A NOTE ON A FUNDAMENTAL DOMAIN FOR SIEGEL-JACOBI SPACE

JAE-HYUN YANG

Communicated by Jutta Hausen

ABSTRACT. In this paper, we study a fundamental domain for the Siegel-Jacobi space $Sp(g,\mathbb{Z})\ltimes H^{(g,h)}_{\mathbb{Z}}\backslash \mathbb{H}_g\times \mathbb{C}^{(h,g)}.$

1. Introduction

For a given fixed positive integer g, we let

$$\mathbb{H}_q = \{ \Omega \in \mathbb{C}^{(g,g)} \mid \Omega = {}^t\Omega, \quad \operatorname{Im} \Omega > 0 \}$$

be the Siegel upper half plane of degree g and let

$$Sp(g,\mathbb{R}) = \{ M \in \mathbb{R}^{(2g,2g)} \mid {}^{t}MJ_{g}M = J_{g} \}$$

be the symplectic group of degree g, where $F^{(k,l)}$ denotes the set of all $k \times l$ matrices with entries in a commutative ring F for two positive integers k and l, ${}^t\!M$ denotes the transpose matrix of a matrix M and

$$J_g = \begin{pmatrix} 0 & I_g \\ -I_q & 0 \end{pmatrix}.$$

 $Sp(g,\mathbb{R})$ acts on \mathbb{H}_q transitively by

(1.1)
$$M \cdot \Omega = (A\Omega + B)(C\Omega + D)^{-1},$$

where $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(g,\mathbb{R})$ and $\Omega \in \mathbb{H}_g$. Let Γ_g be the Siegel modular group of degree g. C. L. Siegel [8] found a fundamental domain \mathcal{F}_g for $\Gamma_g \backslash \mathbb{H}_g$ and calculated the volume of \mathcal{F}_g . We also refer to [2], [4], [10] for some details on \mathcal{F}_g .

²⁰⁰⁰ Mathematics Subject Classification. 11G10, 14K25.

Key words and phrases. Fundamental domains, abelian varieties, theta functions.

This work was supported by INHA UNIVERSITY Research Grant (INHA-31619).

For two positive integers q and h, we consider the Heisenberg group

$$H_{\mathbb{R}}^{(g,h)} = \{ (\lambda, \mu; \kappa) \mid \lambda, \mu \in \mathbb{R}^{(h,g)}, \ \kappa \in \mathbb{R}^{(h,h)}, \ \kappa + \mu^t \lambda \text{ symmetric } \}$$

endowed with the following multiplication law

$$(\lambda, \mu; \kappa) \circ (\lambda', \mu'; \kappa') = (\lambda + \lambda', \mu + \mu'; \kappa + \kappa' + \lambda^t \mu' - \mu^t \lambda').$$

We define the semidirect product of $Sp(g,\mathbb{R})$ and $H^{(g,h)}_{\mathbb{R}}$

$$G^J = Sp(g, \mathbb{R}) \ltimes H_{\mathbb{R}}^{(g,h)}$$

endowed with the following multiplication law

$$(M,(\lambda,\mu;\kappa))\cdot(M',(\lambda',\mu';\kappa'))=(MM',(\tilde{\lambda}+\lambda',\tilde{\mu}+\mu';\kappa+\kappa'+\tilde{\lambda}^t\mu'-\tilde{\mu}^t\lambda'))$$

with $M, M' \in Sp(g, \mathbb{R}), (\lambda, \mu; \kappa), (\lambda', \mu'; \kappa') \in H_{\mathbb{R}}^{(g,h)}$ and $(\tilde{\lambda}, \tilde{\mu}) = (\lambda, \mu)M'$. Then G^J acts on $\mathbb{H}_g \times \mathbb{C}^{(h,g)}$ transitively by

$$(1.2) \qquad (M,(\lambda,\mu;\kappa)) \cdot (\Omega,Z) = (M \cdot \Omega,(Z + \lambda\Omega + \mu)(C\Omega + D)^{-1}),$$

where
$$M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(g,\mathbb{R}), \ (\lambda,\mu;\kappa) \in H^{(g,h)}_{\mathbb{R}} \ \text{and} \ (\Omega,Z) \in \mathbb{H}_g \times \mathbb{C}^{(h,g)}.$$

We note that the Jacobi group G^J is *not* a reductive Lie group and also that the space $\mathbb{H}_g \times \mathbb{C}^{(h,g)}$ is not a symmetric space. We refer to [11]-[14] and [16] about automorphic forms on G^J and topics related to the content of this paper. From now on, we write $\mathbb{H}_{g,h} := \mathbb{H}_g \times \mathbb{C}^{(h,g)}$.

We let

$$\Gamma_{g,h} := \Gamma_g \ltimes H_{\mathbb{Z}}^{(g,h)}$$

be the discrete subgroup of G^{J} , where

$$H_{\mathbb{Z}}^{(g,h)} = \{ (\lambda, \mu; \kappa) \in H_{\mathbb{R}}^{(g,h)} \mid \lambda, \mu \in \mathbb{Z}^{(h,g)}, \quad \kappa \in \mathbb{Z}^{(h,h)} \}.$$

The aim of this paper is to find a fundamental domain for $\Gamma_{g,h}\backslash\mathbb{H}_{g,h}$. This article is organized as follows. In Section 2, we review the Minkowski domain and the Siegel's fundamental domain \mathcal{F}_g roughly. In Section 3, we find a fundamental domain for $\Gamma_{g,h}\backslash\mathbb{H}_{g,h}$ and present Riemannian metrics on the fundamental domain invariant under the action (1.2) of the Jacobi group G^J . In Section 4, we investigate the spectral theory of the Laplacian on the abelian variety A_Ω associated to $\Omega \in \mathcal{F}_g$.

2. Review on a Fundamental Domain \mathcal{F}_g for $\Gamma_g \backslash \mathbb{H}_g$

We let

$$\mathcal{P}_g = \left\{ Y \in \mathbb{R}^{(g,g)} \mid Y = {}^tY > 0 \right\}$$

be an open cone in \mathbb{R}^N with N = g(g+1)/2. The general linear group $GL(g,\mathbb{R})$ acts on \mathcal{P}_g transitively by

(2.1)
$$g \circ Y := gY^t g, \qquad g \in GL(g, \mathbb{R}), Y \in \mathcal{P}_g.$$

Thus \mathcal{P}_g is a symmetric space diffeomorphic to $GL(g,\mathbb{R})/O(g)$. For a matrix $A \in F^{(k,l)}$ and $B \in F^{(k,l)}$, we write $A[B] = {}^tBAB$ and for a square matrix A, $\sigma(A)$ denotes the trace of A.

The fundamental domain \mathcal{R}_g for $GL(g,\mathbb{Z})\backslash \mathcal{P}_g$ which was found by H. Minkowski [5] is defined as a subset of \mathcal{P}_g consisting of $Y=(y_{ij})\in \mathcal{P}_g$ satisfying the following conditions (M.1)-(M.2) (cf. [2, p. 191] or [4, p. 123]):

(M.1) $aY^ta \ge y_{kk}$ for every $a = (a_i) \in \mathbb{Z}^g$ in which a_k, \dots, a_g are relatively prime for $k = 1, 2, \dots, g$.

(M.2)
$$y_{k,k+1} \ge 0$$
 for $k = 1, \dots, g-1$.

We say that a point of \mathcal{R}_g is *Minkowski reduced* or simply *M-reduced*. \mathcal{R}_g has the following properties (R1)-(R6):

(R1) For any $Y \in \mathcal{P}_g$, there exist a matrix $A \in GL(g, \mathbb{Z})$ and $R \in \mathcal{R}_g$ such that Y = R[A] (cf. [2, p. 191] or [4, p. 139]). That is,

$$GL(g,\mathbb{Z})\circ\mathcal{R}_g=\mathcal{P}_g.$$

- (R2) \mathcal{R}_g is a convex cone through the origin bounded by a finite number of hyperplanes. \mathcal{R}_g is closed in \mathcal{P}_g (cf. [4, p. 139]).
- (R3) If Y and Y[A] lie in \mathcal{R}_g for $A \in GL(g,\mathbb{Z})$ with $A \neq \pm I_g$, then Y lies on the boundary $\partial \mathcal{R}_g$ of \mathcal{R}_g . Moreover $\mathcal{R}_g \cap (\mathcal{R}_g[A]) \neq \emptyset$ for only finitely many $A \in GL(g,\mathbb{Z})$ (cf. [4, p. 139]).
 - (R4) If $Y = (y_{ij})$ is an element of \mathcal{R}_g , then

$$y_{11} \le y_{22} \le \dots \le y_{gg}$$
 and $|y_{ij}| < \frac{1}{2}y_{ii}$ for $1 \le i < j \le g$.

We refer to [2, p. 192] or [4, pp. 123-124].

Remark. Grenier [1] found another fundamental domain for $GL(g,\mathbb{Z})\backslash \mathcal{P}_q$.

For $Y = (y_{ij}) \in \mathcal{P}_g$, we put

$$dY = (dy_{ij})$$
 and $\frac{\partial}{\partial Y} = \left(\frac{1 + \delta_{ij}}{2} \frac{\partial}{\partial y_{ij}}\right).$

Then we can see easily that

(2.2)
$$ds^2 = \sigma((Y^{-1}dY)^2)$$

is a $GL(g,\mathbb{R})$ -invariant Riemannian metric on \mathcal{P}_g and its Laplacian is given by

$$\Delta = \sigma \left(\left(Y \frac{\partial}{\partial Y} \right)^2 \right).$$

We also can see that

$$d\mu_g(Y) = (\det Y)^{-\frac{g+1}{2}} \prod_{i \le j} dy_{ij}$$

is a $GL(g,\mathbb{R})$ -invariant volume element on \mathcal{P}_g . The metric ds^2 on \mathcal{P}_g induces the metric $ds^2_{\mathcal{R}}$ on \mathcal{R}_g . Minkowski [5] calculated the volume of \mathcal{R}_g for the volume element $[dY] := \prod_{i \leq j} dy_{ij}$ explicitly. Later Siegel [7], [9] computed the volume of \mathcal{R}_g for the volume element [dY] by a simple analytic method and generalized this case to the case of any algebraic number field.

Siegel [8] determined a fundamental domain \mathcal{F}_g for $\Gamma_g \backslash \mathbb{H}_g$. We say that $\Omega = X + iY \in \mathbb{H}_g$ with X, Y real is Siegel reduced or S-reduced if it has the following three properties:

- (S.1) $\det(\operatorname{Im}(\gamma \cdot \Omega)) \leq \det(\operatorname{Im}(\Omega))$ for all $\gamma \in \Gamma_q$;
- (S.2) $Y = \operatorname{Im} \Omega$ is M-reduced, that is, $Y \in \mathcal{R}_q$;
- (S.3) $|x_{ij}| \leq \frac{1}{2}$ for $1 \leq i, j \leq g$, where $X = (x_{ij})$.

 \mathcal{F}_g is defined as the set of all Siegel reduced points in \mathbb{H}_g . Using the highest point method, Siegel proved the following (F1)-(F3) (cf. [2, pp. 194-197] or [4, p. 169]):

- (F1) $\Gamma_q \cdot \mathcal{F}_q = \mathbb{H}_q$, i.e., $\mathbb{H}_q = \bigcup_{\gamma \in \Gamma_q} \gamma \cdot \mathcal{F}_q$.
- (F2) \mathcal{F}_q is closed in \mathbb{H}_q .
- (F3) \mathcal{F}_g is connected and the boundary of \mathcal{F}_g consists of a finite number of hyperplanes.

For $\Omega = (\omega_{ij}) \in \mathbb{H}_g$, we write $\Omega = X + iY$ with $X = (x_{ij})$, $Y = (y_{ij})$ real and $d\Omega = (d\omega_{ij})$. We also put

$$\frac{\partial}{\partial \Omega} = \left(\frac{1 + \delta_{ij}}{2} \frac{\partial}{\partial \omega_{ij}}\right) \quad \text{and} \quad \frac{\partial}{\partial \overline{\Omega}} = \left(\frac{1 + \delta_{ij}}{2} \frac{\partial}{\partial \overline{\omega}_{ij}}\right).$$

Then

$$(2.3) ds_*^2 = \sigma(Y^{-1}d\Omega Y^{-1}d\overline{\Omega})$$

is a $Sp(g, \mathbb{R})$ -invariant Kähler metric on \mathbb{H}_g (cf. [8]) and H. Maass [3] proved that its Laplacian is given by

(2.4)
$$\Delta_* = 4 \sigma \left(Y^t \left(Y \frac{\partial}{\partial \overline{\Omega}} \right) \frac{\partial}{\partial \Omega} \right).$$

And

(2.5)
$$dv_g(\Omega) = (\det Y)^{-(g+1)} \prod_{1 \le i \le j \le g} dx_{ij} \prod_{1 \le i \le j \le g} dy_{ij}$$

is a $Sp(g,\mathbb{R})$ -invariant volume element on \mathbb{H}_g (cf. [10, p. 130]). The metric ds_*^2 given by (2.3) induces a metric ds_*^2 on \mathcal{F}_g .

Siegel [8] computed the volume of \mathcal{F}_q

(2.6)
$$\operatorname{vol}(\mathcal{F}_g) = 2 \prod_{k=1}^g \pi^{-k} \Gamma(k) \zeta(2k),$$

where $\Gamma(s)$ denotes the Gamma function and $\zeta(s)$ denotes the Riemann zeta function. For instance,

$$\operatorname{vol}(\mathcal{F}_1) = \frac{\pi}{3}, \quad \operatorname{vol}(\mathcal{F}_2) = \frac{\pi^3}{270}, \quad \operatorname{vol}(\mathcal{F}_3) = \frac{\pi^6}{127575}, \quad \operatorname{vol}(\mathcal{F}_4) = \frac{\pi^{10}}{200930625}.$$

3. A Fundamental Domain for $\Gamma_{g,h}\backslash \mathbb{H}_{g,h}$

Let E_{kj} be the $h \times g$ matrix with entry 1 where the k-th row and the j-th column meet, and all other entries 0. For an element $\Omega \in \mathbb{H}_q$, we set for brevity

$$(3.1) F_{kj}(\Omega) := E_{kj}\Omega, 1 \le k \le h, \ 1 \le j \le g.$$

For each $\Omega \in \mathcal{F}_q$, we define a subset P_{Ω} of $\mathbb{C}^{(h,g)}$ by

$$P_{\Omega} = \left\{ \sum_{k=1}^{h} \sum_{j=1}^{g} \lambda_{kj} E_{kj} + \sum_{k=1}^{h} \sum_{j=1}^{g} \mu_{kj} F_{kj}(\Omega) \mid 0 \le \lambda_{kj}, \mu_{kj} \le 1 \right\}.$$

For each $\Omega \in \mathcal{F}_q$, we define the subset D_{Ω} of $\mathbb{H}_{q,h}$ by

$$D_{\Omega} := \{ (\Omega, Z) \in \mathbb{H}_{a,h} \mid Z \in P_{\Omega} \}.$$

We define

$$\mathcal{F}_{g,h} := \bigcup_{\Omega \in \mathcal{F}_g} D_{\Omega}.$$

Theorem 3.1. $\mathcal{F}_{g,h}$ is a fundamental domain for $\Gamma_{g,h} \backslash \mathbb{H}_{g,h}$.

PROOF. Let $(\tilde{\Omega}, \tilde{Z})$ be an arbitrary element of $\mathbb{H}_{g,h}$. We must find an element (Ω, Z) of $\mathcal{F}_{g,h}$ and an element $\gamma^J = (\gamma, (\lambda, \mu; \kappa)) \in \Gamma_{g,h}$ with $\gamma \in \Gamma_g$ such that $\gamma^J \cdot (\Omega, Z) = (\tilde{\Omega}, \tilde{Z})$. Since \mathcal{F}_g is a fundamental domain for $\Gamma_g \backslash \mathbb{H}_g$, there exists an element γ of Γ_g and an element Ω of \mathcal{F}_g such that $\gamma \cdot \Omega = \tilde{\Omega}$. Here Ω is unique up to the boundary of \mathcal{F}_g .

We write

$$\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in \Gamma_g.$$

It is easy to see that we can find $\lambda, \mu \in \mathbb{Z}^{(h,g)}$ and $Z \in P_{\Omega}$ satisfying the equation

$$Z + \lambda \Omega + \mu = \tilde{Z}(C\Omega + D).$$

If we take $\gamma^J = (\gamma, (\lambda, \mu; 0)) \in \Gamma_{g,h}$, we see that $\gamma^J \cdot (\Omega, Z) = (\tilde{\Omega}, \tilde{Z})$. Therefore we obtain

$$\mathbb{H}_{g,h} = \bigcup_{\gamma^J \in \Gamma_{g,h}} \gamma^J \cdot \mathcal{F}_{g,h}.$$

Let (Ω, Z) and $\gamma^J \cdot (\Omega, Z)$ be two elements of $\mathcal{F}_{g,h}$ with $\gamma^J = (\gamma, (\lambda, \mu; \kappa)) \in \Gamma_{g,h}$. Then both Ω and $\gamma \cdot \Omega$ lie in \mathcal{F}_g . Therefore both of them either lie in the boundary of \mathcal{F}_g or $\gamma = \pm I_{2g}$. In the case that both Ω and $\gamma \cdot \Omega$ lie in the boundary of \mathcal{F}_g , both (Ω, Z) and $\gamma^J \cdot (\Omega, Z)$ lie in the boundary of $\mathcal{F}_{g,h}$. If $\gamma = \pm I_{2g}$, we have

(3.2)
$$Z \in P_{\Omega} \text{ and } \pm (Z + \lambda \Omega + \mu) \in P_{\Omega}, \quad \lambda, \mu \in \mathbb{Z}^{(h,g)}.$$

From the definition of P_{Ω} and (3.2), we see that either $\lambda = \mu = 0$, $\gamma \neq -I_{2g}$ or both Z and $\pm (Z + \lambda \Omega + \mu)$ lie on the boundary of the parallelepiped P_{Ω} . Hence either both (Ω, Z) and $\gamma^J \cdot (\Omega, Z)$ lie in the boundary of $\mathcal{F}_{g,h}$ or $\gamma^J = (I_{2g}, (0, 0; \kappa)) \in \Gamma_{g,h}$. Consequently $\mathcal{F}_{g,h}$ is a fundamental domain for $\Gamma_{g,h} \setminus \mathbb{H}_{g,h}$.

For a coordinate $(\Omega, Z) \in \mathbb{H}_{g,h}$ with $\Omega = (\omega_{\mu\nu}) \in \mathbb{H}_g$ and $Z = (z_{kl}) \in \mathbb{C}^{(h,g)}$, we put

$$\Omega = X + iY, X = (x_{\mu\nu}), Y = (y_{\mu\nu}) \text{real},
Z = U + iV, U = (u_{kl}), V = (v_{kl}) \text{real},
d\Omega = (d\omega_{\mu\nu}), dX = (dx_{\mu\nu}), dY = (dy_{\mu\nu}),
dZ = (dz_{kl}), dU = (du_{kl}), dV = (dv_{kl}),
d\overline{\Omega} = (d\overline{\omega}_{\mu\nu}), d\overline{Z} = (d\overline{z}_{kl}),$$

$$\frac{\partial}{\partial \Omega} = \left(\frac{1 + \delta_{\mu\nu}}{2} \frac{\partial}{\partial \omega_{\mu\nu}}\right), \quad \frac{\partial}{\partial \overline{\Omega}} = \left(\frac{1 + \delta_{\mu\nu}}{2} \frac{\partial}{\partial \overline{\omega}_{\mu\nu}}\right),$$

$$\frac{\partial}{\partial Z} = \begin{pmatrix} \frac{\partial}{\partial z_{11}} & \cdots & \frac{\partial}{\partial z_{h1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial z_{1g}} & \cdots & \frac{\partial}{\partial z_{hg}} \end{pmatrix}, \quad \frac{\partial}{\partial \overline{Z}} = \begin{pmatrix} \frac{\partial}{\partial \overline{z}_{11}} & \cdots & \frac{\partial}{\partial \overline{z}_{h1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial \overline{z}_{1g}} & \cdots & \frac{\partial}{\partial \overline{z}_{hg}} \end{pmatrix}.$$

Remark. The following metric

$$ds_{g,h}^{2} = \sigma \left(Y^{-1} d\Omega Y^{-1} d\overline{\Omega} \right) + \sigma \left(Y^{-1} {}^{t} V V Y^{-1} d\Omega Y^{-1} d\overline{\Omega} \right)$$
$$+ \sigma \left(Y^{-1} {}^{t} (dZ) d\overline{Z} \right)$$
$$- \sigma \left(V Y^{-1} d\Omega Y^{-1} {}^{t} (d\overline{\Omega}) + V Y^{-1} d\overline{\Omega} Y^{-1} {}^{t} (dZ) \right)$$

is a Kähler metric on $\mathbb{H}_{g,h}$ which is invariant under the action (1.2) of the Jacobi group G^J . Its Laplacian is given by

$$\Delta_{g,h} = 4 \sigma \left(Y^{t} \left(Y \frac{\partial}{\partial \overline{\Omega}} \right) \frac{\partial}{\partial \Omega} \right) + 4 \sigma \left(Y \frac{\partial}{\partial Z}^{t} \left(\frac{\partial}{\partial \overline{Z}} \right) \right)$$

$$+ 4 \sigma \left(V Y^{-1}^{t} V^{t} \left(Y \frac{\partial}{\partial \overline{Z}} \right) \frac{\partial}{\partial Z} \right)$$

$$+ 4 \sigma \left(V^{t} \left(Y \frac{\partial}{\partial \overline{\Omega}} \right) \frac{\partial}{\partial Z} \right) + 4 \sigma \left({}^{t} V^{t} \left(Y \frac{\partial}{\partial \overline{Z}} \right) \frac{\partial}{\partial \Omega} \right).$$

The following differential form

$$dv_{g,h} = (\det Y)^{-(g+h+1)} [dX] \wedge [dY] \wedge [dU] \wedge [dV]$$

is a G^J -invariant volume element on $\mathbb{H}_{q,h}$, where

$$[dX] = \wedge_{\mu < \nu} dx_{\mu\nu}, \quad [dY] = \wedge_{\mu < \nu} dy_{\mu\nu}, \quad [dU] = \wedge_{k,l} du_{kl} \quad \text{and} \quad [dV] = \wedge_{k,l} dv_{kl}.$$

The point is that the invariant metric $ds_{g,h}^2$ and its Laplacian are beautifully expressed in terms of the *trace* form. The proof of the above facts can be found in [15].

4. Spectral Decomposition of $L^2(A_{\Omega})$

We fix two positive integers g and h throughout this section.

For an element $\Omega \in \mathbb{H}_g$, we set

$$L_{\Omega} := \mathbb{Z}^{(h,g)} + \mathbb{Z}^{(h,g)}\Omega$$

We use the notation (3.1). It follows from the positivity of Im Ω that the elements E_{kj} , $F_{kj}(\Omega)$ ($1 \le k \le h$, $1 \le j \le g$) of L_{Ω} are linearly independent over \mathbb{R} . Therefore L_{Ω} is a lattice in $\mathbb{C}^{(h,g)}$ and the set $\{E_{kj}, F_{kj}(\Omega) \mid 1 \le k \le h, 1 \le j \le g\}$ forms an integral basis of L_{Ω} . We see easily that if Ω is an element of \mathbb{H}_g , the period matrix $\Omega_* := (I_g, \Omega)$ satisfies the Riemann conditions (RC.1) and (RC.2):

(RC.1)
$$\Omega_* J_q^{\ t} \Omega_* = 0$$
;

(RC.2)
$$-\frac{1}{i}\Omega_* J_g^{\ t}\overline{\Omega}_* > 0.$$

Thus the complex torus $A_{\Omega} := \mathbb{C}^{(h,g)}/L_{\Omega}$ is an abelian variety. For more details on A_{Ω} , we refer to [2] and [6].

It might be interesting to investigate the spectral theory of the Laplacian $\Delta_{g,h}$ on a fundamental domain $\mathcal{F}_{g,h}$. But this work is very complicated and difficult at this moment. It may be that the first step is to develop the spectral theory of the Laplacian Δ_{Ω} on the abelian variety A_{Ω} . The second step will be to study the spectral theory of the Laplacian Δ_* (see (2.4)) on the moduli space $\Gamma_g \backslash \mathbb{H}_g$ of principally polarized abelian varieties of dimension g. The final step would be to combine the above steps and more works to develop the spectral theory of the Laplacian $\Delta_{g,h}$ on $\mathcal{F}_{g,h}$. In this section, we deal only with the spectral theory of Δ_{Ω} on $L^2(A_{\Omega})$.

We fix an element $\Omega = X + iY$ of \mathbb{H}_g with $X = \operatorname{Re} \Omega$ and $Y = \operatorname{Im} \Omega$. For a pair (A, B) with $A, B \in \mathbb{Z}^{(h,g)}$, we define the function $E_{\Omega;A,B} : \mathbb{C}^{(h,g)} \longrightarrow \mathbb{C}$ by

$$E_{\Omega:A,B}(Z) = e^{2\pi i \left(\sigma \left({}^{t}AU\right) + \sigma \left((B - AX)Y^{-1}{}^{t}V\right)\right)},$$

where Z = U + iV is a variable in $\mathbb{C}^{(h,g)}$ with real U, V.

Lemma 4.1. For any $A, B \in \mathbb{Z}^{(h,g)}$, the function $E_{\Omega;A,B}$ satisfies the following functional equation

$$E_{\Omega;A,B}(Z + \lambda \Omega + \mu) = E_{\Omega;A,B}(Z), \quad Z \in \mathbb{C}^{(h,g)}$$

for all $\lambda, \mu \in \mathbb{Z}^{(h,g)}$. Thus $E_{\Omega;A,B}$ can be regarded as a function on A_{Ω} .

PROOF. We write $\Omega = X + iY$ with real X, Y. For any $\lambda, \mu \in \mathbb{Z}^{(h,g)}$, we have

$$\begin{split} E_{\Omega;A,B}(Z+\lambda\Omega+\mu) &= E_{\Omega;A,B}((U+\lambda X+\mu)+i(V+\lambda Y)) \\ &= e^{2\pi i \left\{\sigma\left({}^{t}A(U+\lambda X+\mu)\right)+\sigma\left((B-AX)Y^{-1}\,{}^{t}(V+\lambda Y)\right)\right\}} \\ &= e^{2\pi i \left\{\sigma\left({}^{t}AU+{}^{t}A\lambda X+{}^{t}A\mu\right)+\sigma\left((B-AX)Y^{-1}\,{}^{t}V+B\,{}^{t}\lambda-AX\,{}^{t}\lambda\right)\right\}} \\ &= e^{2\pi i \left\{\sigma\left({}^{t}AU\right)+\sigma\left((B-AX)Y^{-1}\,{}^{t}V\right)\right\}} \\ &= E_{\Omega;A,B}(Z). \end{split}$$

Here we used the fact that ${}^{t}A\mu$ and $B^{t}\lambda$ are integral.

We use the notations in Section 3.

Lemma 4.2. The metric

$$ds_{\Omega}^{2} = \sigma \left((\operatorname{Im} \Omega)^{-1} \, {}^{t} (dZ) \, d\overline{Z} \right) \right)$$

is a Kähler metric on A_{Ω} invariant under the action (1.2) of $\Gamma^{J} = Sp(g,\mathbb{Z}) \ltimes H_{\mathbb{Z}}^{(h,g)}$ on (Ω, Z) with Ω fixed. Its Laplacian Δ_{Ω} of ds_{Ω}^{2} is given by

$$\Delta_{\Omega} = \sigma \left((\operatorname{Im} \Omega) \frac{\partial}{\partial Z} t \left(\frac{\partial}{\partial \overline{Z}} \right) \right).$$

PROOF. Let $\tilde{\gamma} = (\gamma, (\lambda, \mu; \kappa)) \in \Gamma^J$ with $\gamma = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(g, \mathbb{Z})$ and $(\tilde{\Omega}, \tilde{Z}) = \tilde{\gamma} \cdot (\Omega, Z)$ with $\Omega \in \mathbb{H}_g$ fixed. Then according to [4, p. 33],

$$\operatorname{Im} \gamma \cdot \Omega = {}^{t}(C\overline{\Omega} + D)^{-1} \operatorname{Im} \Omega (C\Omega + D)^{-1}$$

and by (1.2),

$$d\tilde{Z} = dZ (C\Omega + D)^{-1}.$$

Therefore

$$(\operatorname{Im} \widetilde{\Omega})^{-1} {}^{t} (d\widetilde{Z}) d\widetilde{Z}$$

$$= (C\overline{\Omega} + D) (\operatorname{Im} \Omega)^{-1} {}^{t} (C\Omega + D) {}^{t} (C\Omega + D)^{-1} {}^{t} (dZ) d\overline{Z} (C\overline{\Omega} + D)^{-1}$$

$$= (C\overline{\Omega} + D) (\operatorname{Im} \Omega)^{-1} {}^{t} (dZ) d\overline{Z} (C\overline{\Omega} + D)^{-1} .$$

The metric $ds_{iI_g} = \sigma(dZ^t(d\overline{Z}))$ at Z = 0 is positive definite. Since G^J acts on $\mathbb{H}_{g,h}$ transitively, ds_{Ω}^2 is a Riemannian metric for any $\Omega \in \mathbb{H}_g$. We note that the differential operator Δ_{Ω} is invariant under the action of Γ^J . In fact, according to (1.2),

$$\frac{\partial}{\partial \tilde{Z}} = (C\Omega + D) \frac{\partial}{\partial Z}.$$

Hence if f is a differentiable function on A_{Ω} , then

$$\operatorname{Im} \widetilde{\Omega} \frac{\partial}{\partial \widetilde{Z}} {}^{t} \left(\frac{\partial f}{\partial \widetilde{Z}} \right)$$

$$= {}^{t} (C\overline{\Omega} + D)^{-1} \left(\operatorname{Im} \Omega \right) (C\Omega + D)^{-1} (C\Omega + D) \frac{\partial}{\partial Z} {}^{t} \left((C\overline{\Omega} + D) \frac{\partial f}{\partial \overline{Z}} \right)$$

$$= {}^{t} (C\overline{\Omega} + D)^{-1} \operatorname{Im} \Omega \frac{\partial}{\partial Z} {}^{t} \left(\frac{\partial f}{\partial \overline{Z}} \right) {}^{t} (C\overline{\Omega} + D).$$

Therefore

$$\sigma\left(\operatorname{Im}\,\tilde{\Omega}\,\frac{\partial}{\partial\tilde{Z}}\,{}^t\!\left(\frac{\partial}{\partial\bar{Z}}\right)\right) = \,\sigma\left(\operatorname{Im}\,\Omega\,\frac{\partial}{\partial Z}\,{}^t\!\left(\frac{\partial f}{\partial\overline{Z}}\right)\right).$$

By the induction on h, we can compute the Laplacian Δ_{Ω} .

We let $L^2(A_{\Omega})$ be the space of all functions $f: A_{\Omega} \longrightarrow \mathbb{C}$ such that

$$||f||_{\Omega} := \int_{A_{\Omega}} |f(Z)|^2 dv_{\Omega},$$

where dv_{Ω} is the volume element on A_{Ω} normalized so that $\int_{A_{\Omega}} dv_{\Omega} = 1$. The inner product $(\ ,\)_{\Omega}$ on the Hilbert space $L^2(A_{\Omega})$ is given by

$$(4.1) (f,g)_{\Omega} := \int_{A_{\Omega}} f(Z) \, \overline{g(Z)} \, dv_{\Omega}, \quad f,g \in L^{2}(A_{\Omega}).$$

Theorem 4.3. The set $\{E_{\Omega;A,B} \mid A, B \in \mathbb{Z}^{(h,g)}\}$ is a complete orthonormal basis for $L^2(A_{\Omega})$. Moreover we have the following spectral decomposition of Δ_{Ω} :

$$L^2(A_{\Omega}) = \bigoplus_{A,B \in \mathbb{Z}^{(h,g)}} \mathbb{C} \cdot E_{\Omega;A,B}.$$

Proof. Let

$$T = \mathbb{C}^{(h,g)}/(\mathbb{Z}^{(h,g)} \times \mathbb{Z}^{(h,g)}) = (\mathbb{R}^{(h,g)} \times \mathbb{R}^{(h,g)})/(\mathbb{Z}^{(h,g)} \times \mathbb{Z}^{(h,g)})$$

be the torus of real dimension 2hg. The Hilbert space $L^2(T)$ is isomorphic to the 2hg tensor product of $L^2(\mathbb{R}/\mathbb{Z})$, where \mathbb{R}/\mathbb{Z} is the one-dimensional real torus. Since $L^2(\mathbb{R}/\mathbb{Z}) = \bigoplus_{n \in \mathbb{Z}} \mathbb{C} \cdot e^{2\pi i n x}$, the Hilbert space $L^2(T)$ is

$$L^{2}(T) = \bigoplus_{A,B \in \mathbb{Z}^{(h,g)}} \mathbb{C} \cdot E_{A,B}(W),$$

where W = P + iQ, $P, Q \in \mathbb{R}^{(h,g)}$ and

$$E_{A,B}(W) := e^{2\pi i \sigma ({}^t AP + {}^t BQ)}, \quad A, B \in \mathbb{Z}^{(h,g)}.$$

The inner product on $L^2(T)$ is defined by

$$(4.2) \quad (f,g) := \int_0^1 \cdots \int_0^1 f(W) \, \overline{g(W)} \, dp_{11} \cdots dp_{hg} dq_{11} \cdots dq_{hg}, \quad f,g \in L^2(T),$$

where $W = P + iQ \in T$, $P = (p_{kl})$ and $Q = (q_{kl})$. Then we see that the set $\{E_{A,B}(W) \mid A, B \in \mathbb{Z}^{(h,g)}\}$ is a complete orthonormal basis for $L^2(T)$, and each $E_{A,B}(W)$ is an eigenfunction of the standard Laplacian

$$\Delta_T = \sum_{k=1}^h \sum_{l=1}^g \left(\frac{\partial^2}{\partial p_{kl}^2} + \frac{\partial^2}{\partial q_{kl}^2} \right).$$

We define the mapping $\Phi_{\Omega}: T \longrightarrow A_{\Omega}$ by

(4.3)
$$\Phi_{\Omega}(P+iQ) = (P+QX) + iQY, \quad P+iQ \in \mathbb{R}^{(h,g)}.$$

This is well defined. We can see that Φ_{Ω} is a diffeomorphism and that the inverse Φ_{Ω}^{-1} of Φ_{Ω} is given by

$$(4.4) \ \Phi_{\Omega}^{-1}(U+iV) = (U-VY^{-1}X) + iVY^{-1}, \quad U+iV \in A_{\Omega}, \ U,V \in \mathbb{R}^{(h,g)}.$$

Using (4.4), we can show that for $A, B \in \mathbb{Z}^{(h,g)}$, the function $E_{A,B}(W)$ on T is transformed to the function $E_{\Omega;A,B}$ on A_{Ω} via the diffeomorphism Φ_{Ω} . Using (4.2) and the diffeomorphism Φ_{Ω} , we can choose a normalized volume element dv_{Ω} on A_{Ω} and then we get the inner product on $L^2(A_{\Omega})$ defined by (4.1). This completes the proof.

References

- D. Grenier, An analogue of Siegel's φ-operator for automorphic forms for GL(n, Z), Trans. Amer. Math. Soc. 331, No. 1 (1992), 463-477.
- [2] J. Igusa, Theta Functions, Springer-Verlag, Berlin-Heidelberg-New York (1971).
- [3] H. Maass, Die Differentialgleichungen in der Theorie der Siegelschen Modulfunktionen, Math. Ann. 126 (1953), 44–68.
- [4] H. Maass, Siegel modular forms and Dirichlet series, Lecture Notes in Math. 216, Springer-Verlag, Berlin-Heidelberg-New York (1971).
- [5] H. Minkowski, Gesammelte Abhandlungen, Chelsea, New York (1967).
- [6] D. Mumford, Tata Lectures on Theta I, Progress in Math. 28, Boston-Basel-Stuttgart (1983).
- [7] C. L. Siegel, The volume of the fundamental domain for some infinite groups, Transactions of AMS. 39 (1936), 209-218.
- [8] C. L. Siegel, Symplectic geometry, Amer. J. Math. 65 (1943), 1-86; Academic Press, New York and London (1964); Gesammelte Abhandlungen, no. 41, vol. II, Springer-Verlag (1966), 274-359.
- [9] C. L. Siegel, Zur Bestimmung des Volumens des Fundamental Bereichs der unimodularen Gruppe, Math. Ann. 137 (1959), 427-432.

- [10] C. L. Siegel, Topics in Complex Function Theory, Wiley-Interscience, New York, vol. III (1973).
- [11] J.-H. Yang, Remarks on Jacobi forms of higher degree, Proc. of the 1993 Workshop on Automorphic Forms and Related Topics, the Pyungsan Institute for Mathematical Sciences, Seoul (1993), 33-58.
- [12] J.-H. Yang, Singular Jacobi forms, Trans. of American Math. Soc. 347, No. 6 (1995), 2041-2049.
- [13] J.-H. Yang, Construction of vector valued modular forms from Jacobi forms, Canadian J. of Math. 47 (6) (1995), 1329-1339.
- [14] J.-H. Yang, A geometrical theory of Jacobi forms of higher degree, Proceedings of Symposium on Hodge Theory and Algebraic Geometry (edited by Tadao Oda), Sendai, Japan (1996), 125-147 or Kyungpook Math. J. 40, no. 2 (2000), 209-237.
- [15] J.-H. Yang, Invariant metrics and Laplacians on the Siegel-Jacobi spaces, arXiv:math.NT/ 0507215 v1.
- [16] C. Ziegler, Jacobi forms of higher degree. Abh. Math. Sem. Univ. Hamburg 59 (1989), 191-224.

Received November 6, 2005

Revised version received February 4, 2006

Department of Mathematics, Inha University, Incheon 402-751, Republic of Korea $E\text{-}mail\ address$: jhyang@inha.ac.kr