We say that Ω = X + iY ∈ Hn with X, Y
real is Siegel reduced or S-reduced if it has the following three properties :

(S.1) det(Im(γ · Ω)) ≤ det(Im (Ω)) for all γ ∈ Γn;
(S.2) Y = Im(Ω) is Minkowski reduced, that is, Y ∈ Rn;
(S.3) |xij | ≤ 1

2 for 1 ≤ i, j ≤ n, where X = (xij).

Fn is defined as the set of all Siegel reduced points in Hn. Using the highest
point method, Siegel proved the following (F1)–(F3):

(F1) Γn ·Fn = Hn, i.e., Hn =
⋃

γ∈Γn
γ ·Fn ;

(F2) Fn is closed in Hn ;
(F3) Fn is connected and the boundary of Fn consists of a finite number of

hyperplanes.

Let Ekj be the m × n matrix with entry 1 where the kth row and the jthe
column meet, and all other entries 0. For an element Ω ∈ Hn, we set for brevity

Fkj(Ω) := Ekj Ω, 1 ≤ k ≤ m, 1 ≤ j ≤ n.

For each Ω ∈ Fn, we define the subset PΩ of C(m,n) by

PΩ =

{ m∑
k=1

n∑
j=1

λkjEkj +

m∑
k=1

n∑
j=1

μkjFkj(Ω)
∣∣∣ 0 ≤ λkj , μkj ≤ 1

}
.

For each Ω ∈ Fn, we define the subset DΩ of Hn,m by

DΩ =
{
(Ω, Z) ∈ Hn,m | Z ∈ PΩ

}
.

Let

Γn,m = Γn �H
(n,m)
Z (6.2)

be the Siegel–Jacobi (or simply Jacobi) modular group of degree n and index m.
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Yang found a fundamental domain Fn,m for Γn,m\Hn,m using Siegel’s fun-
damental domain Fn in [70].

Theorem 6.1. The set
Fn,m :=

⋃
Ω∈Fn

DΩ

is a fundamental domain for Γn,m\Hn,m.

Proof. See Theorem 3.1 in [70]. �

7. Jacobi forms

Let ρ be a rational representation of GL(n,C) on a finite-dimensional complex vec-
tor space Vρ. Let M ∈ R(m,m) be a symmetric half-integral semi-positive definite
matrix of degree m. The canonical automorphic factor

Jρ,M : GJ ×Hn,m −→ GL(Vρ)

for GJ on Hn,m is given as follows :

Jρ,M((g, (λ, μ;κ)), (Ω, Z)) = e2π i σ(M(Z+λΩ+μ)(CΩ+D)−1C t(Z+λΩ+μ))

× e−2π i σ(M(λΩ tλ+2 λ tZ+κ+μ tλ))ρ(C Ω+D),

where g = (A B
C D ) ∈ Sp(n,R), (λ, μ;κ) ∈ H

(n,m)
R and (Ω, Z) ∈ Hn,m. We refer to

[66] for a geometrical construction of Jρ,M.

Let C∞(Hn,m, Vρ) be the algebra of all C∞ functions on Hn,m with values in
Vρ. For f ∈ C∞(Hn,m, Vρ), we define

(f |ρ,M[(g, (λ, μ;κ))]) (Ω, Z) = Jρ,M((g, (λ, μ;κ)), (Ω, Z))−1

f
(
g ·Ω, (Z + λΩ + μ)(C Ω +D)−1

)
,

(7.1)

where g = (A B
C D ) ∈ Sp(n,R), (λ, μ;κ) ∈ H

(n,m)
R and (Ω, Z) ∈ Hn,m.

Definition 7.1. Let ρ and M be as above. Let

H
(n,m)
Z :=

{
(λ, μ;κ) ∈ H

(n,m)
R | λ, μ, κ integral

}
be the discrete subgroup of H

(n,m)
R . A Jacobi form of index M with respect to ρ

on a subgroup Γ of Γn of finite index is a holomorphic function f ∈ C∞(Hn,m, Vρ)
satisfying the following conditions (A) and (B):

(A) f |ρ,M[γ̃] = f for all γ̃ ∈ Γ̃ := Γ�H
(n,m)
Z .

(B) For each M ∈ Γn, f |ρ,M[M ] has a Fourier expansion of the following form:

(f |ρ,M[M ])(Ω, Z) =
∑

T= tT≥0
half-integral

∑
R∈Z(n,m)

c(T,R) · e
2πi
λΓ

σ(TΩ) · e2πi σ(RZ)

with λΓ(= 0) ∈ Z and c(T,R) = 0 only if

(
1

λΓ
T 1

2R

1
2

tR M

)
≥ 0.
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If n ≥ 2, the condition (B) is superfluous by the Köcher principle (cf. [82]
Lemma 1.6). We denote by Jρ,M(Γ) the vector space of all Jacobi forms of index
M with respect to ρ on Γ. Ziegler ( cf. [82] Theorem 1.8 or [12] Theorem 1.1)
proves that the vector space Jρ,M(Γ) is finite dimensional. In the special case
ρ(A) = (det(A))k with A ∈ GL(n,C) and a fixed k ∈ Z, we write Jk,M(Γ) instead
of Jρ,M(Γ) and call k the weight of the corresponding Jacobi forms. For more
results about Jacobi forms with n > 1 and m > 1, we refer to [62]–[68] and [82].
Jacobi forms play an important role in lifting elliptic cusp forms to Siegel cusp
forms of degree 2n (cf. [24, 25]).

Now we will make brief historical remarks on Jacobi forms. In 1985, the names
Jacobi group and Jacobi forms got kind of standard by the classic book [12] by
Eichler and Zagier to remind of Jacobi’s “Fundamenta nova theoriae functionum
ellipticorum”, which appeared in 1829 (cf. [27]). Before [12] these objects appeared
more or less explicitly and under different names in the work of many authors.
In 1966 Pyatetski–Shapiro [49] discussed the Fourier–Jacobi expansion of Siegel
modular forms and the field of modular abelian functions. He gave the dimension of
this field in the higher degree. About the same time Satake [52]–[53] introduced the
notion of “groups of Harish-Chandra type” which are non reductive but still behave
well enough so that he could determine their canonical automorphic factors and
kernel functions. Shimura [54]–[55] gave a new foundation of the theory of complex
multiplication of Abelian functions using Jacobi theta functions. Kuznetsov [34]
constructed functions which are almost Jacobi forms from ordinary elliptic modular
functions. Starting 1981, Berndt [3]–[5] published some papers which studied the
field of arithmetic Jacobi functions, ending up with a proof of Shimura reciprocity
law for the field of these functions with arbitrary level. Furthermore he investigated
the discrete series for the Jacobi group GJ and developed the spectral theory for
L2(Γn,m\GJ) in the case n = m = 1 (cf. [6]–[8]). The connection of Jacobi forms
to modular forms was given by Maass, Andrianov, Kohnen, Shimura, Eichler and
Zagier. This connection is pictured as follows. For k even, we have the following
isomorphisms

M∗
k (Γ2) ∼= Jk,1(Γ1) ∼= M+

k− 1
2

(
Γ
(1)
0 (4)

)
∼= M2k−2(Γ1). (7.2)

Here M∗
k (Γ2) denotes Maass’ Spezialschar or Maass space and M+

k− 1
2

(
Γ
(1)
0 (4)

)
de-

notes the Kohnen plus space. For a precise detail, we refer to [39]–[41], [1], [12], [29,
30] and [80]. In 1982 Tai [60] gave asymptotic dimension formulae for certain
spaces of Jacobi forms for arbitrary n and m = 1 and used these ones to show
that the moduli An of principally polarized Abelian varieties of dimension n is
of general type for n ≥ 9. Feingold and Frenkel [13] essentially discussed Jacobi
forms in the context of Kac–Moody Lie algebras generalizing the Maass corre-
spondence to higher level. Gritsenko [17] studied Fourier–Jacobi expansions and a
non-commutative Hecke ring in connection with the Jacobi group. After 1985 the
theory of Jacobi forms for n = m = 1 had been studied more or less systematically
by the Zagier school. A large part of the theory of Jacobi forms of higher degree
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was investigated by Kramer [32, 33], Runge [51], Yang [62]–[66]and Ziegler [82].
There were several attempts to establish L-functions in the context of the Jacobi
group by Murase [46, 47] and Sugano [48] using the so-called “Whittaker–Shintani
functions”. Kramer [32, 33] developed an arithmetic theory of Jacobi forms of
higher degree. Runge [51] discussed some part of the geometry of Jacobi forms for
arbitrary n and m = 1. For a good survey on some motivation and background
for the study of Jacobi forms, we refer to [9]. The theory of Jacobi forms has been
extensively studied by many people until now and has many applications in other
areas like geometry and physics.

8. Singular Jacobi forms

Definition 8.1. A Jacobi form f ∈ Jρ,M(Γn) is said to be cuspidal if

(
T 1

2R
1
2
tR M

)
>

0 for any T, R with c(T,R) = 0. A Jacobi form f ∈ Jρ,M(Γn) is said to be singular
if it admits a Fourier expansion such that a Fourier coefficient c(T,R) vanishes

unless det

(
T 1

2R
1
2
tR M

)
= 0.

Let Pn,m = Pn × R(m,n) be the Minkowski–Euclid space, where Pn is the
open cone consisting of positive symmetric n × n real matrices. For a variable
(Y, V ) ∈ Pn,m with Y ∈Pn and V ∈ R(m,n), we put

Y = (yμν) with yμν = yνμ, V = (vkl),

∂

∂Y
=

(
1 + δμν

2

∂

∂yμν

)
,

∂

∂V
=

(
∂

∂vkl

)
,

where 1 ≤ μ, ν, l ≤ n and 1 ≤ k ≤ m.

We define the following differential operator

Mn,m,M := det(Y ) · det
(

∂

∂Y
+

1

8 π

t( ∂

∂V

)
M−1 ∂

∂V

)
. (8.1)

In [65], Yang characterized singular Jacobi forms in the following way:

Theorem 8.1. Let f ∈ Jρ,M(Γn) be a Jacobi form of index M with respect to a
rational representation ρ of GL(n,C). Then the following conditions are equivalent:

(Sing-1) f is a singular Jacobi form.

(Sing-2) f satisfies the differential equation Mn,m,Mf = 0.

Proof. See Theorem 4.1 in [65]. �
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Theorem 8.2. Let 2M be a symmetric, positive definite, unimodular even matrix
of degree m. Assume that ρ is irreducible and satisfies the condition

ρ(A) = ρ(−A) for all A ∈ GL(n,C).

Then a nonvanishing Jacobi form in Jρ,M(Γn) is singular if and only if 2 k(ρ) <
n+m.

Proof. See Theorem 4.5 in [65]. �

Remark 8.1. We let

GLn,m := GL(n,R)�R(m,n)

be the semidirect product of GL(n,R) and R(m,n) with multiplication law

(A, a) · (B, b) := (AB, a tB−1 + b), A,B ∈ GL(n,R), a, b ∈ R(m,n).

Then we have the natural action of GLn,m on the Minkowski–Euclid space Pn,m

defined by

(A, a) · (Y, ζ) :=
(
AY tA, (ζ + a) tA

)
, (8.2)

where (A, a) ∈ GLn,m, Y ∈ Pn, ζ ∈ R(m,n). Without difficulty we see that the
differential operatorMn,m,M is invariant under the action (8.2) of GLn,m.We refer
to [77] for more detail about invariant differential operators on the Minkowski–
Euclid space Pn,m.

9. The Siegel–Jacobi operator

Let ρ be a rational representation of GL(n,C) on a finite-dimensional vector space
Vρ. For a positive integer r < n, we let ρ(r) : GL(r,C) −→ GL(Vρ) be a rational
representation of GL(r,C) defined by

ρ(r)(a)v := ρ

((
a 0
0 iIn−r

))
v, a ∈ GL(r,C), v ∈ Vρ.

The Siegel–Jacobi operator Ψn,r : Jρ,M(Γn) −→ Jρ(r),M(Γn) is defined by

(Ψn,rf) (Ω, Z) := lim
t−→∞ f

((
Ω 0
0 i tIn−r

)
, (Z, 0)

)
,

where f ∈ Jρ,M(Γn), Ω ∈ Hr and Z ∈ C(m,r).

In [62], Yang investigated the injectivity, surjectivity and bijectivity of the
Siegel–Jacobi operator.

Theorem 9.1. Let 2M be a symmetric, positive definite, unimodular even matrix
of degree m. Assume that ρ is irreducible and satisfies the condition

ρ(A) = ρ(−A) for all A ∈ GL(n,C).

If 2 k(ρ) < n+ rank(M), then the Siegel–Jacobi operator Ψn,n−1 is injective.

Proof. See Theorem 3.5 in [62]. �
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Theorem 9.2. Let 2M be a symmetric, positive definite, unimodular even matrix
of degree m. Assume that ρ is irreducible and satisfies the condition

ρ(A) = ρ(−A) for all A ∈ GL(n,C).

If 2 k(ρ)+1 < n+rank(M), then the Siegel–Jacobi operator Ψn,n−1 is an isomor-
phism.

Proof. See Theorem 3.6 in [62]. �

Theorem 9.3. Let 2M be a symmetric, positive definite, unimodular even matrix
of degree m. Assume that 2 k(ρ) > 4n + rank(M) and k ≡ 0 (mod 2). Then the
Siegel–Jacobi operator Ψn,n−1 is an isomorphism.

Proof. See Theorem 3.7 in [62]. �

Now we review the action of the Hecke operators on Jacobi forms. For a
positive integer �, we define

On(�) :=
{
M ∈ Z(2n,2n) | tMJnM = �Jn

)
.

Then On(�) is decomposed into finitely many double cosets mod Γn, that is,

On(�) =
s⋃

j=1

ΓngjΓn (disjoint union).

We define

T (�) :=

s∑
j=1

ΓngjΓn ∈ H (n), the Hecke algebra.

Let M ∈ On(�). For a Jacobi form f ∈ Jρ,M(Γn), we define

f |ρ,M(ΓnMΓn) := �nk(ρ)−
n(n+1)

2

s∑
j=1

f |ρ,M[(Mj , (0, 0; 0)))], (9.1)

where ΓnMΓn =
⋃s

j=1 ΓnMj (finite disjoint union) and k(ρ) denotes the weight

of ρ. We see easily that if M ∈ On(�) and f ∈ Jρ,M(Γn), then

f |ρ,M(ΓnMΓn) ∈ Jρ,�M(Γn).

For a prime p, we define

On,p :=

∞⋃
l=0

On(p
l).

Let Ľn,p be the C-module generated by all left cosets ΓnM, M ∈ On,p and Ȟn,p

the C-module generated by all double cosets ΓnMΓn, M ∈ On,p. Then Ȟn,p is a
commutative associative algebra. We associate to a double coset

ΓnMΓn =
s⋃

i=1

ΓnMi, M,Mi ∈ On,p (disjoint union)
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the element

j(ΓnMΓn) =

s∑
i=1

ΓnMi ∈ Ľn,p.

We extend j linearly to the Hecke algebra Ȟn,p and then we have a monomorphism

j : Ȟn,p −→ Ľn,p. We now define a bilinear mapping

Ȟn,p × Ľn,p −→ Ľn,p

by

(ΓnMΓn) · (ΓnM0) =

s∑
i=1

ΓnMiM0, where ΓnMΓn =

s⋃
i=1

ΓnMi.

This mapping is well defined because the definition does not depend on the choice
of representatives.

Let f ∈ Jρ,M(Γn) be a Jacobi form. For a left coset L := ΓnN with N ∈ On,p,
we put

f |L := f |ρ,M[(N, (0, 0; 0))]. (9.2)

We extend this operator (9.2) linearly to Ľn,p. If T ∈ Ȟn,p, we write

f |T := f |j(T ).
Obviously we have

(f |T )L = f |(TL), f ∈ Jρ,M(Γn).

In a left coset ΓnM, M ∈ On,p, we can choose a representative M of the form

M =

(
A B
0 D

)
, tAD = pk0In,

tBD = tDB,

A =

(
a tα
0 A∗

)
, B =

(
b tβ1

β2 B∗

)
, Δ =

(
d 0
δ D∗

)
,

where α, β1, β2, δ ∈ Zn−1. Then we have

M∗ =

(
A∗ B∗

0 D∗

)
∈ On−1,p.

For an integer r ∈ Z, we define

(ΓnM)∗ :=
1

dr
Γn−1M

∗.

If ΓnMΓn =
⋃s

j=1 ΓnMj (disjoint union), M,Mj ∈ On,p, then we define in a
natural way

(ΓnMΓn)
∗ :=

1

dr

s∑
j=1

Γn−1M
∗
j . (9.3)

We extend the above map (9.3) linearly on Ȟn,p and then we have an algebra
homomorphism

Ȟn,p −→ Ȟn−1,p, T �−→ T ∗. (9.4)

It is known that the above map (9.4) is a surjective map ([81] Theorem 2).
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Let Ψ0
n,r : Jρ,M(Γn) −→ J

ρ
(r)
0 ,M(Γr) be the modified Siegel–Jacobi operator

defined by(
Ψ0

n,rf
)
(Ω, Z) := lim

t−→∞ f

((
itIn−r 0

0 Ω

)
, (0, Z)

)
, (Ω, Z) ∈ Hr,m,

where ρ
(r)
0 : GL(r,C) −→ GL(Vρ) is a finite-dimensional representation ofGL(r,C)

defined by

ρ
(r)
0 (A) =

(
In−r 0
0 A

)
, A ∈ GL(r,C).

In [62], Yang proved that the action of the Hecke operators is compatible
with that of the Siegel–Jacobi operator:

Theorem 9.4. Suppose we have

(a) a rational finite-dimensional representation

ρ : GL(n,C) −→ GL(Vρ),

(b) a rational finite-dimensional representation

ρ0 : GL(n− 1,C) −→ GL(Vρ0),

(c) a linear map R : Vρ −→ Vρ0 ,

satisfying the following properties (1) and (2):

(1) R ◦ ρ
(
1 0
0 A

)
= ρ0(A) ◦R for all A ∈ GL(n− 1,C),

(2) R ◦ ρ
(
a 0
0 In−1

)
= akR for some k ∈ Z.

Then for any f ∈ Jρ,M(Γn) and T ∈ Ȟn,p, we have(
R ◦Ψ0

n,n−1

)
(f |T ) = R(Ψ0

n,n−1f)|T ∗.

Proof. See Theorem 4.2 in [62]. �

Remark 9.1. Freitag [14] introduced the concept of stable modular forms using the
Siegel operator and developed the theory of stable modular forms. We can define
the concept of stable Jacobi forms using the Siegel–Jacobi operator and develop
the theory of stable Jacobi forms.

10. Construction of vector-valued modular forms
from Jacobi forms

Let n and m be two positive integers and let Pm,n := C[z11, . . . , zmn] be the

ring of complex-valued polynomials on C(m,n). For any homogeneous polynomial
P ∈ Pm,n, we put

P (∂Z) := P

(
∂

∂z11
, . . . ,

∂

∂z11

)
.
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Let S be a positive definite symmetric rational matrix of degree m. Let T := (tpq)
be the inverse of S. For each i, j with 1 ≤ i, j ≤ n, we denote by Δi,j the following
differential operator

Δi,j :=

m∑
p,q=1

tpq
∂2

∂zpi∂zqj
, 1 ≤ i, j ≤ n.

A polynomial P on C(m,n) is said to be harmonic with respect to S if
n∑

i=1

Δi,iP = 0.

A polynomial P on C(m,n) is said to be pluriharmonic with respect to S if

Δi,jP = 0, 1 ≤ i, j ≤ n.

If there is no confusion, we just write harmonic or pluriharmonic instead of har-
monic or pluriharmonic with respect to S. Obviously a pluriharmonic polyno-
mial is harmonic. We denote by Hm,n the space of all pluriharmonic polyno-

mials on C(m,n). The ring Pm,n has a symmetric nondegenerate bilinear form
〈P,Q〉 :=

(
P (∂Z)Q

)
(0) for P,Q ∈ Pm,n. It is easy to check that 〈 , 〉 satisfies
〈P,QR〉 = 〈Q(∂Z)P,R〉, P,Q,R ∈ Pm,n.

Lemma 10.1. Hm,n is invariant under the action of GL(n,C)×O(S) given by(
(A,B), P (Z)

)
�−→ P ( tBZA), A ∈ GL(n,C), B ∈ O(S), P ∈ Hm,n. (10.1)

Here O(S) :=
{
B ∈ GL(m,C) | tBSB = S

}
denotes the orthogonal group of the

quadratic form S.

Proof. See Corollary 9.11 in [45]. �
Remark 10.1. In [28], Kashiwara and Vergne investigated an irreducible decompo-
sition of the space of complex pluriharmonic polynomials defined on C(m,n) under
the action (10.1). They showed that each irreducible component τ ⊗ λ occurring
in the decomposition of Hm,n under the action (10.1) has multiplicity one and the
irreducible representation τ of GL(n,C) is determined uniquely by the irreducible
representation of O(S).

Throughout this section we fix a rational representation ρ of GL(n,C) on
a finite-dimensional complex vector space Vρ and a positive definite symmetric,
half-integral matrix M of degree m once and for all.

Definition 10.1. A holomorphic function f : Hn −→ Vρ is called a modular form
of type ρ on Γn if

f(M · Ω) = f
(
(AΩ +B)(CΩ +D)−1

)
= ρ(CΩ +D)f(Ω), Ω ∈ Hn

for all M =

(
A B
C D

)
∈ Γn. If n = 1, the additional cuspidal condition will be

added. We denote by [Γn, ρ] the vector space of all modular forms of type ρ on Γn.
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Let Hm,n;M be the vector space of all pluriharmonic polynomials on C(m,n)

with respect to S := (2M)−1. According to Lemma 10.1, there exists an irreducible
subspace Vτ (= 0) invariant under the action of GL(n,C) given by (10.1). We
denote this representation by τ . Then we have(

τ(A)P
)
(Z) = P (ZA), A ∈ GL(n,C), P ∈ Vτ , Z ∈ C(m,n).

The action τ̂ of GL(n,C) on V ∗
τ is defined by(

τ̂ (A)−1ζ
)
(P ) := ζ

(
τ( tA−1)P

)
,

where A ∈ GL(n,C), ζ ∈ V ∗
τ and P ∈ Vτ .

Definition 10.2. Let f ∈ Jρ,M(Γn) be a Jacobi form of index M with respect to ρ
on Γn. Let P ∈ Vτ be a homogeneous pluriharmonic polynomial. We put

fP (Ω) := P (∂Z)f(Ω, Z)|Z=0, Ω ∈ Hn, Z ∈ C(m,n).

Now we define the mapping

fτ : Hn −→ V ∗
τ ⊗ Vρ

by (
fτ (Ω)

)
(P ) := fP (Ω), Ω ∈ Hn, P ∈ Vτ . (10.2)

Yang proved the following theorem in [66].

Theorem 10.1. Let τ and τ̂ be as before. Let f ∈ Jρ,M(Γn) be a Jacobi form of
index M with respect to ρ on Γn. Then fτ (Ω) is a modular form of type τ̂ ⊗ ρ,
i.e., fτ ∈ [Γn, τ̂ ⊗ ρ].

Proof. See Main Theorem in [66]. �

We obtain an interesting and important identity by applying Theorem 10.1
to the Eisenstein series. Let M be a half-integral positive symmetric matrix of
degree m. We set

Γn;[0] :=

{(
A B
C D

)
∈ Γn

∣∣∣ C = 0

}
.

Let R be a complete system of representatives of the cosets Γn;[0]\Γn and Λ be a

complete system of representatives of the cosets Z(m,n)/
(
Ker(M)∩Z(m,n)

)
, where

Ker(M) :=
{
λ ∈ R(m,n) | M · λ = 0

}
. Let k ∈ Z+ be a positive integer. In [82],

Ziegler defined the Eisenstein series E
(n)
k,M(Ω, Z) of Siegel type by

E
(n)
k,M(Ω, Z) :=

∑
(A B
C D )∈R

det(CΩ +D)−k · e2πi σ(MZ(CΩ+D)−1C tZ)

·
∑
λ∈Λ

e2πi σ
(
M((AΩ+B)(CΩ+D)−1 tλ+2 λ t(CΩ+D)−1 tZ)

)
,

where (Ω, Z) ∈ Hn,m. Now we assume that k > n + m + 1 and k is even.

Then according to [82], Theorem 2.1, E
(n)
k,M(Ω, Z) is a nonvanishing Jacobi form
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in Jk,M(Γn). By Theorem 10.1,
(
E

(n)
k,M

)
τ
is a Hom(Vτ ,C)-valued modular form of

type τ̂⊗detk . We define the automorphic factor j : Sp(n,R)×Hn −→ GL(n,C) by

j(g,Ω) := CΩ +D, g =

(
A B
C D

)
∈ Sp(n,R), Ω ∈ Hn.

Then according to the relation occurring in the process of the proof of Theorem
10.1, for any homogeneous pluriharmonic polynomial P with respect to (2M)−1,
we obtain the following identity

det j(M,Ω)k
∑
γ∈R

∑
λ∈Λ

det j(γ,Ω)−k · P
(
4πiMλ tj(γ,Ω)−1

)
· e2πi σ

(
M(γ·Ω) tλ

)
(10.3)

=
∑
γ∈R

∑
λ∈Λ

det j(γ,M ·Ω)−k · P
(
4πiMλ tj(γM,Ω)−1

)
· e2πi σ

(
M((γM)·Ω) tλ

)
for all M ∈ Γn and Ω ∈ Hn.

For any homogeneous pluriharmonic polynomial P with respect to (2M)−1,
we define the function GP : Γn ×Hn −→ C by

GP (M,Ω):=
∑
γ∈R

∑
λ∈Λ

detj(γM,Ω)−kP
(
4πiMλtj(γM,Ω)−1

)
e2πiσ

(
M((γM)·Ω)tλ

)
,

where M ∈ Γn and Ω ∈ Hn. Then according to Formula (10.3), we obtain the
following relation

GP (M,Ω) = GP (I2n,Ω) for all M ∈ Γn and Ω ∈ Hn. (10.4)

If P = c is a constant, we see from (10.3) and (10.4) that Gc := GP satisfies
the following relation

Gc(M,N ·Ω) = Gc(I2n, N ·Ω) = det j(N,Ω)k Gc(M,Ω)

for all M,N ∈ Γn and Ω ∈ Hn. Therefore for any M ∈ Γn, the function Gc(M, ·) :
Hn −→ C is a Siegel modular form of weight k.

11. Maass–Jacobi forms

Using GJ -invariant differential operators on the Siegel–Jacobi space, we introduce
a notion of Maass–Jacobi forms.

Definition 11.1. Let
Γn,m := Sp(n,Z)�H

(n,m)
Z

be the discrete subgroup of GJ , where

H
(n,m)
Z =

{
(λ, μ;κ) ∈ H

(n,m)
R | λ, μ, κ are integral

}
.

A smooth function f : Hn × C(m,n) −→ C is called a Maass–Jacobi form on Hn ×
C(m,n) if f satisfies the following conditions (MJ1)–(MJ3):

(MJ1) f is invariant under Γn,m.
(MJ2) f is an eigenfunction of the Laplacian Δn,m;A,B (cf. Formula (2.4)).
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(MJ3) f has a polynomial growth, that is, there exist a constant C > 0 and a
positive integer N such that

|f(X + i Y, Z)| ≤ C |p(Y )|N as detY −→∞,

where p(Y ) is a polynomial in Y = (yij).

Remark 11.1. We also may define the notion of Maass–Jacobi forms as follows.
Let D∗ be a commutative subalgebra of D(Hn ×C(m,n)) containing the Laplacian
Δn,m;A,B. We say that a smooth function f : Hn×C(m,n) −→ C is a Maass–Jacobi
form with respect to D∗ if f satisfies the conditions (MJ1), (MJ2)∗ and (MJ3):
the condition (MJ2)∗ is given by

(MJ2)∗ f is an eigenfunction of any invariant differential operator in D∗.

Remark 11.2. Erik Balslev [2] developed the spectral theory of Δ1,1;1,1 on H1,1 to
prove that the set of all eigenvalues of Δ1,1;1,1 satisfies the Weyl law.

It is natural to propose the following problems.

Problem A: Find all the eigenfunctions of Δn,m;A,B.

Problem B: Construct Maass–Jacobi forms.

If we find a nice eigenfunction φ of the Laplacian Δn,m;A,B, we can construct

a Maass–Jacobi form fφ on Hn × C(m,n) in the usual way defined by

fφ(Ω, Z) :=
∑

γ∈Γ∞
n,m\Γn,m

φ
(
γ · (Ω, Z)

)
,

where

Γ∞
n,m =

{((
A B
C D

)
, (λ, μ;κ)

)
∈ Γn,m

∣∣∣ C = 0

}
is a subgroup of Γn,m.

We consider the simple case when n = m = 1 and A = B = 1. A metric
ds21,1;1,1 on H1,1 given by

ds21,1;1,1 =
y + v2

y3
( dx2 + dy2 ) +

1

y
( du2 + dv2 ) − 2v

y2
( dx du + dy dv )

is a GJ -invariant Kähler metric on H1,1. Its Laplacian Δ1,1;1,1 is given by

Δ1,1;1,1 = y2
(

∂2

∂x2
+

∂2

∂y2

)
+ (y + v2)

(
∂2

∂u2
+

∂2

∂v2

)
+ 2yv

(
∂2

∂x∂u
+

∂2

∂y∂v

)
.

We provide some examples of eigenfunctions of Δ1,1;1,1.

(a) h(x, y) = y
1
2Ks− 1

2
(2π|a|y) e2πiax (s ∈ C, a = 0 ) with eigenvalue s(s − 1).

Here

Ks(z) :=
1

2

∫ ∞

0

exp
{
−z

2
(t+ t−1)

}
ts−1 dt,

where Re z > 0.
(b) ys, ysx, ysu (s ∈ C) with eigenvalue s(s− 1).
(c) ysv, ysuv, ysxv with eigenvalue s(s+ 1).
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(d) x, y, u, v, xv, uv with eigenvalue 0.
(e) All Maass wave forms.

Let ρ be a rational representation of GL(n,C) on a finite-dimensional com-
plex vector space Vρ. Let M ∈ R(m,m) be a symmetric half-integral semi-positive

definite matrix of degree m. Let C∞(Hn × C(m,n), Vρ) be the algebra of all C∞

functions on Hn×C(m,n) with values in Vρ. We define the |ρ,M-slash action of GJ

on C∞(Hn × C(m,n), Vρ) as follows: If f ∈ C∞(Hn × C(m,n), Vρ),

f |ρ,M[(M, (λ, μ;κ))](Ω, Z)

:= e−2πi σ(M[Z+λΩ+μ](CΩ+D)−1C) · e2πi σ(M(λΩ tλ+2λ tZ +κ+μ tλ))

× ρ(CΩ +D)−1f(M · Ω, (Z + λΩ + μ)(CΩ +D)−1),

where M = (A B
C D ) ∈ Sp(n,R) and (λ, μ;κ) ∈ H

(n,m)
R . We recall the Siegel’s

notation α[β] = tβαβ for suitable matrices α and β. We define Dρ,M to be the

algebra of all differential operators D on Hn × C(m,n) satisfying the following
condition

(Df)|ρ,M[g] = D(f |ρ,M[g])

for all f ∈ C∞(Hn×C(m,n), Vρ) and for all g ∈ GJ . We denote by Zρ,M the center
of Dρ,M.

We define another notion of Maass–Jacobi forms as follows.

Definition 11.2. A vector-valued smooth function φ : Hn×C(m,n) −→ Vρ is called

a Maass–Jacobi form on Hn × C(m,n) of type ρ and index M if it satisfies the
following conditions (MJ1)ρ,M, (MJ2)ρ,M and (MJ3)ρ,M:

(MJ1)ρ,M φ|ρ,M[γ] = φ for all γ ∈ Γn,m.
(MJ2)ρ,M f is an eigenfunction of all differential operators in the center Zρ,M

of Dρ,M.
(MJ3)ρ,M f has a growth condition

φ(Ω, Z) = O
(
ea detY · e2πtr(M[V ]Y −1)

)
as det Y −→∞ for some a > 0.

Remark 11.3. In the sense of Definition 11.2, Pitale [50] studied Maass–Jacobi
forms on the Siegel–Jacobi space H1,1. We refer to [74, 75] for more details on
Maass–Jacobi forms.

12. The Schrödinger–Weil representation

Throughout this section we assume that M is a positive definite symmetric real
m × m matrix. We consider the Schrödinger representation WM of the Heisen-

berg group H
(n,m)
R with the central character WM((0, 0;κ)) = χM((0, 0;κ)) =

eπi σ(Mκ), κ ∈ S(m,R). Then WM is expresses explicitly as follows:

[WM(h0)f ] (λ) = eπiσ{M(κ0+μ0
tλ0+2λ tμ0)} f(λ+ λ0), (12.1)
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where h0 = (λ0, μ0;κ0) ∈ H
(n,m)
R and λ ∈ R(m,n). For the construction of WM

we refer to [78]. We note that the symplectic group Sp(n,R) acts on H
(n,m)
R by

conjugation inside GJ . For a fixed element g ∈ Sp(n,R), the irreducible unitary

representation W g
M of H

(n,m)
R defined by

W g
M(h) = WM(ghg−1), h ∈ H

(n,m)
R (12.2)

has the property that

W g
M((0, 0;κ)) = WM((0, 0;κ)) = eπi σ(Mκ) IdH(χM), κ ∈ S(m,R).

Here IdH(χM) denotes the identity operator on the Hilbert space H(χM). Accord-
ing to the Stone–von Neumann theorem, there exists a unitary operator RM(g)
on H(χM) with RM(I2n) = IdH(χM) such that

RM(g)WM(h) = W g
M(h)RM(g) for all h ∈ H

(n,m)
R . (12.3)

We observe that RM(g) is determined uniquely up to a scalar of modulus one.

From now on, for brevity, we put G = Sp(n,R). According to Schur’s lemma,
we have a map cM : G×G −→ T satisfying the relation

RM(g1g2) = cM(g1, g2)RM(g1)RM(g2) for all g1, g2 ∈ G. (12.4)

We recall that T denotes the multiplicative group of complex numbers of modulus
one. Therefore RM is a projective representation of G on H(χM) and cM defines
the cocycle class in H2(G, T ). The cocycle cM yields the central extension GM of
G by T . The group GM is a set G× T equipped with the following multiplication

(g1, t1) · (g2, t2) =
(
g1g2, t1t2 cM(g1, g2)

−1
)
, g1, g2 ∈ G, t1, t2 ∈ T. (12.5)

We see immediately that the map R̃M : GM −→ GL(H(χM)) defined by

R̃M(g, t) = t RM(g) for all (g, t) ∈ GM (12.6)

is a true representation of GM. As in Section 1.7 in [35], we can define the map
sM : G −→ T satisfying the relation

cM(g1, g2)
2 = sM(g1)

−1sM(g2)
−1sM(g1g2) for all g1, g2 ∈ G.

Thus we see that

G2,M =
{
(g, t) ∈ GM | t2 = sM(g)−1

}
(12.7)

is the metaplectic group associated with M that is a two-fold covering group of

G. The restriction R2,M of R̃M to G2,M is the Weil representation of G associated
with M.

If we identify h=(λ,μ;κ)∈H(n,m)
R (resp. g∈Sp(n,R)) with (I2n,(λ,μ;κ))∈GJ

(resp. (g, (0, 0; 0)) ∈ GJ ), every element g̃ of GJ can be written as g̃ = hg with

h ∈ H
(n,m)
R and g ∈ Sp(n,R). In fact,

(g, (λ, μ;κ)) = (I2n, ((λ, μ)g
−1;κ)) (g, (0, 0; 0)) = ((λ, μ)g−1;κ) · g.



Geometry and Arithmetic on the Siegel–Jacobi Space 311

Therefore we define the projective representation πM of the Jacobi group GJ with
cocycle cM(g1, g2) by

πM(hg) = WM(h)RM(g), h ∈ H
(n,m)
R , g ∈ G. (12.8)

Indeed, since H
(n,m)
R is a normal subgroup of GJ , for any h1, h2 ∈ H

(n,m)
R and

g1, g2 ∈ G,

πM(h1g1h2g2) = πM(h1g1h2g
−1
1 g1g2) = WM

(
h1(g1h2g

−1
1 )

)
RM(g1g2)

= cM(g1, g2)WM(h1)W
g1
M (h2)RM(g1)RM(g2)

= cM(g1, g2)WM(h1)RM(g1)WM(h2)RM(g2)

= cM(g1, g2)πM(h1g1)πM(h2g2).

We let

GJ
M= GM �H

(n,m)
R

be the semidirect product of GM and H
(n,m)
R with the multiplication law(

(g1, t1), (λ1, μ1;κ1)
)
·
(
(g2, t2), (λ2, μ2 ;κ2)

)
=

(
(g1, t1)(g2, t2), (λ̃+ λ2, μ̃+ μ2 ;κ1 + κ2 + λ̃ tμ2 − μ̃ tλ2)

)
,

where

(g1,t1),(g2,t2)∈GM, (λ1,μ1;κ1),(λ2,μ2 ;κ2)∈H(n,m)
R and (λ̃,μ̃)=(λ,μ)g2.

If we identify h = (λ, μ ;κ) ∈ H
(n,m)
R (resp. (g, t) ∈ GM) with ((I2n, 1), (λ, μ ;κ)) ∈

GJ
M (resp. ((g, t), (0, 0; 0)) ∈ GJ

M), we see easily that every element
(
(g,t),(λ,μ;κ)

)
of GJ

M can be expressed as(
(g, t), (λ, μ ;κ)

)
=

(
(I2n, 1), ((λ, μ)g

−1;κ)
)(
(g, t), (0, 0; 0)

)
= ((λ, μ)g−1;κ)(g, t).

Now we can define the true representation ω̃M of GJ
M by

ω̃M(h·(g, t)) = t πM(hg) = tWM(h)RM(g), h ∈ H
(n,m)
R , (g, t) ∈ GM. (12.9)

Indeed, since H
(n,m)
R is a normal subgroup of GJ

M,

ω̃M
(
h1(g1, t1)h2(g2, t2)

)
= ω̃M

(
h1(g1, t1)h2(g1, t1)

−1(g1, t1)(g2, t2)
)

= ω̃M
(
h1(g1, t1)h2(g1, t1)

−1
(
g1g2, t1t2 cM(g1, g2)

−1
))

= t1t2 cM(g1, g2)
−1 WM

(
h1(g1, t1)h2(g1, t1)

−1
)
RM(g1g2)

= t1t2 WM(h1)WM
(
(g1, t1)h2(g1, t1)

−1
)
RM(g1)RM(g2)

= t1t2 WM(h1)WM
(
g1h2g

−1
1

)
RM(g1)RM(g2)

= t1t2 WM(h1)RM(g1)WM(h2)RM(g2)

= {t1 πM(h1g1)} {t2 πM(h2g2)}
= ω̃M

(
h1(g1, t1)

)
ω̃M

(
h2(g2, t2)

)
.

Here we used the fact that (g1, t1)h2(g1, t1)
−1 = g1h2g

−1
1 .
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We recall that the following matrices

t(b) =

(
In b
0 In

)
with any b = tb ∈ R(n,n),

g(α) =

(
tα 0
0 α−1

)
with any α ∈ GL(n,R),

σn =

(
0 −In
In 0

)
generate the symplectic group G = Sp(n,R) (cf. [15, p. 326], [44, p. 210]). There-
fore the following elements ht(λ, μ ;κ), t(b ; t), g(α ; t) and σn ;t of GM � H

(n,m)
R

defined by

ht(λ, μ ;κ) =
(
(I2n, t), (λ, μ;κ)

)
with t ∈ T, λ, μ ∈ R(m,n) and κ ∈ R(m,m),

t(b ; t) =
(
(t(b), t), (0, 0; 0)

)
with any b = tb ∈ R(n,n), t ∈ T,

g(α ; t) =
((
g(α), t), (0, 0; 0)

)
with any α ∈ GL(n,R) and t ∈ T,

σn ; t = ((σn, t), (0, 0; 0)) with t ∈ T

generate the group GM � H
(n,m)
R . We can show that the representation ω̃M is

realized on the representation H(χM) = L2
(
R(m,n)

)
as follows: for each f ∈

L2
(
R(m,n)

)
and x ∈ R(m,n), the actions of ω̃M on the generators are given by[

ω̃M
(
ht(λ, μ ;κ)

)
f
]
(x) = t eπi σ{M(κ+μ tλ+2 x tμ)} f(x+ λ), (12.10)[

ω̃M
(
t(b ; t)

)
f
]
(x) = t eπi σ(Mx b tx)f(x), (12.11)[

ω̃M
(
g(α ; t)

)
f
]
(x) = t | detα|m2 f(x tα), (12.12)[

ω̃M
(
σn ; t

)
f
]
(x) = t

(
detM

)n
2

∫
R(m,n)

f(y) e−2πi σ(M y tx) dy. (12.13)

Let
GJ

2,M= G2,M �H
(n,m)
R

be the semidirect product of G2,M and H
(n,m)
R . Then GJ

2,M is a subgroup of GJ
M

which is a two-fold covering group of the Jacobi group GJ . The restriction ωM of
ω̃M to GJ

2,M is called the Schrödinger–Weil representation of GJ associated withM.

We denote by L2
+

(
R(m,n)

) (
resp. L2

−
(
R(m,n)

))
the subspace of L2

(
R(m,n)

)
consisting of even (resp. odd) functions in L2

(
R(m,n)

)
. According to Formulas

(12.11)–(12.13), R2,M is decomposed into representations of R±
2,M

R2,M = R+
2,M ⊕R−

2,M,

where R+
2,M and R−

2,M are the even Weil representation and the odd Weil rep-

resentation of G that are realized on L2
+

(
R(m,n)

)
and L2

−
(
R(m,n)

)
respectively.

Obviously the center Z J
2,M of GJ

2,M is given by

Z J
2,M =

{(
(I2n, 1), (0, 0;κ)

)
∈ GJ

2,M
} ∼= S(m,R).
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We note that the restriction of ωM to G2,M coincides with R2,M and ωM(h) =

WM(h) for all h ∈ H
(n,m)
R .

Remark 12.1. In the case n = m = 1, ωM is dealt in [10] and [36]. We refer to
[16] and [28] for more details about the Weil representation R2,M.

Remark 12.2. The Schrödinger–Weil representation is applied to the theory of
Maass–Jacobi forms [50].

Let M be a positive definite symmetric real matrix of degree m. We recall

the Schrödinger representation WM of the Heisenberg group H
(n,m)
R associate with

M given by Formula (12.1). We note that for an element (λ, μ;κ) of H
(n,m)
R , we

have the decomposition

(λ, μ;κ) = (λ, 0; 0) ◦ (0, μ; 0) ◦ (0, 0;κ−λ tμ).

We consider the embedding Φn : SL(2,R) −→ Sp(n,R) defined by

Φn

((
a b
c d

))
:=

(
aIn bIn
cIn dIn

)
,

(
a b
c d

)
∈ SL(2,R). (12.14)

For x, y ∈ R(m,n), we put

(x, y)M := σ( txMy) and ‖x‖M :=
√
(x, x)M.

According to Formulas (12.11)–(12.13), for any M =

(
a b
c d

)
∈ SL(2,R) ↪→

Sp(n,R) and f ∈ L2
(
R(m,n)

)
, we have the following explicit representation

[RM(M)f ](x) =

{
|a|mn

2 eab‖x‖
2
Mπif(ax) if c = 0,

(detM)
n
2 |c|−mn

2

∫
R(m,n) e

α(M,x,y,M)
c πif(y)dy if c = 0,

(12.15)
where

α(M,x, y,M) = a ‖x‖2M + d ‖y‖2M − 2(x, y)M.

Indeed, if a = 0 and c = 0, using the decomposition

M =

(
0 −c−1

c d

)
=

(
0 −1
1 0

)(
c d
0 c−1

)
and if a = 0 and c = 0, using the decomposition

M =

(
a b
c d

)
=

(
a c−1

0 a−1

)(
0 −1
1 0

)(
ac ad
0 (ac)−1

)
,

we obtain Formula (12.15).

If

M1 =

(
a1 b1
c1 d1

)
, M2 =

(
a2 b2
c2 d2

)
and M3 =

(
a3 b3
c3 d3

)
∈ SL(2,R)

with M3 = M1M2, the corresponding cocycle is given by

cM(M1,M2) = e−i πmn sign(c1c2c3)/4, (12.16)
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where

sign(x) =

⎧⎨⎩
−1 (x < 0)

0 (x = 0)

1 (x > 0).

In the special case when

M1 =

(
cosφ1 − sinφ1

sinφ1 cosφ1

)
and M2 =

(
cosφ2 − sinφ2

sinφ2 cosφ2

)
,

we find
cM(M1,M2) = e−i πmn (σφ1

+σφ2
−σφ1+φ2

)/4,

where

σφ =

{
2ν if φ = νπ

2ν + 1 if νπ < φ < (ν + 1)π.

It is well known that every M ∈ SL(2,R) admits the unique Iwasawa decomposi-
tion

M =

(
1 u
0 1

)(
v1/2 0

0 v−1/2

)(
cosφ − sinφ
sinφ cosφ

)
, (12.17)

where τ = u + iv ∈ H1 and φ ∈ [0, 2π). This parametrization M = (τ, φ) in
SL(2,R) leads to the natural action of SL(2,R) on H1 × [0, 2π) defined by(

a b
c d

)
(τ, φ) :=

(
aτ + b

cτ + d
, φ+ arg(cτ + d) mod 2π

)
. (12.18)

Lemma 12.1. For two elements g1 and g2 in SL(2,R), we let

g1 =

(
1 u1

0 1

)(
v
1/2
1 0

0 v
−1/2
1

)(
cosφ1 − sinφ1

sinφ1 cosφ1

)
and

g2 =

(
1 u2

0 1

)(
v
1/2
2 0

0 v
−1/2
2

)(
cosφ2 − sinφ2

sinφ2 cosφ2

)
be the Iwasawa decompositions of g1 and g2 respectively, where u1, u2 ∈ R, v1 >
0, v2 > 0 and 0 ≤ φ1, φ2 < 2π. Let

g3 = g1g2 =

(
1 u3

0 1

)(
v
1/2
3 0

0 v
−1/2
3

)(
cosφ3 − sinφ3

sinφ3 cosφ3

)
be the Iwasawa decomposition of g3 = g1g2. Then we have

u3 =
A

(u2 sinφ1 + cosφ1)2 + (v2 sinφ1)2
,

v3 =
v1v2

(u2 sinφ1 + cosφ1)2 + (v2 sinφ1)2

and

φ3 = tan−1

[
(v2 cosφ2 + u2 sinφ2) tanφ1 + sinφ2

(−v2 sinφ2 + u2 cosφ2) tanφ1 + cosφ2

]
,
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where
A = u1(u2 sinφ1 + cosφ1)

2 + (u1v2 − v1u2) sin
2 φ1

+ v1u2 cos
2 φ1 + v1(u

2
2 + v22 − 1) sinφ1 cosφ1.

Proof. If g ∈ SL(2,R) has the unique Iwasawa decomposition (12.17), then we get
the following

a = v1/2 cosφ+ uv−1/2 sinφ, d = v−1/2 cosφ,

b = −v1/2 sinφ+ uv−1/2 cosφ, u = (ac+ bd)
(
c2 + d2

)−1
,

c = v−1/2 sinφ, v =
(
c2 + d2

)−1
, tanφ =

c

d
.

We set

g3 = g1g2 =

(
a3 b3
c3 d3

)
.

Since

u3 = (a3c3 + b3d3)
(
c23 + d23

)−1
, v =

(
c23 + d23

)−1
, tanφ3 =

c3
d3

,

by an easy computation, we obtain the desired results. �

Now we use the new coordinates (τ = u+ iv, φ) with τ ∈ H1 and φ ∈ [0, 2π)
in SL(2,R). According to Formulas (12.11)–(12.13), the projective representation
RM of SL(2,R) ↪→ Sp(n,R) reads in these coordinates (τ = u+ iv, φ) as follows:

[RM(τ, φ)f ] (x) = v
mn
4 eu‖x‖

2
Mπ i [RM(i, φ)f ]

(
v1/2x

)
, (12.19)

where f ∈ L2
(
R(m,n)

)
, x ∈ R(m,n) and

[RM(i, φ)f ] (x) (12.20)

=

⎧⎪⎨⎪⎩
f(x) if φ ≡ 0 mod 2π,

f(−x) if φ ≡ π mod 2π,

(detM)
n
2 | sinφ|−mn

2

∫
R(m,n) e

B(x,y,φ,M)πi f(y)dy if φ ≡ 0 mod π.

Here

B(x, y, φ,M) =

(
‖x‖2M + ‖y‖2M

)
cosφ− 2(x, y)M

sinφ
.

Now we set

S =

(
0 −1
1 0

)
.

We note that[
RM

(
i,
π

2

)
f
]
(x) = [RM(S)f ] (x) = (detM)

n
2

∫
R(m,n)

f(y ) e−2 (x, y)M π i dy

(12.21)
for f ∈ L2

(
R(m,n)

)
.
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Remark 12.3. For Schwartz functions f ∈ S
(
R(m,n)

)
, we have

lim
φ−→0±

| sinφ|−mn
2

∫
R(m,n)

eB(x,y,φ,M)π i f(y)dy = e±i πmn/4f(x) = f(x).

Therefore the projective representation RM is not continuous at φ = νπ (ν ∈ Z)
in general. If we set

R̃M(τ, φ) = e−i π mnσφ/4RM(τ, φ),

R̃M corresponds to a unitary representation of the double cover of SL(2,R) (cf.
(3.5) and [35]). This means in particular that

R̃M(i, φ)R̃M(i, φ′) = R̃M(i, φ+ φ′),

where φ ∈ [0, 4π) parametrises the double cover of SO(2) ⊂ SL(2,R).

We observe that for any element (g, (λ, μ;κ)) ∈ GJ with g ∈ Sp(n,R) and

(λ, μ;κ) ∈ H
(n,m)
R , we have the following decomposition

(g, (λ, μ;κ)) = (I2n, ((λ, μ)g
−1;κ)) (g, (0, 0; 0)) = ((λ, μ)g−1;κ) · g.

Thus Sp(n,R) acts on H
(n,m)
R naturally by

g · (λ, μ;κ) =
(
(λ, μ)g−1;κ

)
, g ∈ Sp(n,R), (λ, μ;κ) ∈ H

(n,m)
R .

Definition 12.1. For any Schwartz function f ∈ S
(
R(m,n)

)
, we define the function

Θ
[M]
f on the Jacobi group SL(2,R)�H

(n,m)
R ↪→ GJ by

Θ
[M]
f (τ, φ ;λ, μ, κ) :=

∑
ω∈Z(m,n)

[πM ((λ, μ;κ)(τ, φ)) f ] (ω), (12.22)

where (τ, φ) ∈ SL(2,R) and (λ, μ ;κ) ∈ H
(n,m)
R . The projective representation πM

of the Jacobi group GJ was already defined by Formula (12.8). More precisely, for

τ = u+ iv ∈ H1 and (λ, μ;κ) ∈ H
(n,m)
R , we have

Θ
[M]
f (τ, φ ;λ, μ, κ) = v

mn
4 e2π i σ(M(κ+μtλ))

×
∑

ω∈Z(m,n)

eπ i{u‖ω+λ‖2
M +2(ω, μ)M} [RM(i, φ)f ]

(
v1/2(ω + λ)

)
.

Lemma 12.2. We set fφ := R̃M(i, φ)f for f ∈ S
(
R(m,n)

)
. Then for any R > 1,

there exists a constant CR such that for all x ∈ R(m,n) and φ ∈ R,

|fφ(x)| ≤ CR (1 + ‖x‖M)
−R

.

Proof. Following the arguments in the proof of Lemma 4.3 in [36], pp. 428–429,
we get the desired result. �
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Theorem 12.1 (Jacobi 1). Let M be a positive definite symmetric integral matrix
of degree m such that MZ(m,n) = Z(m,n). Then for any Schwartz function f ∈
S

(
R(m,n)

)
, we have

Θ
[M]
f

(
− 1

τ
, φ+ arg τ ;−μ, λ, κ

)
=

(
detM

)−n
2 cM(S, (τ, φ))Θ

[M]
f (τ, φ ;λ, μ, κ),

where
cM(S, (τ, φ)) := ei πmn sign(sinφ sin(φ+arg τ)).

Proof. See Theorem 6.1 in [78]. �
Theorem 12.2 (Jacobi 2). LetM = (Mkl) be a positive definite symmetric integral
m×m matrix and let s = (skj) ∈ Z(m,n) be integral. Then we have

Θ
[M]
f (τ + 2, φ ;λ, s− 2λ+ μ, κ− s tλ) = Θ

[M]
f (τ, φ ;λ, μ, κ)

for all (τ, φ) ∈ SL(2,R) and (λ, μ;κ) ∈ H
(n,m)
R .

Proof. See Theorem 6.2 in [78]. �
Theorem 12.3 (Jacobi 3). LetM = (Mkl) be a positive definite symmetric integral

m×m matrix and let (λ0, μ0;κ0) ∈ H
(m,n)
Z be an integral element of H

(n,m)
R . Then

we have
Θ

[M]
f (τ, φ ;λ+ λ0, μ+ μ0, κ+ κ0 + λ0

tμ− μ0
tλ)

= eπ i σ(M(κ0+μ0
tλ0))Θ

[M]
f (τ, φ ;λ, μ, κ)

for all (τ, φ) ∈ SL(2,R) and (λ, μ;κ) ∈ H
(n,m)
R .

Proof. See Theorem 6.3 in [78]. �

We put V (m,n) = R(m,n) × R(m,n). Let

G(m,n) := SL(2,R)� V (m,n)

be the group with the following multiplication law

(g1, (λ1, μ1)) · (g2, (λ2, μ2)) = (g1g2, (λ1, μ1)g2 + (λ2, μ2)), (12.23)

where g1, g2 ∈ SL(2,R) and λ1, λ2, μ1, μ2 ∈ R(m,n).

We define
Γ(m,n) := SL(2,Z)×H

(n,m)
Z .

Then Γ(m,n) acts on G(m,n) naturally through the multiplication law (12.23).

Lemma 12.3. Γ(m,n) is generated by the elements

(S, (0, 0)), (T�, (0, s)) and (I2, (λ0, μ0)),

where

S =

(
0 −1
1 0

)
, T� =

(
1 1
0 1

)
and s, λ0, μ0 ∈ Z(m,n).

Proof. Since SL(2,Z) is generated by S and T�, we get the desired result. �



318 J.-H. Yang

We define

Θ
[M]
f (τ, φ;λ, μ) = v

mn
4

∑
ω∈Z(m,n)

eπ i{u‖ω+λ‖2
M +2(ω, μ)M} [RM(i, φ)f ]

(
v1/2(ω + λ)

)
.

Theorem 12.4. Let Γ
(m,n)
[2] be the subgroup of Γ(m,n) generated by the elements

(S, (0, 0)), (T∗, (0, s)) and (I2, (λ0, μ0)),

where

T∗ =

(
1 2
0 1

)
and s, λ0, μ0 ∈ Z(m,n).

LetM = (Mkl) be a positive definite symmetric unimodular integral m×m matrix
such that MZ(m,n) = Z(m,n). Then for f, g ∈ S

(
R(m,n)

)
, the function

Θ
[M]
f (τ, φ;λ, μ)Θ

[M]
g (τ, φ;λ, μ)

is invariant under the action of Γ
(m,n)
[2] on G(m,n).

Proof. See Theorem 6.4 in [78]. �

13. Final remarks and open problems

The Siegel–Jacobi space Hn,m is a non-symmetric homogeneous space that is im-
portant geometrically and arithmetically. As we see in Formula (7.2), the theory of
Jacobi forms is applied in the study of modular forms. The theory of Jacobi forms
reduces to that of Siegel modular forms if the index M is zero. Unfortunately the
theory of the geometry and the arithmetic of the Siegel–Jacobi space has not been
well developed so far.

Now we propose open problems related to the geometry and the arithmetic
of the Siegel–Jacobi space.

Problem 1. Find the analogue of the Hirzebruch–Mumford Proportionality Theo-
rem.

Let us give some remarks for this problem. Before we describe the propor-
tionality theorem for the Siegel modular variety, first of all we review the compact
dual of the Siegel upper half-plane Hn. We note that Hn is biholomorphic to the
generalized unit disk Dn of degree n through the Cayley transform. We suppose
that Λ = (Z2n, 〈 , 〉) is a symplectic lattice with a symplectic form 〈 , 〉. We extend
scalars of the lattice Λ to C. Let

Yn :=
{
L ⊂ C2n | dimC L = n, 〈x, y〉 = 0 for all x, y ∈ L

}
be the complex Lagrangian Grassmannian variety parameterizing totally isotropic
subspaces of complex dimension n. For the present time being, for brevity, we put
G = Sp(n,R) and K = U(n). The complexification GC = Sp(n,C) of G acts on
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Yn transitively. If H is the isotropy subgroup of GC fixing the first summand Cn,
we can identify Yn with the compact homogeneous space GC/H. We let

Y+
n :=

{
L ∈ Yn | − i〈x, x̄〉 > 0 for all x(= 0) ∈ L

}
be an open subset of Yn. We see that G acts on Y+

n transitively. It can be shown
that Y+

n is biholomorphic to G/K ∼= Hn. A basis of a lattice L ∈ Y+
n is given by a

unique 2n× n matrix t(−In Ω) with Ω ∈ Hn. Therefore we can identify L with Ω
in Hn. In this way, we embed Hn into Yn as an open subset of Yn. The complex
projective variety Yn is called the compact dual of Hn.

Let Γ be an arithmetic subgroup of Γn. Let E0 be a G-equivariant holo-
morphic vector bundle over Hn = G/K of rank r. Then E0 is defined by the
representation τ : K −→ GL(r,C). That is, E0

∼= G ×K Cr is a homogeneous
vector bundle over G/K. We naturally obtain a holomorphic vector bundle E over
An,Γ := Γ\G/K. E is often called an automorphic or arithmetic vector bundle over
An,Γ. Since K is compact, E0 carries a G-equivariant Hermitian metric h0 which
induces a Hermitian metric h on E. According to Main Theorem in [43], E admits

a unique extension Ẽ to a smooth toroidal compactification Ãn,Γ of An,Γ such

that h is a singular Hermitian metric good on Ãn,Γ. For the precise definition of a
good metric on An,Γ we refer to [43, p. 242]. According to Hirzebruch–Mumford’s
Proportionality Theorem (cf. [43, p. 262]), there is a natural metric on G/K = Hn

such that the Chern numbers satisfy the following relation

cα
(
Ẽ
)
= (−1) 1

2n(n+1) vol (Γ\Hn) c
α
(
Ě0

)
for all α = (α1, . . . , αr) with nonnegative integers αi (1 ≤ i ≤ r) and

∑r
i=1 αi =

1
2n(n+1), where Ě0 is the GC-equivariant holomorphic vector bundle on the com-
pact dual Yn of Hn defined by a certain representation of the stabilizer StabGC

(e)
of a point e in Yn. Here vol (Γ\Hn) is the volume of Γ\Hn that can be computed
(cf. [57]).

As before we consider the Siegel–Jacobi modular group Γn.m := Γn�H
(n,m)
Z

with Γn = Sp(n,Z). For an arithmetic subgroup Γ of Γn, we set

An,m,Γ := Γ∗\Hn,m with Γ∗ = Γ�H
(n,m)
Z .

Problem 2. Compute the cohomology H•(An,m,Γ, ∗) of An,m,Γ. Investigate the
intersection cohomology of An,m,Γ.

Problem 3. Generalize the trace formula on the Siegel modular variety obtained by
Sophie Morel to the universal Abelian variety. For her result on the trace formula
on the Siegel modular variety, we refer to her paper, Cohomologie d’intersection
des variétés modulaires de Siegel, suite.

Problem 4. Develop the theory of the stability of Jacobi forms using the Siegel–
Jacobi operator. The theory of the stability involves in the theory of unitary repre-
sentations of the infinite-dimensional symplectic group Sp(∞,R) and the infinite-
dimensional unitary group U(∞).
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Problem 5. Compute the geodesics, the distance between two points and curvatures
explicitly in the Siegel–Jacobi space (Hn,m, ds2n,m;A,B).

Siegel proved the following theorem for the Siegel space (Hn, ds
2
n;1).

Theorem 13.1 (Siegel [57]).

(1) There exists exactly one geodesic joining two arbitrary points Ω0, Ω1 in Hn.
Let R(Ω0,Ω1) be the cross-ratio defined by

R(Ω0,Ω1) = (Ω0 − Ω1)(Ω0 − Ω1)
−1(Ω0 − Ω1)(Ω0 − Ω1)

−1.

For brevity, we put R∗ = R(Ω0,Ω1). Then the symplectic length ρ(Ω0,Ω1) of
the geodesic joining Ω0 and Ω1 is given by

ρ(Ω0,Ω1)
2 = σ

⎛⎝(
log

1 +R
1
2∗

1−R
1
2∗

)2
⎞⎠ ,

where (
log

1 +R
1
2∗

1−R
1
2∗

)2

= 4R∗

( ∞∑
k=0

Rk∗
2k + 1

)2

.

(2) For M ∈ Sp(n,R), we set

Ω̃0 = M · Ω0 and Ω̃1 = M · Ω1.

Then R(Ω1,Ω0) and R(Ω̃1, Ω̃0) have the same eigenvalues.
(3) All geodesics are symplectic images of the special geodesics

α(t) = i diag (at1, a
t
2, . . . , a

t
n),

where a1, a2, . . . , an are arbitrary positive real numbers satisfying the condi-
tion

n∑
k=1

(log ak)
2
= 1.

The proof of the above theorem can be found in [57], pp. 289–293.

Problem 6. Solve Problem 4 and Problem 5 in Section 3. Express the center of
the algebra D(Hn,m) of all GJ -invariant differential operators on Hn,m explicitly.
Describe the center of the universal enveloping algebra of the Lie algebra of the
Jacobi group GJ explicitly.

Problem 7. Develop the spectral theory of the Laplacian Δn,m;A,B on Γ∗\Hn,m

for an arithmetic subgroup Γ∗ of Γn,m. Balslev [2] developed the spectral theory
of the Laplacian Δ1,1;1,1 on Γ∗\H1,1 for certain arithmetic subgroups of Γ1,1.

Problem 8. Develop the theory of harmonic analysis on the Siegel–Jacobi disk
Dn,m.

Problem 9. Study unitary representations of the Jacobi group GJ . Develop the
theory of the orbit method for the Jacobi group GJ .
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Problem 10. Attach Galois representations to cuspidal Jacobi forms.

Problem 11. Develop the theory of automorphic L-function for the Jacobi group
GJ (A).

Problem 12. Find the trace formula for the Jacobi group GJ(A).

Problem 13. Decompose the Hilbert space L2
(
GJ(Q)\GJ (A)

)
into irreducibles

explicitly.

Problem 14. Construct Maass–Jacobi forms. Express the Fourier expansion of a
Maass–Jacobi form explicitly.

Problem 15. Investigate the relations among Jacobi forms, hyperbolic Kac–Moody
algebras, infinite products, the monster group and the Moonshine (cf. [67]).

Problem 16. Provide applications to physics (quantum mechanics, quantum optics,
coherent states,. . . ), the theory of elliptic genera, singularity theory of K. Saito
etc.
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