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Preface

A certain nilpotent Lie group plays an important role in the study of the
foundations of quantum mechanics ( cf. [30] and [41] ) and the study of theta
functions ( see [4], [5], [14], [27], [28], [31], [39], [42], [43], [44] and [46]).

For any positive integers m and n, we consider the Heisenberg group

H
(n,m)
R :=

{
(λ, µ, κ) | λ, µ ∈ R(m,n), κ ∈ R(m,m), κ + µ tλ symmetric

}

endowed with the following multiplication law

(λ, µ, κ) ◦ (λ′, µ′, κ′) = (λ + λ′, µ + µ′, κ + κ′ + λ tµ′ − µ tλ′).

We let

H
(n,m)
Z =

{
(λ, µ, κ) ∈ H

(n,m)
R | λ, µ ∈ Z(m,n), κ ∈ Z(m,m)

}

be the discrete subgroup of H
(n,m)
R . The Heisenberg group H

(n,m)
R is embed-

ded in the symplectic group Sp(m + n,R) via the mapping

H
(n,m)
R 3 (λ, µ, κ) 7−→




In 0 0 tµ
λ Im µ κ
0 0 In −tλ
0 0 0 Im


 ∈ Sp(m + n,R).

This Heisenberg group is a 2-step nilpotent Lie group and is important in
the study of smooth compactification of the Siegel modular variety. In fact,
H

(n,m)
R is obtained as the unipotent radical of the parabolic subgroup of the

rational boundary component Fn( cf. [6] pp. 122-123, [29] p. 21 or [52] p. 36). In
the case m = 1, the study on this Heisenberg group was done by many
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6 Preface

mathematicians, e.g., P. Cartier [4], J. Igusa [14], D. Mumford [27], [28] and
many analysts(cf. [2]) explicitly. For the case m > 1, the multiplication law
is a little different from that of the Heisenberg group which is usually known
and needs much more complicated computation than the case m = 1.

The aim of this book is to investigate the Heisenberg group H
(n,m)
R in more

detail and understand its relation to theta functions and the Weil representa-
tion. In the previous papers [42], [43] and [44], the author decomposed the L2-
space L2

(
H

(n,m)
Z \H(n,m)

R

)
with respect to the right regular representation of

H
(n,m)
R explicitly and related the study of H

(n,m)
R to that of theta functions.

We need to investigate H
(n,m)
R for the study of Jacobi forms ( cf. [52], [58]), the

study of harmonic analysis on the Jacobi group and degeneration of abelian
varieties ( cf. [6].

This book is organized as follows. The book consists of two chapters. In
Section 1.1, we introduce the Heisenberg group H

(n,m)
R which will be inves-

tigated in the subsequent sections. And we find the Lie algebra of H
(n,m)
R

and obtain the commutation relation for H
(n,m)
R . In Section 1.2, we give an

explicit description of theta functions due to J. Igusa ( cf. [14] or [27] ) and
identify the theta functions with the smooth functions on H

(n,m)
R satisfying

some conditions. The results of this section will be used later. In Section
1.3, using the Mackey decomposition of a locally compact group ( cf. [24] ),
we introduce the induced representations of H

(n,m)
R and compute the unitary

dual of H
(n,m)
R . In Section 1.4, we realize the Schrödinger representation of

H
(n,m)
R as the the representation of H

(n,m)
R induced by the one-dimensional

unitary character of a certain subgroup of H
(n,m)
R . In Section 1.5, we con-

sider the Fock representation
(
UF,M,HF,M

)
of H

(n,m)
R . We prove that for

a positive definite symmetric half-integral matrix M of degree m, UF,M is
unitarily equivalent to the Schrödinger representation US,M. We also find an
orthonormal basis for the representation space HF,M. This section is mainly
based on the papers [31, 32, 45]. In Section 1.6, we prove that for any positive
definite symmetric, half-integral matrix of degree m, the lattice representa-
tion πM of H

(n,m)
R is unitarily equivalent to the ( det 2M )n-multiples of

the Schrödinger representation US,M. We give a relation between the lat-
tice representation πM and theta functions. This section is based on the
paper [46]. In Section 1.7, we find the coadjoint orbits of H

(n,m)
R . And we

describe explicitly the connection between the coadjoints orbits and the irre-
ducible unitary representations of H

(n,m)
R following the work of A. Kirillov ( cf.

[16], [17] and [18] ). In Section 1.8, considering the Schrödinger representation(
US,Im , L2

(
R(m,n), dξ

) )
, we study the Hermite operators and the Hermite

functions. We prove that Hermite functions defined in this section form an
orthonormal basis for L2

(
R(m,n), dξ

)
and eigenfunctions for Hermite opera-

tors, the Fourier transform and the Fourier cotransform. We mention that
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Hermitian functions are used to construct non-holomorphic modular forms
of half-integral weight ( cf. [43] ). Implicitly the study of the Heisenberg group
H

(n,m)
R implies that the confluent hypergeometric equations (in this case, the

Hermite equations) are related to the study of automorphic forms. In Section
1.9, we investigate the irreducible components of L2

(
H

(n,m)
Z \H(n,m)

R

)
. We

describe the connection among these irreducible components, the Schrödinger
representations, the Fock representations and the lattice representations ex-
plicitly. We also provide the orthonormal bases for these representation spaces
respectively. A decomposition of L2(Γ\G) for a general nilpotent Lie group
G and a discrete subgroup Γ of G was investigated by C. C. Moore ( cf. [26] ).

In Section 2.1, we briefly review the symplectic group and its action on
the Siegel upper half plane to be needed in the subsequent sections. We con-
struct the universal covering group of the symplectic group. In Section 2.2, we
present some properties of the geometry on the Siegel upper half plane which
are used in the subsequent sections. In Section 2.3, we study the Weil repre-
sentation associated to a positive definite symmetric real matrix of degree m.
We describe the explicit actions for the Weil representation. We review the
results on the Weil representation which were obtained by Kashiwara and
Vergne [15]. In Section 2.4, we construct the covariant maps for the Weil rep-
resentation. In Section 2.5, we review various type of theta series associated
to quadratic forms. In Section 2.6, we discuss the theta series with harmonic
coefficients. Pluriharmonic polynomials play an important role in the study
of the Weil representation. We prove that the theta series with pluriharmonic
polynomials as coefficients are a modular form for a suitable congruence sub-
group of the Siegel modular group. This section is mainly based on the book
[28] which dealt with the case m = 1. In Section 2.7, we investigate the re-
lation between the Weil representation and the theta series. We construct
modular forms using the covariant maps for the Weil representation. In Sec-
tion 2.8, we discuss the spectral theory on the principally polarized abelian
variety AΩ attached to an element Ω of the Siegel upper half plane. We de-
compose the L2-space of AΩ into irreducibles explicitly. We refer to [47] for
more detail.

I want to mention that a Heisenberg group was paid to an attention by
some differential geometers, e.g., M. L. Gromov, in the sense of a parabolic
geometry. A Heisenberg group is regarded as a principal fibre bundle over
an Euclidean space with a vector space or a circle as fibres and may be also
regarded as the boundary of a complex ball. The geometry of this group is
quite different from that of an Euclidean space. We refer to the interesting
paper [5] of P. Deligne.

Professor Dr. Friedrich Hirzebruch passed away on May 27, 2012. I would
like to send my condolences for his death. He was very kind to me during my
stay at MPIM, Bonn. I dedicate this book to him. Finally I hope that this
book will be very useful in the study of the theory of harmonic analysis on
the Siegel-Jacobi space.
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Notations: We denote by Z, R and C the ring of integers, the field of real
numbers, and the field of complex numbers respectively. C∗ denotes the
multiplicative group consisting of all nonzero complex numbers. C∗1 denotes
the multiplicative group consisting of all complex numbers z with |z| = 1.
Sp(n,R) denotes the symplectic group of degree n. Hn denotes the Siegel
upper half plane of degree n. The symbol “:=” means that the expression
on the right is the definition of that on the left. We denote by Z+ the set of
all positive integers. F (k,l) denotes the set of all k × l matrices with entries
in a commutative ring F . For any M ∈ F (k,l), tM denotes the transpose of
a matrix M . For a complex matrix A, A denotes the complex conjugate of
A. The diagonal matrix with entries a1, · · · , an on the diagonal position is
denoted by diag(a1, · · · , an). For A ∈ F (k,k), σ(A) denotes the trace of A.
For A ∈ F (k,l) and B ∈ F (k,k), we set B[A] = tABA. Ik denotes the identity
matrix of degree k. For a positive integer m, Sym (m,K) denotes the vector
space consisting of all symmetric m×m matrices with entries in a commuta-
tive ring K. If H is a complex matrix or a complex bilinear form on a complex
vector space, Re H and Im H denote the real part of H and the imaginary
part of H respectively. If X is a space, S(X), C(X) and C∞c (X) denotes
the Schwarz space of infinitely differentiable functions on X that are rapidly
decreasing at infinity, the space of all continuous functions on X and the vec-
tor space consisting of all compactly supported and infinitely differentiable
functions on X respectively. We inroduce the following notations :

Z(m,n)
≥0 =

{
J = (Jka) ∈ Z(m,n) | Jka ≥ 0 for all k, a

}
,

|J | =
∑

k,a

Jka for J = (Jka) ∈ Z(m,n)
≥0 ,

J ± εka =(J11, · · · , Jka ± 1, · · · , Jmn),
J ! =J11! · · · Jka! · · · Jmn!.

For ξ = (ξka) ∈ R(m,n) or C(m,n) and J = (Jka) ∈ Z(m,n)
≥0 , we denote

ξJ = ξJ11
11 ξJ12

12 · · · ξJka

ka · · · ξJmn
mn .
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Chapter 1

Heisenberg Groups

1.1 The Heisenberg Group H
(n,m)
R

For any two positive integer m and n, we let

H
(n,m)
R =

{
(λ, µ, κ)

∣∣∣ λ, µ ∈ R(m,n), κ ∈ R(m,m), κ + µ tλ symmetric
}

be the Heisenberg group endowed with the following multiplication law

(λ, µ, κ) ◦ (λ0, µ0, κ0) := (λ + λ0, µ + µ0, κ + κ0 + λ tµ0 − µ tλ0). (1.1.1)

We observe that H
(n,m)
R is a 2-step nilpotent Lie group. It is easy to see that

the inverse of an element (λ, µ, κ) ∈ H
(n,m)
R is given by

(λ, µ, κ)−1 = (−λ,−µ,−κ + λ tµ− µ tλ).

Now we put

[λ, µ, κ] = (0, µ, κ) ◦ (λ, 0, 0) = (λ, µ, κ− µ tλ). (1.1.2)

Then H
(n,m)
R may be regarded as a group equipped with the following mul-

tiplication

[λ, µ, κ] ¦ [λ0, µ0, κ0] = [λ + λ0, µ + µ0, κ + κ0 + λ tµ0 + µ0
tλ]. (1.1.3)

The inverse of [λ, µ, κ] ∈ H
(n,m)
R is given by

[λ, µ, κ]−1 = [−λ,−µ,−κ + λ tµ + µ tλ].

We set

A =
{

[0, µ, κ] ∈ H
(n,m)
R

∣∣∣ µ ∈ R(m,n), κ = tκ ∈ R(m,m)
}

. (1.1.4)

11



12 1 Heisenberg Groups

Then A is a commutative normal subgroup of H
(n,m)
R . Let Â be the Pontraja-

gin dual of A, i.e., the commutative group consisting of all unitary characters
of A. Then Â is isomorphic to the additive group R(m,n) × Sym (m,R) via

〈a, â〉 := e2πiσ(µ̂ tµ+κ̂κ), a = [0, µ, κ] ∈ A, â = (µ̂, κ̂) ∈ Â. (1.1.5)

We put
S =

{
[λ, 0, 0] ∈ H

(n,m)
R

∣∣∣ λ ∈ R(m,n)
} ∼= R(m,n). (1.1.6)

Then S acts on A as follows:

αλ([0, µ, κ]) := [0, µ, κ + λ tµ + µ tλ], αλ = [λ, 0, 0] ∈ S. (1.1.7)

It is easy to see that the Heisenberg group
(
H

(n,m)
R , ¦

)
is isomorphic to the

semidirect product GH := S n A of A and S whose multiplication is given
by

(λ, a) · (λ0, a0) = (λ + λ0, a + αλ(a0)), λ, λ0 ∈ S, a, a0 ∈ A.

On the other hand, S acts on Â by

α∗λ(â) := (µ̂ + 2κ̂λ, κ̂), [λ, 0, 0] ∈ S, â = (µ̂, κ̂) ∈ Â. (1.1.8)

Then we have the relation 〈αλ(a), â〉 = 〈a, α∗λ(â)〉 for all a ∈ A and â ∈ Â.

We have two types of S-orbits in Â.

Type I. Let κ̂ ∈ Sym (m,R) with κ̂ 6= 0. The S-orbit of â(κ̂) := (0, κ̂) ∈ Â
is given by

Ôκ̂ :=
{

(2κ̂λ, κ̂) ∈ Â
∣∣∣ λ ∈ R(m,n)

} ∼= R(m,n). (1.1.9)

Type II. Let ŷ ∈ R(m,n). The S-orbit Ôŷ of â(ŷ) := (ŷ, 0) is given by

Ôŷ := { (ŷ, 0) } = {â(ŷ)} . (1.1.10)

We have

Â =


 ⋃

κ̂∈Sym(m,R)

Ôκ̂


 ⋃


 ⋃

ŷ∈R(m,n)

Ôŷ




as a set. The stabilizer Sκ̂ of S at â(κ̂) = (0, κ̂) is given by

Sκ̂ = {0}. (1.1.11)

And the stabilizer Sŷ of S at â(ŷ) = (ŷ, 0) is given by

Sŷ =
{

[λ, 0, 0]
∣∣∣ λ ∈ R(m,n)

}
= S ∼= R(m,n). (1.1.12)
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The following matrices

X0
kl :=




0 0 0 0
0 0 0 1

2 (Ekl + Elk)
0 0 0 0
0 0 0 0


 , 1 ≤ k ≤ l ≤ m,

Xka :=




0 0 0 0
Eka 0 0 0
0 0 0 −tEka

0 0 0 0


 , 1 ≤ k ≤ m, 1 ≤ a ≤ n,

X̂lb :=




0 0 0 tElb

0 0 Elb 0
0 0 0 0
0 0 0 0


 , 1 ≤ l ≤ m, 1 ≤ b ≤ n

form a basis of the Lie algebra H(n,m)
R of the real Heisenberg group H

(n,m)
R .

Here Ekl denotes the m×m matrix with entry 1 where the k-th row and the
l-th column meet, all other entries 0 and Eka (resp. Elb) denotes the m × n
matrix with entry 1 where the k-th (resp. the l-th) row and the a-th (resp.
the b-th) column meet, all other entires 0. By an easy calculation, we see that
the following vector fields

D0
kl :=

∂

∂κkl
, 1 ≤ k ≤ m,

Dka :=
∂

∂λka
−




k∑
p=1

µpa
∂

∂κpk
+

m∑

p=k+1

µpa
∂

∂κkp


 , 1 ≤ k ≤ m, 1 ≤ a ≤ n,

D̂lb :=
∂

∂µlb
+




l∑
p=1

λpb
∂

∂κpl
+

m∑

p=l+1

λpb
∂

∂κlp


 , 1 ≤ k ≤ m, 1 ≤ a ≤ n

form a basis for the Lie algebra of left-invariant vector fields on the Lie group
H

(n,m)
R .

Lemma 1. We have the following Heisenberg commutation relations

[ D0
kl, D

0
st ] =[ D0

kl, Dsa ] = [ D0
kl, D̂sa ] = 0,

[ Dka, Dlb ] =[ D̂ka, D̂lb ] = 0,

[ Dka, D̂lb ] = 2 δab D0
kl,

where 1 ≤ k, l, s, t ≤ m, 1 ≤ a, b ≤ n and δab denotes the Kronecker delta
symbol.

Proof. The proof follows from a straightforward calculation. ¤



14 1 Heisenberg Groups

We put

Z0
kl := −√−1 D0

kl, 1 ≤ k ≤ l ≤ m,

Y +
ka :=

1
2

(Dka +
√−1 D̂ka), 1 ≤ k ≤ m, 1 ≤ a ≤ n,

Y −
lb :=

1
2

(Dlb −
√−1 D̂lb), 1 ≤ l ≤ m, 1 ≤ b ≤ n.

Then it is easy to see that the vector fields Z0
kl, Y +

ka, Y −
lb form a basis of the

complexification of the real Lie algebra H(n,m)
R .

Lemma 2. We have the following commutation relations

[Z0
kl, Z

0
st] = [Z0

kl, Y
+
sa] = [Z0

kl, Y
−
sa ] = 0,

[Y +
ka, Y +

lb ] = [Y −
ka, Y −

lb ] = 0,

[Y +
ka, Y −

lb ] = δab Z0
kl,

where 1 ≤ k, l, s, t ≤ m and 1 ≤ a, b ≤ n.

Proof. It follows immediately from Lemma 1. ¤
We let E•

kl := Ekl + Elk for 1 ≤ k ≤ l ≤ m. We put

Rkl(r) := exp
(
2rX0

kl

)
= (0, 0, rE•

kl), r ∈ R,

Psa(x) := exp
(
xXsa

)
= (xEsa, 0, 0), x ∈ R,

Qtb(y) := exp
(
yX̂tb

)
= (0, yEtb, 0), y ∈ R,

where 1 ≤ k ≤ l ≤ m, 1 ≤ s, t ≤ m and 1 ≤ a, b ≤ n. Then these one-
parameter subgroups generate the Heisenberg group H

(n,m)
R . They satisfy

the Weyl commutation relations :

Psa(x) ◦Qsa(y) = Qsa(y) ◦ Psa(x) ◦Rss(xy) ( all others commute ),

where 1 ≤ s ≤ m and 1 ≤ a ≤ n.

J. von Neumann [30] and M. Stone [38] proved the following uniqueness
theorem simultaneously and independently.

Theorem 1. Let π1 and π2 be two irreducible unitary representations of the
Heisenberg group H

(n,m)
R such that

π1((0, 0, κ)) = π2((0, 0, κ)) for all κ = tκ ∈ R(m,m).

Then π1 is unitarily equivalent to π2.

We omit the proof of the above theorem. We refer to [21] for the proof of
Theorem 1 in the case m = 1 and also to [4] and [28] for more detail.
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1.2 Theta Functions

We fix an element Ω ∈ Hn once and for all. From now on, we put i =
√−1.

Let M be a positive definite, symmetric even integral matrix of degree m. A
holomorphic function f : C(m,n) −→ C satisfying the following equation

f(W + ξΩ + η) = e−πi σ{M(ξΩ tξ + 2 ξ tW )}f(W ), W ∈ C(m,n) (1.2.1)

for all ξ, η ∈ Z(m,n) is called a theta function of level M with respect to Ω.
The set RΩ

M of all theta functions of level M with respect to Ω is a complex
vector space of dimension (det M)n with a basis consisting of theta functions

ϑ(M)

[
A
0

]
(Ω,W ) :=

∑

N∈Z(m,n)

eπi σ{M((N+A)Ω t(N+A) + 2 W t(N+A))}, (1.2.2)

where A runs over a complete system of the cosets M−1Z(m,n)/Z(m,n).

Definition 1. Let S be a positive definite, symmetric real matrix of degree
m and let A,B ∈ R(m,n). We define the theta function

ϑ(S)

[
A
B

]
(Ω,W ) =

∑

N∈Z(m,n)

eπi σ{S((N+A)Ω t(N+A) + 2 (W+B) t(N+A))} (1.2.3)

with characteristic (A,B) converging normally on Hn × C(m,n).

We have a general definition of theta functions.

Definition 2. Let V be a complex vector space and let L ⊂ V be a lattice
of V . A theta function on V relative to L is a nonzero holomorphic function
ϑ on V satisfying the following condition

ϑ(W + ξ) = e2πi(Qξ(W )+cξ)ϑ(W ),

where Qξ is a C-linear form on V and cξ is an element of C, for every W ∈ V
and ξ ∈ L.

If ϑ is a theta function on V relative to L, then the mapping Jϑ : L×V −→
C∗ defined by

Jϑ(ξ, W ) := e2πi(Qξ(W )+cξ), ξ ∈ L, W ∈ V

is easily seen to be an automorphic factor. This means that Jϑ satisfies the
following condition

Jϑ(ξ1 + ξ2,W ) = Jϑ(ξ1,W + ξ2) Jϑ(ξ2,W )

for all ξ1, ξ2 ∈ L and W ∈ V. We observe that for all ξ1, ξ2 ∈ L and W ∈ V,
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Qξ1+ξ2(W ) + cξ1+ξ2 ≡ Qξ1(W + ξ2) + Qξ2(W ) + cξ1 + cξ2 mod Z.

Jϑ is called the automorphic factor of the theta function ϑ on V relative to L.

Theorem 2. (Igusa [14], p.67). Let J : L × V −→ C× be the automorphic
factor of a theta function ϑ on V relative to L. Then there exists a unique
triple (Q, `, ψ) such that

J(ξ,W ) = eπ{Q(W,ξ)+ 1
2 Q(ξ,ξ)+2i `(ξ)}ψ(ξ), ξ ∈ L, W ∈ V, (1.2.4)

where

1. Q is a quasi-hermitian form on V × V,
2. the hermitian form H := Her (Q) defined by

H(W1,W2) =
1
2i

{
Q(iW1, W2)−Q(W1, iW2)

}
, W1, W2 ∈ V

is a Riemann form with respect to L, that is, H = tH > 0 and (Im H)(L×
L) ⊂ Z,

3. ` : V −→ C is a C-linear form on V ,
4. ψ is a second degree character of L which is associated with A := Im H,
5. ψ is strongly associated with A.

Remark 1. (4) means that ψ : L −→ C∗1 is a semi-character of L satisfying
the functional equation

ψ(ξ1 + ξ2) = eπiA(ξ1,ξ2)ψ(ξ1)ψ(ξ2), ξ1, ξ2 ∈ L. (∗)

Definition 3. A theta function with the automorphic factor of the form
(1.2.4) is called a theta function of type (Q, `, ψ). We denote by L(Q, `, ψ)
the union of theta functions of type (Q, `, ψ) and the constant 0. A theta
function of type (Q, `, ψ) is said to be normalized if SymQ = 0 and ` = 0.
Here Sym Q : V × V −→ C is a symmetric C-linear form on V × V defined
by

(SymQ)(z, w) =
1
2i

{
Q(iz, w) + Q(z, iw)

}
, z, w ∈ V.

We observe that Q = Her Q + Sym Q. We note that Sym Q = 0 if and only
if Q = Her Q = H. We denote by Th(H,ψ, L) the union of the set of all
normalized theta functions of type (H, 0, ψ) and the constant 0. It is easily
seen that if ϑ ∈ Th(H, ψ, L), for all W ∈ V, ξ ∈ L, we have

ϑ(W + ξ) = eπH(W+ 1
2 ξ,ξ)ψ(ξ) ϑ(W ). (1.2.5)

Theorem 3. Let S be a positive definite, symmetric integral matrix of degree
m and let A,B be two m×n real matrices. Then for Ω ∈ Hn and W ∈ C(m,n),
we have
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(θ.1) ϑ(S)

[
A
B

]
(Ω,−W ) = ϑ(S)

[−A
−B

]
(Ω,W ),

(θ.2) ϑ(S)

[
A
B

]
(Ω,W + λΩ + µ)

= e−πi σ{S(λΩ tλ + 2 (W+µ) tλ)} e−2πi σ(SB tλ) · ϑ(S)

[
A + λ
B + µ

]
(Ω, W )

for all λ, µ ∈ R(m,n).

(θ.3) ϑ(S)

[
A
B

]
(Ω, W ) = eπi σ{S(AΩ tA) + 2 (W+B) tA)} ϑ(S)

[
0
0

]
(Ω,W +AΩ+B).

Moreover, if S is a positive definite, symmetric integral matrix of degree
m, we have

(θ.4) ϑ(S)

[
A + ξ
B + η

]
(Ω,W ) = e2πi σ(SAtη) ϑ(S)

[
A
B

]
(Ω, W ).

for all ξ, η ∈ Z(m,n).

(θ.5) ϑ(S)

[
A
B

]
(Ω, W + ξΩ + η)

= e−πi σ{S(ξΩ tξ + 2 W tξ)} · e2πi σ{S(A tη−B tξ)} · ϑ(S)

[
A
B

]
(Ω, W )

for all ξ, η ∈ Z(m,n).

Proof. (θ.1) follows immediately from the definition (1.2.3). (θ.2) follows im-
mediately from the relation

(N + A)Ω t(N + A) + 2(W + λΩ + µ + B) t(N + A)

= (N + A + λ)Ω t(N + A + λ) + 2(W + µ + B) t(N + A + λ)

− (N + A)Ω tλ + λΩ t(N + A)− λΩ tλ− 2(W + µ + B) tλ.

If we put A = B = 0 and replace λ, µ by A,B in (θ.2), then we obtain (θ.3).
For ξ, η ∈ Z(m,n), we have

ϑ(S)

[
A + ξ
B + η

]
(Ω, W )

=
∑

N∈Z(m,n)

eπi σ{S((A+N+ξ)Ω t(A+N+ξ) + 2 (W+B) t(A+N+ξ))}

× e2πi σ{Sη t(N+ξ)} · e2πi σ(S tηA)

= e2πi σ(SA tη) · ϑ(S)

[
A
B

]
(Ω, W ).
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Here in the last equality we used the fact that σ(Sη t(N +ξ)) ∈ Z because S is
integral. (θ.5) follows from (θ.2), (θ.4) and the fact that σ(Sη tξ) is integral.
¤

For a positve definite, symmetric real matrix S of degree m, Ω ∈ Hn and
A,B ∈ R(m,n), we put

χS,Ω,A,B(ξΩ + η) := χS,Ω,A,B(ξ, η) := e2πi σ{S(A tη−B tξ)}, (1.2.6)

where ξ, η ∈ Z(m,n).

We define

qS,Ω(W ) =
1
2

σ
(
SW (Ω −Ω)−1 tW

)
, W ∈ C(m,n) (1.2.7)

and also define

HS,Ω(W1, W2) = 2 i σ
(
SW1(Ω −Ω)−1 tW 2

)
, W1,W2 ∈ C(m,n). (1.2.8)

It is easy to check that HS,Ω is a positive hermitian form on C(m,n).

Lemma 3. For W ∈ C(m,n) and l ∈ Z(m,n)Ω + Z(m,n), we have

qS,Ω(W + l) = qS,Ω(W ) + qS,Ω(l) + σ
(
Sl(Ω −Ω)−1 tW

)
(1.2.9)

and

HS,Ω

(
W +

l

2
, l

)
= σ

(
S

(
W + l

2

)
(Im Ω)−1 tl

)
(1.2.10)

−2 i σ
(
S

(
W + l

2

)
tξ

)
,

where l = ξΩ + η, ξ, η ∈ Z(m,n).

Proof. It follows immediately from a straightforward computation. ¤

Lemma 4. Let S be a positive definite, symmetric integral matrix of degree
m. For Ω ∈ Hn, we let LΩ := Z(m,n)Ω + Z(m,n) be the lattice in C(m,n). We
define the mapping ψS,Ω : LΩ −→ C∗1 by

ψS,Ω(ξΩ + η) = eπi σ(Sη tξ), ξ, η ∈ Z(m,n). (1.2.11)

Then

(a) ψS,Ω is a second-degree character of LΩ associated with Im HS,Ω .

(b) ψS,Ω · χS,Ω,A,B is a second-degree character of LΩ associated with
Im HS,Ω .

Proof. (a) We fix l = ξΩ + η ∈ LΩ with ξ, η ∈ Z(m,n). We define fl : LΩ −→
C×1 by
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fl(l1) :=
ψS,Ω(l1 + l)

ψS,Ω(l1)ψS,Ω(l)
, l1 ∈ LΩ .

It is easy to see that fl is a character of LΩ and hence to see that the map
from LΩ × LΩ to C∗1 defined by

(l1, l2) 7−→ ψS,Ω(l1 + l2)
ψS,Ω(l1)ψS,Ω(l2)

is a bicharacter of LΩ , i.e., a character of LΩ in l1 and l2. Hence ψS,Ω is a
second degree character of LΩ . In order to show that ψS,Ω is associated with
HS,Ω , it is enough to prove that

ψS,Ω(l1 + l2) = eπiAS,Ω(l1,l2) ψS,Ω(l1)ψS,Ω(l2) (1.2.12)

for all l1, l2 ∈ LΩ . Here AS,Ω denotes the imaginary part of the positive
hermitian form HS,Ω . By an easy computation, we have

AS,Ω(l1, l2) = σ{S(ξ1
tη2 − η1

tξ2)}, (1.2.13)

where li = ξiΩ + ηi ∈ LΩ ( 1 ≤ i ≤ 2 ). Hence (1.2.12) follows immediately
from (1.2.13).

(b) We fix l = ξΩ + η ∈ LΩ with ξ, η ∈ Z(m,n). We put ψ̃S,Ω,A,B := ψS,Ω ·
χS,Ω,A,B . Then the map f̃l : LΩ −→ C∗1 defined by

f̃l(l1) =
ψ̃S,Ω,A,B(l1 + l)

ψ̃S,Ω,A,B(l1) ψ̃S,Ω,A,B(l2)
, l1 ∈ LΩ

is a character of LΩ . So ψ̃S,Ω,A,B is a second degree character of LΩ . In order
to show that ψ̃S,Ω is associated with AS,Ω , it suffices to prove that

ψ̃S,Ω,A,B(l1 + l2) = eπiAS,Ω(l1,l2) ψ̃S,Ω,A,B(l1) ψ̃S,Ω,A,B(l2) (1.2.14)

for all l1, l2 ∈ LΩ . An easy calculation yields (1.2.14). ¤

Theorem 4. We assume that S is a positive definite, symmetric integral
matrix of degree m. Let Ω ∈ Hn. We denote by RΩ

S the vector space of
all holomorphic functions f : C(m,n) −→ C satisfying the transformation
behaviour

f(W + ξΩ + η) = e−πi σ{S(ξΩ tξ + 2 ξ tW )} f(W ), W ∈ C(m,n)

for all ξ, η ∈ Z(m,n). Then the mapping

Θ : RΩ
S −→ Th(HS,Ω , ψS,Ω , LΩ)

defined by
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(Θ(F )) (W ) := e2πi qS,Ω(W )F (W ), F ∈ RΩ
S , W ∈ C(m,n)

is an isomorphism of vector spaces, where LΩ and ψS,Ω are the same as in
Lemma 4.

Proof. First we will show the image Θ(RΩ
S ) is contained in Th(HS,Ω , ψS,Ω , LΩ).

If F ∈ RΩ
S , W ∈ C(m,n) and l = ξΩ + η ∈ LΩ , then we have

Θ(F )(W + l) = e2πi qS,Ω(W+l) F (W + l)

= e2πi{qS,Ω(W ) + qS,Ω(l) + σ(Sl(Ω−Ω
−1 tW )}

× e−πi σ{S(ξΩ tξ + 2 W tξ)} F (W ) ( by Lemma 3 )

= e2πi σ{S(W+ l
2 )(Ω−Ω)−1 tl}

× e−πi σ{S(ξΩ tξ + 2 W tξ + 2 W tξ)} ·Θ(F )(W )

= eπHS,Ω(W+ l
2 , l) · e−πi σ(Sη tξ) Θ(F )(W )

= eπHS,Ω(W+ l
2 , l) ψS,Ω(l)Θ(F )(W ).

Thus Θ(F ) is contained in the set Th(HS,Ω , ψS,Ω , LΩ). It is easy to see that
the mapping Θ is an isomorphism. ¤

Proposition 1. Let S be as above in Theorem 4 and A,B ∈ R(m,n). We
denote by RΩ

S,A,B the union of the set of all theta functions with character-
istic (A,B) with respect to S and Ω and the constant 0. Then we have an
isomorphism

RΩ
S,A,B

∼= Th(HS,Ω , ψS,Ω · χS,Ω,A,B , LΩ).

Proof. First we observe that ψS,Ω · χS,Ω,A,B is a second degree character of
LΩ associated with AS,Ω ( cf. Lemma 4 (B) ). In a similar way in the proof of
Theorem 4, using (θ.5), we can show that the mapping

ΘA,B(f)(W ) := e2πi qS,Ω(W ) f(W ), f ∈ RΩ
S,A,B , W ∈ C(m,n)

has its image in Th(HS,Ω , ψS,Ω · χS,Ω,A,B , LΩ). ¤

Proposition 2. Let S be as above in Theorem 4 and let A,B ∈ R(m,n). Then
we have an isomorphism

Th(HS,Ω , ψS,Ω , LΩ) ∼= TH(HS,Ω , ψS,Ω · χS,Ω,A,B , LΩ).

Proof. The proof follows from the fact that the dimension of the com-
plex vector space Th(HS,Ω , ψS,Ω , LΩ) is equal to that of Th(HS,Ω , ψS,Ω ·
χS,Ω,A,B , LΩ). It is well known that the dimension of Th(HS,Ω , ψS,Ω , LΩ) is
equal to the Pfaffian of AS,Ω relative to LΩ ( cf. [14], p.72 ). ¤

Remark 2. From Theorem 4, Proposition 1 and Proposition 2, RΩ
S is isomor-

phic to RΩ
S,A,B for any A,B ∈ R(m,n).
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Now as before, we fix an element Ω ∈ Hn and let S be a positive symmetric
integral matrix of degree m. Then the lattice L := Z(m,n) × Z(m,n) acts on
C(m,n) freely by

(ξ, η) · W = W + ξΩ + η, ξ, η ∈ Z(m,n), W ∈ C(m,n).

Lemma 5. Let A, B ∈ R(m,n). Let JS,Ω,A,B : L × C(m,n) −→ C∗ be the
mapping defined by

JS,Ω,A,B(l, W ) := eπi σ{S(ξΩ tξ + 2 W tξ)} · e−2πi σ{S(A tη−B tξ)}, (1.2.15)

where l = (ξ, η) ∈ L and W ∈ C(m,n). Then JS,Ω,A,B is an automorphic
factor for the lattice L.

Proof. For brevity, we write J := JS,Ω,A,B . For any two elements li =
(ξi, ηi) ( i = 1, 2 ) of L and W ∈ C(m,n), we must show that

J(l1 + l2, W ) = J(l1, l2 + W )J(l2, W ). (1.2.16)

Using the fact that σ(2Sη2
tξ1) is an even integer, an easy computation yields

(1.2.16). ¤

The Heisenberg group H
(n,m)
R with multiplication ¦ acts on C(m,n) by

[λ0, µ0, κ0] · (λΩ + µ) := (λ0 + λ)Ω + (µ0 + µ), λ, µ ∈ R(m,n).

Since the center Z =
{

[0, 0, κ] | κ = tκ ∈ R(m,m)
}

of H
(n,m)
R is the stabilizer

of H
(n,m)
R at 0, the homogeneous space H

(n,m)
R /Z is identified with C(m,n)

via
[λ, µ, κ] · Z 7−→ [λ, µ, κ] · 0 = λΩ + µ.

Thus the automorphic factor JS,Ω,A,B for the lattice L may be lifted to the
automorphic factor J̃S,Ω,A,B : H

(n,m)
R × C(m,n) −→ C∗ defined by

J̃S,Ω,A,B(g0,W ) = eπi σ{S(λΩ tλ + 2 W tλ + κ)} · e−πi σ{S(A tµ−B tλ)}, (1.2.17)

where g0 = [λ, µ, κ] ∈ H
(n,m)
R .

We denote by AS,Ω be the complex vector space consisting of C-valued
smooth functions ϕ on H

(n,m)
R satisfying the following conditions

(a) ϕ([ξ, η, 0] ¦ g0) = ϕ(g0) for all ξ, η ∈ Z(m,n) and g0 ∈ H
(n,m)
R ,

(b) ϕ(g0 ¦ [0, 0, κ]) = eπi σ(Sκ) ϕ(g0) for all κ = tκ ∈ R(m,m) and
g0 ∈ H

(n,m)
R ,

(c)
(LXka

− ∑n
b=1 ΩLX̂kb

)
= 0 for all 1 ≤ k ≤ m and 1 ≤ a ≤ n.

Here if X is an element of the Lie algebra of H
(n,m)
R ,
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(LXϕ
)
(g0) =

d

dt

∣∣∣∣
t=0

ϕ(g0 ¦ exp tX), g0 ∈ H
(n,m)
R .

Theorem 5. Let S and Ω be as before. Then the vector space RΩ
S is isomor-

phic to the vector space AS,Ω via the mapping

f 7−→ ϕf (g0) := J̃S,Ω,0,0(g0, 0) f(g0 · 0),

where g0 ∈ H
(n,m)
R and f ∈ RΩ

S .

The inverse of the above isomorphism is given by

ϕ 7−→ fϕ(W ) := J̃S,Ω,0,0(g0, 0)−1 ϕ(g0), ϕ ∈ AS,Ω ,

where W = g0 · 0. This definition does not depend on the choice of g0 with
W = g0 · 0.

Proof. For brevity, we write J̃ := J̃S,Ω,0,0. If γ = [ξ, η, 0] ∈ H
(n,m)
R with

ξ, η ∈ Z(m,n), we have for all g0 ∈ H
(n,m)
R

ϕf (γ ¦ g0) =J̃(γ ¦ g0, 0) f((γ ¦ g0) · 0)

=J̃(γ, g0 · 0) J̃(g0, 0) f(g0 · 0 + ξΩ + η)

=J̃(γ, g0 · 0) J̃(g0, 0)J((ξ, η), g0 · 0)−1 f(g0 · 0)

=J̃(γ, 0) f(g0 · 0)
=ϕf (g0).

And if κ = tκ ∈ R(m,m), we have

ϕf (g0 ¦ [0, 0, κ]) = J̃(g0 ¦ [0, 0, κ], 0) f((g0 ¦ [0, 0, κ]) · 0)

= J̃(g0, [0, 0, κ] · 0) J̃([0, 0, κ], 0) f(g0 · 0)

= eπi σ(Sκ) J̃(g0, 0) f(g0 · 0)

= eπσ(Sκ) ϕf (g0).

We introduce a system of complex coordinates on C(m,n) with respect to Ω :

W = λΩ + µ, W = λΩ + µ, λ, µ real.

We set

dW =




dW11 dW12 . . . dW1n

dW21 dW22 . . . dW2n

...
...

. . .
...

dWm1 dWm2 . . . dWmn


 ,

∂

∂W
=




∂
∂W11

∂
∂W21

. . . ∂
∂Wm1

∂
∂W12

∂
∂W22

. . . ∂
∂Wm2

...
...

. . .
...

∂
∂W1n

∂
∂W2n

. . . ∂
∂Wmn


 .
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Then an easy computation yields

∂

∂λ
=Ω

∂

∂W
+ Ω

∂

∂W
,

∂

∂µ
=

∂

∂W
+

∂

∂W
.

Thus we obtain the following

∂

∂W
=

i

2
( ImΩ )−1

(
∂

∂λ
−Ω

∂

∂µ

)
. (1.2.18)

Since f is holomorphic, according to (1.2.18), f satisfies the conditions

(
∂

∂λka
−

n∑

b=1

Ωab
∂

∂µkb

)
f(W ) = 0, 1 ≤ k ≤ m, 1 ≤ a ≤ n. (1.2.19)

Conversely, if a smooth function on C(m,n) satisfies the condition (1.2.19), it
is holomorphic.

In order to prove that ϕf satisfies the condition (c), we first compute
LXka

ϕf and LX̂lb
ϕf for 1 ≤ k, l ≤ m and 1 ≤ a, b ≤ n. If g = [λ, µ, κ] ∈

H
(n,m)
R and S = (skl),

(LXka
ϕf

)
=

d

dt

∣∣∣∣
t=0

ϕf (g ¦ exp tXka)

=
d

dt

∣∣∣∣
t=0

ϕf ([λ, µ, κ] ¦ [tEka, 0, 0])

=
d

dt

∣∣∣∣
t=0

J̃([λ + tEka, µ, κ], 0) f((λ + tEka)Ω + µ)

=
d

dt

∣∣∣∣
t=0

eπi σ{S(λ+tEka)Ω t(λ+tEka)} eπi σ(Sκ) f((λ + tEka)Ω + µ)

= eπi σ{S(κ+λΩ tλ)}
{

2πi

(
n∑

b=1

m∑

l=1

sklΩabλab

)
+

∂

∂λka

}
f(W ).

On the other hand,
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(LX̂lb
ϕf

)
(g) =

d

dt

∣∣∣∣
t=0

ϕf (g ¦ exp tX̂lb)

=
d

dt

∣∣∣∣
t=0

ϕf ([λ, µ, κ] ¦ [0, tElb, 0])

=
d

dt

∣∣∣∣
t=0

ϕf ([λ, µ + tElb, κ + tλ tEkb + tEkb
tλ])

=eπi σ{S(κ+λΩ tλ)} d

dt

∣∣∣∣
t=0

e2πit σ(Sλ tElb) f(λΩ + (µ + tElb))

=eπi σ{S(κ+λΩ tλ)}
{

2πi

(
m∑

p=1

slpλpb

)
+

∂

∂µlb

}
f(W ).

Thus
(LXka

−
n∑

b=1

ΩabLX̂kb

)
ϕf (g)

=eπi σ{S(κ+λΩ tλ)}
{

∂

∂λka
−

n∑

b=1

Ωab
∂

∂µkb

}
f(W ) = 0.

This completes the proof. ¤
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1.3 Induced Representations

Let G be a locally compact, separable topological group and K be a closed
subgroup of G. Let σ be an irreducible unitary representation of K in a sep-
arable Hilbert space H. Let µ be a G-invariant measure in the homogeneous
space X := K\G = {Kg | g ∈ G } of the right K-cosets in G. We denote the
induced representation of G from σ by

Uσ := IndG
K σ.

Let Hσ be the Hilbert space consisting of all functions φ : G −→ H which
satisfy the following conditions:

(1) (φ(g), v)H is measurable with respect to dg for all v ∈ H.

(2) φ(kg) = σ(k)(φ(g)) for all k ∈ K and g ∈ G.

(3) ‖ φ ‖2= ∫
X
‖ φ(g) ‖2 dµ(ġ) < ∞, ġ = Kg,

where dg is a G-invariant measure on G and ( , )H is an inner product in H
and ‖ φ(g) ‖ is the norm in H. The inner product ( , ) in Hσ is given by

(φ1, φ2) =
∫

X

(φ1(g), φ2(g))H dµ(ġ), φ1, φ2 ∈ Hσ.

Then Uσ = IndG
K σ is realized in the Hilbert space Hσ as follows:

(Uσ(g0)φ) (g) = φ(gg0), g, g0 ∈ G, φ ∈ Hσ. (1.3.1)

It is easy to see that Hσ is isomorphic to the Hilbert space Hσ := L2(X,µ,H)
of square integrable functions f : X −→ H with values in H via the formula

φf (g) = σ(kg) (f(ġ)) , f ∈ Hσ, g ∈ G, (1.3.2)

where ġ = Kg and kg is the K-component of g in the Mackey decomposition
g = kgsg.

We can show easily that Uσ is realized in Hσ by

(Uσ(g0)f) (ġ) = σ(ksgg0) (f(ġg0)) , g0 ∈ G, f ∈ Hσ, ġ = Kg ∈ X, (1.3.3)

where ksgg0 denotes the K-component of sgg0 in the Mackey decomposition
of sgg0.

If σ is a one-dimensional representation of K, Uσ is called a monomial
representation.

Remark 3. It is interesting to find out irreducible closed subspaces of Hσ or
Hσ invariant under G.
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We recall A, S, GH , Sκ̂ etc in Section 1.1. Mackey’s method teaches us
that an irreducible unitary representation of GH

∼= H
(n,m)
R is of the following

form
Tκ̂ := IndGH

Sκ̂nA χκ̂ · â(κ̂) = IndGH

A â(κ̂)

or
Tx̂,ŷ := IndGH

SŷnA χx̂ · â(ŷ) = IndGH

SnA χx̂ · â(ŷ),

where χx̂ is the character of S defined by χx̂(l) := e2πiσ(x̂ tl) for l ∈ S.

Therefore the unitary dual ĜH of GH or H
(n,m)
R is determined completely by

Type I. κ̂ ∈ Sym (m,R), κ̂ 6= 0.
Type II. (x̂, ŷ) ∈ R(m,n) × R(m,n) with x̂, ŷ ∈ R(m,n).

The representation ρ ∈ ĜH of type I acts nontrivially on the center Z ∼=
Sym (m,R) of GH . On the other hand, the representation ρ ∈ ĜH of type II
acts trivially on the center Z of GH .
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1.4 The Schrödinger Representation

For two fixed positive integers m and n, we put G := H
(n,m)
R and

K :=
{

(0, µ, κ) ∈ G | µ ∈ R(m,n), κ = tκ ∈ R(m,m)
}

. (1.4.1)

We note that K = A (cf. Section 1.1, (1.1.4)) and that K is a closed, commu-
tative normal subgroup of G. Since (λ, µ, κ) = (0, µ, κ + µ tλ) ◦ (λ, 0, 0) for
(λ, µ, κ) ∈ G, the homogeneous space X := K\G is identified with R(m,n) via

Kg = K ◦ (λ, 0, 0) 7−→ λ, g = (λ, µ, κ) ∈ G.

We observe that G acts on X by

(Kg) · g0 = K (λ + λ0, 0, 0), (1.4.2)

where g = (λ, µ, κ) ∈ G and g0 = (λ0, µ0, κ0) ∈ G.
If g = (λ, µ, κ) ∈ G, we have

kg = (0, µ, κ + µ tλ), sg = (λ, 0, 0) (1.4.3)

in the Mackey decomposition of g = kg ◦ sg. Thus if g0 = (λ0, µ0, κ0) ∈ G,
then we have

sg ◦ g0 = (λ, 0, 0) ◦ (λ0, µ0, κ0) = (λ + λ0, µ0, κ0 + λ tµ0) (1.4.4)

and so
ksg◦g0 = (0, µ0, κ0 + µ0

tλ0 + λ tµ0 + µ0
tλ). (1.4.5)

For a real symmetric matrix c = tc ∈ R(m,m) with c 6= 0, we consider the
one-dimensional unitary representation σc of K defined by

σc ((0, µ, κ)) := e2πi σ(cκ) I, (0, µ, κ) ∈ K, (1.4.6)

where I denotes the identity mapping. Then the induced representation
Uσc := IndG

K σc of G induced from σc is realized in the Hilbert space
Hσc = L2(X, dġ,C) ∼= L2

(
R(m,n), dξ

)
as follows. If g0 = (λ0, µ0, κ0) ∈ G

and x = Kg ∈ X with g = (λ, µ, κ) ∈ G, then according to (1.3.3), we have

(Uσc(g0)f) (x) = σc

(
ksg◦g0

)
(f(xg0)) , f ∈ Hσc . (1.4.7)

It follows from (1.4.5) that

(Uσc(g0)f) (λ) = e2πiσ{c(κ0+µ0
tλ0+2λ tµ0)} f(λ + λ0). (1.4.8)
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Here we identified x = Kg (resp. xg0 = Kgg0) with λ (resp. λ + λ0). The
induced representation Uσc

is called the Schrödinger representation of G asso-
ciated with σc. Uσc is a monomial representation.

In the previous section, we denoted by Hσc the Hilbert space consisting of
all functions φ : G −→ C which satisfy the following conditions:

(1) φ(g) is measurable with respect to dg.

(2) φ ((0, µ, κ) ◦ g)) = e2πi σ(cκ)φ(g) for all g ∈ G.

(3) ‖ φ ‖2:= ∫
X
|φ(g)|2 dġ < ∞, ġ = Kg,

where dg (resp. dġ) is a G-invariant measure on G (resp. X = K\G). The
inner product ( , ) on Hσc is given by

(φ1, φ2) =
∫

G

φ1(g)φ2(g) dg, φ1, φ2 ∈ Hσc .

We observe that Hσc
= L2(R(m,n), dξ) and that the mapping Φc : Hσc

−→
Hσc defined by

(Φc(f)) (g) := φf (g) := e2πiσ{c(κ+µ tλ)} f(λ) (1.4.9)

(f ∈ Hσc , g = (λ, µ, κ) ∈ G) is an isomorphism of Hilbert spaces. The inverse
Ψc : Hσc −→ Hσc of Φc is given by

(Ψc(φ)) (λ) := fφ(λ) := φ((λ, 0, 0)), φ ∈ Hσc , λ ∈ R(m,n). (1.4.10)

From now on, for brevity we put

Uc = Uσc
, Hc = Hσc

and Hc = Hσc .

The Schrödinger representation Uc of G on Hc is given by

(Uc(g0)φ) (g) = e2πiσ{c(κ0+µ0
tλ0+λ tµ0−λ0

tµ)} φ ((λ0, 0, 0) ◦ g) , (1.4.11)

where g0 = (λ0, µ0, κ0), g = (λ, µ, κ) ∈ G and φ ∈ Hc. (1.4.11) can be
expressed as follows.

( Uc(g0)φ ) (g) = e2πiσ{c(κ0+κ+µ0
tλ0+µ tλ+2λ tµ0)} φ((λ0 + λ, 0, 0)). (1.4.12)

Theorem 6. Let c be a positive symmetric half-integral matrix of degree m.
Then the Schrödinger representation Uc of G is irreducible.

Proof. The proof can be found in [42], Theorem 3. ¤
We let dUc be the infinitesimal representation associated to the Schrödinger

representation Uc. If X is an element of the Lie algebra of G, then
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dUc(X)f =
d

dt

∣∣∣∣
t=0

Uc(exp tX)f, f ∈ Hc or Hc.

We fix an element Ω ∈ Hn once and for all. We let c be a positive symmetric
real matrix of degree m. For each J ∈ Z(m,n)

≥0 , we put

fc,J(ξ) := e2πi σ(cξΩ tξ) ξJ , ξ ∈ R(m,n). (1.4.13)

Then the set
{

fc,J | J ∈ Z(m,n)
≥0

}
forms a basis of L2

(
R(m,n), dξ

) ∼= Hc.

Proposition 3. Let c = (ckl) be a positive symmetric real matrix of degree
m. For each J ∈ Z(m,n)

≥0 we have

dUc(D0
kl)fc,J(ξ) = 2πi ckl fc,J(ξ), 1 ≤ k ≤ l ≤ m, (1.4.14)

dUc(Dka)fc,J(ξ) = 4πi

m∑

l=1

n∑

b=1

cklΩabfc,J+εlb
(ξ) (1.4.15)

+ Jka fc,J−εka
(ξ),

dUc(D̂lb)fc,J(ξ) = 4πi

m∑
p=1

clp fc,J+εpb
(ξ). (1.4.16)

Here 1 ≤ k, l ≤ m and 1 ≤ a, b ≤ n.

Proof. We put E0
kl = 1

2 (Ekl + Elk), where 1 ≤ k, l ≤ m.

dUc(D0
kl)fc,J(ξ) =

d

dt

∣∣∣∣
t=0

Uc

(
exp tX0

kl

)
fc,J(ξ)

=
d

dt

∣∣∣∣
t=0

Uc

(
(0, 0, tE0

kl)
)
fc,J(ξ)

= lim
t→0

e2πiσ(tcE0
kl) − I

t
fc,J(ξ)

= lim
t→0

e2πitckl − I

t
fc,J(ξ)

= 2πi ckl fc,J(ξ).

dUc(Dka)fc,J(ξ) =
d

dt

∣∣∣∣
t=0

Uc(exp tXka)fc,J(ξ)

=
d

dt

∣∣∣∣
t=0

Uc((tEka, 0, 0))fc,J(ξ)

=
d

dt

∣∣∣∣
t=0

e2πi σ{c(ξ+tEka)Ω t(ξ+tEka)} (ξ + tEka)J

= 4πi

m∑

l=1

n∑

b=1

cklΩabfc,J+εlb
(ξ) + Jka fc,J−εka

(ξ).
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Finally,

dUc(D̂lb)fc,J(ξ) =
d

dt

∣∣∣∣
t=0

Uc(exp tX̂lb)fc,J(ξ)

=
d

dt

∣∣∣∣
t=0

Uc((0, tElb, 0))fc,J(ξ)

= lim
t→0

e4πi σ(tcξ tElb) − I

t
fc,J(ξ)

= 4πi

m∑
p=1

clpfc,J+εpb
(ξ).

¤
For each J ∈ Z(m,n)

≥0 , we put

φc,J(g) = e2πi σ{c(κ+µ tλ)} fc,J(λ), (1.4.17)

where g = (λ, µ, κ) ∈ G. Then the set {φc,J | J ∈ Z(m,n)
≥0 } is a basis of Hc.

Proposition 4. For each J ∈ Z(m,n)
≥0 and g = (λ, µ, κ) ∈ G, we have

dUc(D0
kl) φc,J(g) = 2πi ckl φc,J(g), 1 ≤ k ≤ l ≤ m, (1.4.18)

dUc(Dka)φc,J(g) = 4πi

m∑

l=1

n∑

b=1

ckl Ωab φc,J+εlb
(g) (1.4.19)

+Jka φc,J−εka
(g),

dUc(Ûlb)φc,J(g) = 2πi

m∑
p=1

clpφc,J+εpb
(g). (1.4.20)

Here 1 ≤ k, l ≤ m and 1 ≤ a, b ≤ n.

Proof. We put E0
kl = 1

2 (Ekl + Elk), where 1 ≤ k, l ≤ m. Then we have

dUc(D0
kl)φc,J(g) =

d

dt

∣∣∣∣
t=0

Uc(exp tX0
kl)φc,J(g)

=
d

dt

∣∣∣∣
t=0

Uc

(
(0, 0, tE0

kl)
)
φc,J(g)

= lim
t→0

e2πi σ(tcE0
kl) − I

t
φc,J(g)

= 2πi ckl φc,J(g).

And we have
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dUc(Dka)φc,J(g) =
d

dt

∣∣∣∣
t=0

Uc(exp tXka)φc,J(g)

=
d

dt

∣∣∣∣
t=0

Uc((tEka, 0, 0))φc,J(g)

=
d

dt

∣∣∣∣
t=0

e−2πit σ(cEka
tµ) φc,J((tEka, 0, 0) ◦ g)

=
d

dt

∣∣∣∣
t=0

e−2πit σ(cEka
tµ) · e2πi σ{c(κ+tEka

tµ+µ tλ+tµ tEka)}

× e2πi σ{c(λ+tEka)Ω t(λ+tEka)} (λ + tEka)J

= e2πi σ{c(κ+µ tλ+λΩ tλ)}

× d

dt

∣∣∣∣
t=0

e4πit σ(cλΩ tEka)+2πit2 σ(cEkaΩ tEka) (λ + tEka)J

= 4πi

m∑

l=1

n∑

b=1

ckl Ωab φc,J+εlb
(g) + Jka φc,J−εka

(g).

Finally,

dUD̂lb
(σc)φc,J(g) =

d

dt

∣∣∣∣
t=0

Uc(exp tX̂lb)φc,J(g)

=
d

dt

∣∣∣∣
t=0

Uc((0, tElb, 0))φc,J(g)

=
d

dt

∣∣∣∣
t=0

e2πit σ(cλ tElb)φc,J(g)

= lim
t→0

e2πit(
∑m

p=1 clpλpb) − I

t
φc,J(g)

= 2πi

(
m∑

p=1

clpλpb

)
φc,J(g)

= 2πi

m∑
p=1

clpφc,J+εpb
(g).

¤
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1.5 Fock Representations

We consider the vector space V (m,n) := R(m,n) × R(m,n). We put

Pka = (Eka, 0), Qlb = (0, Elb), (1.5.1)

where 1 ≤ k, l ≤ m and 1 ≤ a, b ≤ n. Then the set {Pka, Qka} forms a basis
for V (m,n). We define the alternating bilinear form A : V (m,n)×V (m,n) −→ R
by

A ((λ0, µ0), (λ, µ)) = σ(λ0
tµ− µ0

tλ), (λ0, µ0), (λ, µ) ∈ V (m,n). (1.5.2)

Then we have

A(Pka, Plb) = A(Qka, Qlb) = 0, A(Pka, Qlb) = δab δkl, (1.5.3)

where 1 ≤ k, l ≤ m and 1 ≤ a, b ≤ n. Any element v ∈ V (m,n) can be written
uniquely as

v =
∑

k,a

xkaPka +
∑

l,b

ylbQlb, xka, ylb ∈ R. (1.5.4)

From now on, for brevity, we write V := V (m,n) and v = xP + yQ instead of
(1.5.4). Then it is easy to see that the endomorphism J : V −→ V defined by

J(xP + yQ) := −yP + xQ, xP + yQ ∈ V (1.5.5)

is a complex structure on V which is compatible with the alternating bilinear
form A. This means that J is an endomorphism of V satisfying the following
conditions:

(J1) J2 = −I on V .

(J2) A(Jv0, Jv) = A(v0, v) for all v0, v ∈ V.

(J3) A(v, Jv) > 0 for all v ∈ V with v 6= 0.

Now we let VC = V + i V be the complexification of V , where i =
√−1.

For an element w = v1 + i v2 ∈ VC with v1, v2 ∈ V , we put

w := v1 − i v2. (1.5.6)

Let AC be the complex bilinear form on VC extending A and let JC be the
complex linear map of VC extending J. Since J2

C = −I, JC has the only eigen-
values ± i. We denote by V + (resp. V −) the eigenspace of VC corresponding
to the eigenvalues i (resp.−i). Thus VC = V + + V −. Since

JC(Pka ± i Qka) = ∓i (Pka ± iQka),

we have
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V + =
∑

k,a

C (Pka − iQka), V − =
∑

k,a

C (Pka + iQka). (1.5.7)

Let
V∗ :=

∑

k,a

CPka, 1 ≤ k ≤ m, 1 ≤ a ≤ n (1.5.8)

be the subspace of VC as a C-vector space. It is easy to see that V∗ is iso-
morphic to V as R-vector spaces via the isomorphism T : V −→ V∗ defined
by

T (Pka) = Pka, T (Qlb) = i Plb. (1.5.9)

We define the complex linear map J∗ : V∗ −→ V∗ by J∗(Pka) = i Pka for
1 ≤ k ≤ m, 1 ≤ a ≤ n. Then J∗ is compatible with J , that is, T ◦J = J∗ ◦T.
It is easily seen that there exists a unique hermitian form H on V∗ with
ImH = A. Indeed, H is given by

H(v, w) = A(v, J∗w) + iA(v, w), v, w ∈ V∗. (1.5.10)

For v =
∑

k,a zkaPka ∈ V∗ with zka = xka + iyka (xka, yka ∈ R), for brevity
we write v = zP. For two elements v = zP and v′ = z′P in V∗, H(v, v′) =∑

k,a zka z′ka. We observe that

VC =
∑

k,a

CPka +
∑

l,b

CQlb = V + + V − ⊃ V ±.

For w = z0P + z1Q ∈ VC, we put

w = w+ + w−, w+ := z+(P − iQ), w− := z−(P + iQ).

The relations among z0, z1, z+, z− are given by

z± =
1
2
(z0 ± i z1), z0 = z+ + z−, z1 = i (z− − z+). (1.5.11)

Precisely, (1.5.11) implies that

z±ka =
1
2

(z0
ka ± i z1

ka), z0
ka = z+

ka + z−ka, z1
ka = i (z−ka − z+

ka),

where 1 ≤ k ≤ m and 1 ≤ a ≤ n. It is easy to see that

AC(w−, w+) = −2i
∑

k,a

z−kaz+
ka = − i

2

∑

k,a

{
(z0

ka)2 + (z1
ka)2

}
. (1.5.12)

Let

GC :=
{

(z0, z1, a)
∣∣ z0, z1 ∈ C, a ∈ C(m,m), a + z1 tz0 symmetric

}
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be the complexification of the real Heisenberg group G := H
(n,m)
R . Anal-

ogously in the real case, the multiplication on GC is given by (1.1.1). If
w = z0P + z1Q :=

∑
k,a z0

kaPka +
∑

l,b z1
lbQlb, we identify z0, z1 with the

m× n matrices respectively :

z0 :=




z0
11 z0

12 . . . z0
1n

z0
21 z0

22 . . . z0
2n

...
...

. . .
...

z0
m1 z0

m2 . . . z0
mn


 , z1 :=




z1
11 z1

12 . . . z1
1n

z1
21 z1

22 . . . z1
2n

...
...

. . .
...

z1
m1 z1

m2 . . . z1
mn


 .

That is, we identify w = z0P + z1Q ∈ VC with (z0, z1) ∈ C(m,n) × C(m,n). If
w = z0P + z1Q, ŵ = ẑ0P + ẑ1Q ∈ VC, then

(w, a) ◦ (ŵ, â) = (w + ŵ, a + â + z0 tẑ1 − z1 tẑ0), a, â ∈ C(m,m). (1.5.13)

From now on, for brevity we put

R+ := P − iQ, R− := P + iQ. (1.5.14)

If w = z+R+ + z−R−, ŵ = ẑ+R+ + ẑ−R− ∈ VC, by an easy computation,
we have

(w, a) ◦ (ŵ, â) = (w̃, a + â + 2 i (z+ tẑ− − z− tẑ+)) (1.5.15)

with
w̃ = (z+ + ẑ+)R+ + (z− + ẑ−)R−.

Here we identified z+, z− with m× n matrices

z+ :=




z+
11 z+

12 . . . z+
1n

z+
21 z+

22 . . . z+
2n

...
...

. . .
...

z+
m1 z+

m2 . . . z+
mn


 , z− :=




z−11 z−12 . . . z−1n

z−21 z−22 . . . z−2n
...

...
. . .

...
z−m1 z−m2 . . . z−mn


 .

It is easy to see that

PC :=
{

(w−, a) ∈ GC | w− ∈ V −, a ∈ C(m,m)
}

(1.5.16)

is a commutative subgroup of GC and

G ∩ PC = Z, GC = G ◦ PC,

where Z :=
{

(0, 0, κ) ∈ G |κ = tκ ∈ R(m,m)
} ∼= Sym(m,R) is the center of

G. Moreover,
PC\GC ∼= V + ∼= R(m,n) × R(m,n) ∼= Z\G. (1.5.17)
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For c = tc ∈ Sym(m,R) with c > 0, we let δc : PC −→ C× be a quasi-
character of PC defined by

δc((w−, a)) = e2πiσ(ca), (w−, a) ∈ PC. (1.5.18)

Let
UF,c = IndGC

PC δc

be the representation of GC induced from a quasi-character δc of PC. Then
UF,c is realized in the Hilbert space HF,c consisting of all holomorphic func-
tions ψ : GC −→ C satisfying the following conditions:

(F1) ψ((w−, a)◦g) = δc((w−, a))ψ(g) = e2πi σ(ca) ψ(g) for all (w−, a) ∈ PC
and g ∈ GC.

(F2)
∫
Z\G |ψ(ġ)|2 dġ < ∞.

The inner product 〈 , 〉F,c on HF,c is given by

〈ψ1, ψ2〉F,c :=
∫

Z\G
ψ1(ġ)ψ2(ġ) dġ, ψ1, ψ2 ∈ HF,c, ġ = Zg.

UF,c is realized by the right regular representation of GC on HF,c :
(
UF,c(g0)ψ

)
(g) = ψ(gg0), ψ ∈ HF,c, g0, g ∈ GC. (1.5.19)

Now we will show that UF,c is realized as a representation of G in the Fock
space. The Fock space HF,c is the Hilbert space consisting of all holomorphic
functions f : C(m,n) ∼= V∗ −→ C satisfying the condition

‖ f ‖2F,c=
∫

C(m,n)
|f(W )|2 e−2πσ(c W tW ) dW < ∞.

The inner product ( , )F,c on HF,c is given by

(f1, f2)F,c =
∫

C(m,n)
f1(W ) f2(W ) e−2πσ(c W tW ) dW, f1, f2 ∈ HF,c.

Lemma 6. The mapping Λ : HF,c −→ HF,c, Λf := Λ(f) ( f ∈ HF,c ) defined
by

Λf ((z0P + z1Q, a)) = e2πi σ{c(a + 2 i z− tz+)} f(2z+) (1.5.20)

is an isometry of HF,c onto HF,c, where 2z± = z0 ± i z1 (cf. (6.11)). The
inverse ∆ : HF,c −→ HF,c, ∆ψ := ∆(ψ) (ψ ∈ HF,c) is given by

∆ψ(W ) = ψ

(
1
2
WR+

)
, W ∈ C(m,n), (1.5.21)
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where R± = P ∓ iQ (cf. (1.5.14)).

Proof. First we observe that for w = z0P + z1Q = z+R+ + z−R− ∈ VC,

(w, a) = (z−R−, a + 2 i z− tz+) ◦ (z+R+, 0).

Thus if ψ ∈ HF,c and w = z0P + z1Q = z+R+ + z−R−, by (F1),

ψ((w, a)) = e2πi σ{c(a + 2 i z− tz+)} ψ((z+R+, 0)). (1.5.22)

Let W = x + i y ∈ C(m,n) with x, y ∈ R(m,n). Then

xP + yQ = z+R+ + z−R−, 2z± = x± i y.

So z− tz+ = 1
4 W tW. According to (1.5.22), if ψ ∈ HF,c, we have

ψ((xP + yQ, 0)) = e−π σ(c W tW ) ψ

((
1
2
WR+, 0

))
.

Thus we get

|ψ((xP + yQ, 0))|2 = e−2π σ(c W tW )

∣∣∣∣ψ
((

1
2
WR+, 0

))∣∣∣∣
2

.

Therefore
∫

Z\G
|ψ(ġ)| dġ =

∫

C(m,n)
e−2πσ(c W tW )

∣∣∆ψ(W )
∣∣2dW < ∞.

It is easy to see that ∆ is the inverse of Λ. Hence we obtain the desired
results. ¤

Lemma 7. The representation UF,c is realized as a representation of G in
the Fock space HF,c as follows. If g = (λP + µQ, κ) = (λ, µ, κ) ∈ G and
f ∈ HF,c, then

(
UF,c(g)f

)
(W ) = e2πi σ(c κ) e−π σ{c (ζ tζ̄ + 2 W tζ̄)} f(W + ζ), (1.5.23)

where W ∈ C(m,n) and ζ = λ + i µ.

Proof.
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(
UF,c(g)f

)
(W ) =

(
∆(UF,c(g)(Λf ))

)
(W )

=
(
UF,c(g)(Λf )

) (
1
2
WR+

)

= Λf

((
1
2
WR+, 0

)
◦ g

)

= Λf

((
1
2
W,− i

2
W, 0

)
◦ (λ, µ, κ)

)

= Λf

((
λ +

1
2
W

)
P +

(
µ− i

2
W

)
Q,κ +

1
2

W tµ +
i

2
W tλ

)

= e2πi σ{c(κ + i
2 W tζ̄ + i

2 ζ̄ tW + i
2 ζ̄ tζ)} f(W + ζ) (∗∗)

= e2πi σ(cκ) · e−π σ{M(ζ tζ̄ + W tζ̄)} f(W + ζ),

where ζ = λ + iµ. In (**), we used (1.5.20) and the facts that 2iz− tz+ =
i
2 (W tζ + W tW ) and 2z+ = W + ζ. ¤
Definition 4. The induced representation UF,c of G in the Fock space HF,c

is called the Fock representation of G.

Let W = U + iV ∈ C(m,n) with U, V ∈ R(m,n). If U = (uka), V = (vlb) are
coordinates in C(m,n), we put

dU = du11du12 · · · dumn, dV = dv11dv12 · · · dvmn

and dW = dUdV. And we set

dµ(W ) = e−πσ(W tW ) dW. (1.5.24)

Let f be a holomorphic function on C(m,n). Then f(W ) has the Taylor ex-
pansion

f(z) =
∑

J∈Z(m,n)
≥0

aJW J , W = (wka) ∈ C(m,n),

where J = (Jka) ∈ J ∈ Z(m,n)
≥0 and W J := wJ11

11 wJ12
12 · · ·wJmn

mn .

We set |W |∞ := maxk,a(|wka|). Then by an easy computation, we have
∫

C(m,n)
|f(W )|2 dµ(W ) = lim

r→∞

∫

|W |∞≤r

|f(W )|2dµ(W )

= lim
r→∞

∑

J,K

aJaK

∫

|W |∞≤r

W JWK dµ(W )

=
∑

J

|aJ |2π−|J|J !,

where J runs over J ∈ Z(m,n)
≥0 .
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Let Hm,n be the Hilbert space consisting of all holomorphic functions
f : C(m,n) −→ C satisfying the condition

‖f‖2 =
∫

C(m,n)
|f(W )|2 dµ(W ) < ∞. (1.5.25)

The inner product ( , ) on Hm,n is given by

(f1, f2) =
∫

C(m,n)
f1(W ) f2(W ) dµ(W ), f1, f2 ∈ Hm,n.

Thus we have

Lemma 8. Let f ∈ Hm,n and let f(W ) =
∑

J aJW J be the Taylor expansion
of f . Then

‖f‖2 =
∑

J∈Z(m,n)
≥0

|aJ |2π−|J|J !.

For each J ∈ Z(m,n)
≥0 , we define the holomorphic function ΦJ(W ) on C(m,n)

by

ΦJ(W ) := (J !)−
1
2

(
π

1
2 W

)J

, W ∈ C(m,n). (1.5.26)

Then

(ΦJ , ΦK) =

{
1 if J = K

0 otherwise.
(1.5.27)

It is easy to see that the set
{

ΦJ

∣∣ J ∈ Z(m,n)
≥0

}
forms a complete orthonormal

system in Hm,n. By the Schwarz inequality, for any f ∈ Hm,n, we have

|f(W )| ≤ e
π
2 σ(W tW ) ‖f‖, W ∈ C(m,n). (1.5.28)

Consequently, the norm convergence inHm,n implies the uniform convergence
on any bounded subset of C(m,n). We observe that for a fixed W ′ ∈ C(m,n),

the holomorphic function W −→ eπσ(W tW ′) admits the following Taylor
expansion

eπσ(W tW ′) =
∑

J∈Z(m,n)
≥0

ΦJ(W ) ΦJ (W ′). (1.5.29)

From (1.5.29), we obtain

ΦJ(W ′) = (J !)−
1
2

∫

C(m,n)
eπσ(W tW ′)

(
π

1
2 W

)J

dµ(W ). (1.5.30)

Thus if f ∈ Hm,n, we get



1.5 Fock Representations 39

(
f(W ), eπσ(W tW ′)

)
=

(
f,

∑

J

ΦJ(W ′)ΦJ (·)
)

=
∑

J

ΦJ (W ′) (f, ΦJ)

= f(W ′).

Hence eπσ(W tW ′) is the reproducing kernel for Hm,n in the sense that for any
f ∈ Hm,n,

f(W ) =
∫

C(m,n)
eπσ(W tW ′) f(W ′) dµ(W ′). (1.5.31)

We set
κ(W,W ′) := eπσ(W tW ′), W,W ′ ∈ C(m,n). (1.5.32)

Obviously κ(W,W ′) = κ(W ′,W ). (1.5.31) may be written as

f(W ) =
∫

C(m,n)
κ(W,W ′) f(W ′) dµ(W ′), f ∈ Hm,n. (1.5.33)

Let M be a positive definite, symmetric half-integral matrix of degree m.
We define the measure

dµM(W ) = e−2π σ(MW tW ) dW. (1.5.34)

We recall the Fock space HF,M consisting of all holomorphic functions f :
C(m,n) −→ C that satisfy the condition

‖f‖2M := ‖f‖2F,M :=
∫

C(m,n)
|f(W )|2 dµM(W ) < ∞. (1.5.35)

The inner product ( , )M := ( , )F,M on HF,M is given by

(f1, f2)M =
∫

C(m,n)
f1(W ) f2(W ) dµM(W ), f1, f2 ∈ HF,M.

Lemma 9. Let f ∈ HF,M and let g(W ) = f
(
(2M)−

1
2 W

)
be the holomor-

phic function on C(m,n). We let

g(W ) =
∑

J∈Z(m,n)
≥0

aM,J W J

be the Taylor expansion of g(W ). Then we have

‖f‖2M = (f, f)M = 2−n(detM)−n
∑

J∈Z(m,n)
≥0

|aM,J |2 π−|J|J !.
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Proof. Let M 1
2 be the unique positive definite symmetric matrix of de-

gree m such that
(
M 1

2

)2

= M. We put W̃ :=
√

2M 1
2 W. Obviously

dW̃ = 2n (detM)ndW. Thus for f ∈ HF,M, we have

(f, f)M =
∫

C(m,n)
|f(W )|2 dµM(W )

= 2−n(detM)−n

∫

C(m,n)
|g(W )|2 dµ(W )

= 2−n(detM)−n
∑

J∈Z(m,n)
≥0

|aM,J |2π−|J|J ! (by Lemma 8)

¤
For each J ∈ Z(m,n)

≥0 , we put

ΦM,J(W ) := 2
n
2 ( detM )

n
2 (J !)−

1
2

(
(2πM)

1
2 W

)J

, W ∈ C(m,n). (1.5.36)

Lemma 10. The set
{

ΦM,J

∣∣ J ∈ Z(m,n)
≥0

}
is a complete orthonormal system

in HF,M.

Proof. For J,K ∈ Z(m,n)
≥0 , we have

(ΦM,J , ΦM,K)M = 2n(detM)n(J !)−
1
2 (K!)−

1
2

×
∫

C(m,n)

(
(2πM)

1
2 W

)J (
(2πM)

1
2 W

)K

dµM(W )

= (J !)−
1
2 (K!)−

1
2

∫

C(m,n)
(π

1
2 W )J (π

1
2 W )K dµ(W )

= (ΦJ , ΦK).

By (1.5.27), we have

(ΦM,J , ΦM,K)M =

{
1 if J = K

0 otherwise.
(1.5.37)

We leave the proof of the completeness to the reader. ¤
We observe that for a fixed W ′ ∈ C(m,n), the holomorphic function W −→

eπσ(MW tW ′) admits the following Taylor expansion

eπσ(MW tW ′) =
∑

J∈Z(m,n)
≥0

ΦM,J(W ) ΦM,J(W ′). (1.5.38)

If f ∈ HF,M, we have
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(
f(W ), eπσ(MW tW ′)

)
M

=
∑

J∈Z(m,n)
≥0

(f, ΦM,J)M ΦM,J(W ′)

= f(W ′).

Hence eπσ(MW tW ′) is the reproducing kernel for HF,M in the sense that

f(W ) =
∫

C(m,n)
f(W ′) eπ σ(MW tW ′) dµM(W ′). (1.5.39)

For U ∈ R(m,n) and W ∈ C(m,n), we put

k(U,W ) := e2π σ(−U tU + 1
2 W tW + 2 i U tW ). (1.5.40)

Then we have the following lemma.

Lemma 11.
∫

R(m,n)
k(U,W ) k(U,W ′) dU = e2πσ(W tW ′).

Proof. We put

I(W,W ′) :=
∫

R(m,n)
k(U,W ) k(U,W ′) dU.

Then we have

I(W,W ′) = eπ σ(W tW+W ′ tW ′)
∫

R(m,n)
e−4π σ(U tU) e4πiσ{U t(W−W ′)} dU

= eπ σ(W tW+W ′ tW ′) ·
∏

k,a

∫

R
e−4π{u2

ka−iuka(wka−w′ka)} duka,

where W = (wka), W ′ = (w′ka) ∈ C(m,n) and U = (uka) ∈ R(m,n). It is easy
to show that

∫

R
e−4π{u2

ka−iuka(wka−w′ka)} duka = e−π(wka−w′ka)2 .

Thus we get

I(W,W ′) = eπ σ(W tW+W ′ tW ′) · e−π
∑

k,a(wka−w′ka)2

= e2π
∑

k,a wkaw′ka

= e2π σ(W tW ′).

¤
For U ∈ R(m,n) and W ∈ C(m,n), we put
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kM(U,W ) := e2π σ{M(−U tU− 1
2 W tW+2U tW )}. (1.5.41)

Lemma 12. Let M be a positive definite, symmetric half-integral matrix of
degree m. Then we have

kM(U,W ) = k(M 1
2 U, −iM 1

2 W ) (1.5.42)

and
∫

R(m,n)
kM(U,W ) kM(U,W ′) dU = (detM)−

n
2 · e2πσ(MW tW ′). (1.5.43)

Proof. The formula (1.5.42) follows immediately from a straightforward com-
putation. We put

IM(W,W ′) :=
∫

R(m,n)
kM(U,W ) kM(U,W ′) dU.

Using (1.5.42), we have

IM(W,W ′) =
∫

R(m,n)
k

(
M 1

2 U, −iM 1
2 W

)
k

(
M 1

2 U,−iM 1
2 W ′

)
dU

= (detM)−
n
2

∫

R(m,n)
k

(
U,−iM 1

2 W
)

k
(
U,−iM 1

2 W ′
)

dU

= (detM)−
n
2 · e2π σ(MW tW ′) (by Lemma 11)

¤
We recall that the Fock representation UF,M of the real Heisenberg group

G in HF,M(cf. (1.5.23)) is given by

(
UF,M(g)f

)
(W ) = e2πi σ(Mκ) · e−π σ{M(ζ tζ̄ + 2 W tζ̄)} f(W + ζ), (1.5.44)

where g = (λ, µ, κ) ∈ G, f ∈ HF,M and ζ = λ + i µ ∈ C(m,n).

Lemma 13. The Fock representation UF,M of G in HF,M is unitary.

Proof. For brevity, we put Ug,f (W ) :=
(
UF,M(g)f

)
(W ) for g = (λ, µ, κ) ∈ G

and f ∈ HF,M. Then we have
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(Ug,f , Ug,f )M = ‖Ug,f‖2M
=

∫

C(m,n)
Ug,f (W )Ug,f (W ) dµM(W )

=
∫

C(m,n)
e−π σ{M(ζ tζ̄ + 2W tζ̄ + ζ̄ tζ + 2 W tW + 2 W tW )} |f(W + ζ)|2 dW

=
∫

C(m,n)
|f(W )|2 dµM(W )

= (f, f)M = ‖f‖2M.

¤
We recall that the Schrödinger representation US,M := UσM of the real

Heisenberg group G in the Hilbert space HS,M ∼= L2
(
R(m,n), dξ

)
(cf. (1.4.8))

is given by
(
US,M(g)f

)
(ξ) = e2πi σ{M(κ + µ tλ + 2 µ tξ)} f(ξ + λ), (1.5.45)

where g = (λ, µ, κ) ∈ G, f ∈ HS,M and ξ ∈ R(m,n). US,M is called the
Schrödinger representation of G of index M. The inner product ( , )S,M on
HS,M is given by

(f1, f2)S,M =
∫

R(m,n)
f1(U) f2(U) dU, f1, f2 ∈ HS,M.

And we define the norm ‖ ‖S,M on HS,M by

‖f‖2S,M =
∫

R(m,n)
|f(U)|2 dU, f ∈ HS,M.

Theorem 7. The Fock representation
(
UF,M,HF,M

)
of G is untarily equiv-

alent to the Schrödinger representation
(
US,M, HS,M

)
of G of index M.

Therefore the Fock representation UF,M is irreducible. The intertwining uni-
tary isometry IM : HS,M −→ HF,M is given by

( IMf ) (W ) =
∫

R(m,n)
kM(ξ,W ) f(ξ) dξ, (1.5.46)

where f ∈ HS,M = L2
(
R(m,n), dξ

)
, W ∈ C(m,n) and kM(ξ, W ) is a function

on R(m,n) × C(m,n) defined by (1.5.41).

Proof. For any f ∈ HS,M = L2
(
R(m,n), dξ

)
, we define

(IMf) (W ) =
∫

R(m,n)
kM(ξ,W ) f(ξ) dξ, W ∈ C(m,n).
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Now we will show the following (I1), (I2) and (I3): (I1) The image of HS,M
under IM is contained in HF,M.

(I2) IM preserves the norms, i.e., ‖f‖S,M = ‖IMf‖M.

(I3) IM is a bijective operator of HS,M onto HF,M.
Before we prove (I1), (I2) and (I3), we prove the following lemma.

Lemma 14. For a fixed U ∈ R(m,n), we consider the Taylor expansion

kM(U,W ) =
∑

J∈Z(m,n)
≥0

hJ(U) ΦM,J(W ), W ∈ C(m,n) (1.5.47)

of the holomorphic function kM(U, · ) on C(m,n). Then the set
{

hJ

∣∣ J ∈ Z(m,n)
≥0

}

forms a complete orthonormal system in L2
(
R(m,n), dξ

)
. Moreover, for a

fixed W ∈ C(m,n), (1.5.47) is the Fourier expansion of kM( · ,W ) with re-
spect to this orthonormal system

{
hJ

∣∣ J ∈ Z(m,n)
≥0

}
.

Proof. Following Igusa [14], pp. 33-34, we can prove it. The detail will be left
to the reader. ¤

If f ∈ HS,M, then by the Schwarz inequality and Lemma 12, (1.5.43), we
have

| ( IMf ) (W )| ≤
( ∫

R(m,n)
|kM(U,W )|2 dU

) 1
2

·
( ∫

R(m,n)
|f(U)|2 dU

) 1
2

= (detM)−
n
4 · eπ σ(MW tW ) ‖f‖S,M.

Thus the above integral (IMf)(W ) converges uniformly on any compact sub-
set of C(m,n) and hence (IMf)(W ) is holomorphic in C(m,n). And according
to Lemma 14, we get

( IMf ) (W ) =
∑

J∈Z(m,n)
≥0

∫

R(m,n)
hJ(U) f(U)ΦM,J(W ) dU

=
∑

J∈Z(m,n)
≥0

(hJ , f̄ )S,M ΦM,J(W ).

Therefore we get
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|IMf‖2F,M =
∫

C(m,n)
|IMf(W )|2 dµM(W )

=
∑

J, K∈Z(m,n)
≥0

(hJ , f̄ )S,M · (hK , f̄ )
∫

C(m,n)
ΦM,J(W )ΦM,K(W ) dµM(W )

=
∑

J∈Z(m,n)
≥0

|(hj , f̄ )S,M|2 (by (6.37))

= ‖f‖2S,M < ∞.

This proves (I1) and (I2). It is easy to see that IMhJ = ΦM,J for all J ∈
Z(m,n)
≥0 . Since the set

{
ΦM,J

∣∣ J ∈ Z(m,n)
≥0

}
forms a complete orthonormal

system of HF,M, IM is surjective. Obviously the injectivity of IM follows
immediately from the fact that IMhJ = ΦM,J for all J ∈ Z(m,n)

≥0 . This proves
(I3).

On the other hand, we let f ∈ HS,M and g = (λ, µ, κ) ∈ G. We put
ζ = λ + i µ. Then we get

(
UF,M(g)(IMf)

)
(W )

= e2πi σ(Mκ) · e−π σ{M(ζ tζ̄ + 2 W tζ̄)} (IMf)(W + ζ) ( by (6.44) )

= e2πi σ(Mκ) · e−πσ{M(ζ tζ̄ + 2 W tζ̄)}
∫

R(m,n)
kM(U,W + ζ) f(U) dU.

We define the function AM : R(m,n) × R(m,n) −→ C by

AM(U,W ) := σ

{
M

(
−U tU − W tW

2
+ 2U tW

)}
. (1.5.48)

Obviously κM(U,W ) = e2πAM(U,W ) for U ∈ R(m,n) and W ∈ C(m,n).

By an easy computation, we get

AM(U,W +ζ)−AM(U−λ,W ) = σ

{
M

(
ζ tζ̄

2
+ W tζ̄ − i λ tµ + 2 i U tµ

)}
.

Therefore we get

kM(U,W + ζ)

= e2πAM(U−λ,W ) · e2π σ{M( 1
2 ζ tζ̄ + W tζ̄−i λ tµ + 2 i U tµ)}

= kM(U − λ, W ) · e2π σ{M( 1
2 ζ tζ̄ + W tζ̄−i λ tµ + 2 i U tµ)}.

Hence we have
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(
UF,M(g)(IMf)

)
(W )

=
∫

R(m,n)
e2πi σ{M(κ + 2 U tµ−λ tµ)} kM(U − λ,W ) f(U) dU

=
∫

R(m,n)
e2πi σ{M(κ + 2 λ tµ + 2 U tµ−λ tµ)} kM(U,W ) f(U + λ) dU

=
∫

R(m,n)
e2πi σ{M(κ + 2 U tµ + λ tµ)} kM(U,W ) f(U + λ) dU

=
∫

R(m,n)
kM(U,W )

(
US,M(g)f

)
(U) dU (by (6.45))

=
(
IM

(
US,M(g)f

) )
(W ).

So far we proved that UF,M ◦ IM = IM ◦US,M(g) for all g ∈ G. That is, the
unitary isometry IM of HS,M onto HF,M is the intertwining operator. This
completes the proof.

¤
The infinitesimal representation dUF,M associated to the Fock represen-

tation UF,M is given as follows.

Proposition 5. Let M be as before. We put

M = (Mkl ), (2πM)
1
2 = (τkl),

where τkl ∈ R and 1 ≤ k, l ≤ m. For each J = (Jka) ∈ Z(m,n)
≥0 and W =

(Wka) ∈ C(m,n), we have

dUF,M(D0
kl)ΦM,J(W ) = 2 π iMkl ΦM,J(W ), 1 ≤ k ≤ l ≤ m. (1.5.49)

dUF,M(Dka)ΦM,J(W ) = −2 π

(
m∑

p=1

MpkWpa

)
ΦM,J(W )

+
m∑

p=1

τpkJ
1
2
pa ΦM,J−εpa(W ).

(1.5.50)

dUF,M(D̂lb ΦM,J(W ) = 2 π i

(
m∑

p=1

MplWpb

)
ΦM,J(W )

+ i

m∑
p=1

τplJ
1
2
pb ΦM,J−εlb

(W ).

(1.5.51)

Proof. We put E0
kl = 1

2 (Ekl + Elk), where 1 ≤ k ≤ l ≤ m.
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dUF,M(D0
kl)ΦM,J(W ) =

d

dt

∣∣∣∣
t=0

UF,M(exp tX0
kl) ΦM,J(W )

=
d

dt

∣∣∣∣
t=0

UF,M (
(0, 0, tE0

kl)
)

ΦM,J(W )

= lim
t→0

e2πi σ(tME0
kl) − I

t
ΦM,J(W )

= lim
t→0

e2πitMkl − I

t
ΦM,J(W )

= 2 π iMkl ΦM,J(W ).

And we have

dUF,M(Dka)ΦM,J(W )

=
d

dt

∣∣∣∣
t=0

UF,M(exp tXka) ΦM,J(W )

=
d

dt

∣∣∣∣
t=0

UF,M ((tEka, 0, 0))ΦM,J(W )

=
d

dt

∣∣∣∣
t=0

e−πt2 σ(MEka
tEka)−2πt σ(MW tEka) ΦM,J(W + tEka)

= −2 π

(
m∑

p=1

MpkWpa

)
ΦM,J(W ) +

d

dt

∣∣∣∣
t=0

ΦM,J(W + tEka)

= −2 π

(
m∑

p=1

MpkWpa

)
ΦM,J(W ) +

m∑
p=1

τpk J
1
2
pa ΦM,J−εpa(W ).

Finally we obtain

dUF,M(D̂lb)ΦM,J(W )

=
d

dt

∣∣∣∣
t=0

UF,M(exp tX̂lb)ΦM,J(W )

=
d

dt

∣∣∣∣
t=0

UF,M ((0, tElb, 0))ΦM,J(W )

=
d

dt

∣∣∣∣
t=0

e−πt2 σ(MElb
tElb) + 2πit σ(MW tElb) ΦM,J(W + i tElb)

= 2πi

(
m∑

p=1

MplWpb

)
ΦM,J(W ) +

d

dt

∣∣∣∣
t=0

ΦM,J(W + i tElb)

= 2πi

(
m∑

p=1

MplWpb

)
ΦM,J(W ) + i

m∑
p=1

τpl J
1
2
pb ΦM,J−εpb

(W ).

¤
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1.6 Lattice Representations

Let L := Z(m,n)×Z(m,n) be the lattice in the vector space V ∼= C(m,n). Let B
be an alternating bilinear form on V such that B(L,L) ⊂ Z, that is, Z-valued
on L× L. The dual L∗B of L with respect to B is defined by

L∗B := { v ∈ V | B(v, L) ∈ Z for all l ∈ L } .

Then L ⊂ L∗B . If B is nondegenerate, L∗B is also a lattice in V, called
the dual lattice of L. In case B is nondegenerate, there exist a Z-basis
{ ξ11, ξ12, · · · , ξmn, η11, η12, · · · , ηmn } of L and a set { e11, e12, · · · , emn } of
positive integers with e11|e12, e12|e13, · · · , em,n−1|emn such that

(
B(ξka, ξlb) B(ξka, ηlb)
B(ηka, ξlb) B(ηka, ηlb

)
=

(
0 e
−e 0

)
,

where 1 ≤ k, l ≤ m, 1 ≤ a, b ≤ n and e := diag (e11, e12, · · · , emn) is the diag-
onal matrix of degree mn with entries e11, e12, · · · , emn. It is well known that
[L∗B : L] = ( det e )2 = (e11e12 · · · emn)2 (cf. [14] p. 72). The number det e is
called the Pfaffian of B.

Now we consider the following subgroups of G:

ΓL =
{

(λ, µ, κ) ∈ G | (λ, µ) ∈ L, κ ∈ R(m,m)
}

(1.6.1)

and
ΓL∗B =

{
(λ, µ, κ) ∈ G | (λ, µ) ∈ L∗B , κ ∈ R(m,m)

}
. (1.6.2)

Then both ΓL and ΓL∗B are the normal subgroups of G.

We put

Z0 =
{

(0, 0, κ) ∈ Z | κ = tκ ∈ Z(m,m) integral
}

. (1.6.3)

It is easy to show that

ΓL∗B =
{

g ∈ G | gγg−1γ−1 ∈ Z0 for all γ ∈ ΓL

}
.

We define
YL =

{
φ ∈ Hom(ΓL,C×1 ) | φ is trivial on Z0

}
(1.6.4)

and

YL,S =
{

φ ∈ YL | φ(κ) = e2πiσ(Sκ) for all κ = tκ ∈ R(m,m)
}

(1.6.5)

for each symmetric real matrix S of degree m. We observe that if S is not
half-integral, then YL = ∅ and so YL,S = ∅. It is clear that if S is symmetric
half-integral, then YL,S is not empty. Thus we have
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YL = ∪M YL,M, (1.6.6)

where M runs through the set of all symmetric half-integral matrices of
degree m.

Lemma 15. Let M be a symmetric half-integral matrix of degree m with
M 6= 0. Then any element φ of YL,M is of the form φM,q. Here φM,q is the
character of ΓL defined by

φM,q((l, κ)) := e2πi σ(Mκ) · eπi q(l), (l, κ) ∈ ΓL, (1.6.7)

where q : L −→ R/2Z ∼= [0, 2) is a function on L satisfying the following
condition:

q(l0 + l1) ≡ q(l0) + q(l1)− 2σ{M(λ0
tµ1 − µ0

tλ1)} mod 2 (1.6.8)

for all l0 = (λ0, µ0) ∈ L and l1 = (λ1, µ1) ∈ L.

Proof. (1.6.8) follows immediately from the fact that φM,q is a character of
ΓL. It is obvious that any element of YL,M is of the form φM,q. ¤

Lemma 16. An element of YL,0 is of the form φk,l (k, l ∈ R(m,n)). Here φk,l

is the character of ΓL defined by

φk,l(γ) := e2πi σ(k tλ + l tµ), γ = (λ, µ, κ) ∈ ΓL. (1.6.9)

Proof. It is easy to prove it and so we omit the proof. ¤

Lemma 17. Let M be a nonsingular symmetric half-integral matrix of degree
m. Let φM,q1 and φM,q2 be the characters of ΓL defined by (1.6.7). The
character φ of ΓL defined by φ := φM,q1 · φ−1

M,q2
is an element of YL,0.

Proof. It follows from the fact that there exists an element g = (M−1λ,M−1µ, 0) ∈
G with (λ, µ) ∈ V such that

φM,q1(γ) = φM,q2(gγg−1) for all γ ∈ ΓL.

¤
We note that the alternating bilinear form A on V defined by (1.5.2) is

nondegenerate and Z-valued on L× L. According to (1.5.3), the elementary
divisors e11, e12, · · · , emn of A are all one and L is self-dual, i.e., L = L∗A.
The set

{P11, P12, · · · , Pmn, Q11, Q12, · · · , Qmn }
forms a symplectic basis of V with respect to A. We fix a coordinate
P11, · · · , Pmn, Q11, · · · , Qmn on V .

For a unitary character ϕM,q of ΓL defined by (1.6.7), we let

πM,q = IndG
ΓL

ϕM,q (1.6.10)
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be the representation of G induced from ϕM,q. Let HM,q be the Hilbert space
consisting of all measurable functions φ : G −→ C satisfying

(L1) φ(γg) = ϕM,q(γ) φ(g) for all γ ∈ ΓL and g ∈ G.

(L2) ‖φ‖2M,q =
∫

ΓL\G |φ(ḡ)| dḡl∞, ḡ = ΓLg.

The induced representation πM,q is realized in HM,q as follows:
(

πM,q(g0)φ
)

(g) = φ(gg0), g0, g ∈ G, φ ∈ HM,q. (1.6.11)

πM,q is called the lattice representation of G associated with the lattice L.

Theorem 8. Let M be a positive definite, symmetric half integral matrix
of degree m. Let ϕM be the character of ΓL defined by ϕM((λ, µ, κ)) :=
e2πi σ(Mκ) for all (λ, µ, κ) ∈ ΓL. Then the representation

πM := IndG
ΓL

ϕM (1.6.12)

induced from the character ϕM is unitarily equivalent to the representation
⊕

UM :=
⊕

IndG
K σM ( ( det 2M )n-copies ),

where K (resp.σM) is defined by (1.4.1) (resp. (1.4.6)).

Proof. We first recall that the induced representation πM is realized in the
Hilbert space HM consisting of all measurable functions φ : G −→ C satisfy-
ing the conditions

φ((λ0, µ0, κ0) ◦ g) = e2πi σ(Mκ0) φ(g), (λ0, µ0, κ0) ∈ ΓL, g ∈ G (1.6.13)

and
‖φ‖2π,M :=

∫

ΓL\G
|φ(ḡ)|2 dḡl∞, ḡ = ΓL ◦ g. (1.6.14)

Now we write

g0 = [λ0, µ0, κ0] ∈ ΓL and g = [λ, µ, κ] ∈ G.

For φ ∈ HM, we have

φ(g0 ¦ g) = φ([λ0 + λ, µ0 + µ, κ0 + κ + λ0
tµ + µ tλ0]). (1.6.15)

On the other hand, we get

φ(g0 ¦ g) = φ((λ0, µ0, κ0 − µ0
tλ0) ◦ g)

= e2πi σ{M(κ0−µ0
tλ0)} φ(g)

= e2πi σ(Mκ0) φ(g) ( because σ(Mµ0
tλ0) ∈ Z )
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Thus putting κ′ := κ0 + λ0
tµ + µ tλ0, we get

φ([λ0 + λ, µ0 + µ, κ + κ′]) = e2πi σ(Mκ′) · e−4πi σ(Mλ0
tµ) φ([λ, µ, κ]). (1.6.16)

Putting λ0 = κ0 = 0 in (1.6.16), we have

φ([λ, µ + µ0, κ]) = φ([λ, µ, κ]) for all µ0 ∈ Z(m,n) and [λ, µ, κ] ∈ G. (1.6.17)

Therefore if we fix λ and κ, φ is periodic in µ with respect to the lattice
Z(m,n) in R(m,n). We note that

φ([λ, µ, κ]) = φ([0, 0, κ] ¦ [λ, µ, 0]) = e2πi σ(Mκ) φ([λ, µ, 0])

for [λ, µ, κ] ∈ G. Hence φ admits a Fourier expansion in µ :

φ([λ, µ, κ]) = e2πi σ(Mκ)
∑

N∈Z(m,n)

cN (λ) e2πi σ(N tµ). (1.6.18)

If λ0 ∈ Z(m,n), then we have

φ([λ + λ0, µ, κ]) = e2πi σ(Mκ)
∑

N∈Z(m,n)

cN (λ + λ0) e2πi σ(N tµ)

= e−4πi σ(Mλ0
tµ) φ([λ, µ, κ]) ( by (1.6.16) )

= e−4πi σ(Mλ0
tµ) e2πi σ(Mκ)

∑

N∈Z(m,n)

cN (λ) e2πi σ(N tµ),

= e2πi σ(Mκ)
∑

N∈Z(m,n)

cN (λ) e2πi σ{(N−2Mλ0)
tµ} (by (1.6.18) )

So we get ∑

N∈Z(m,n)

cN (λ + λ0) e2πi σ(N tµ)

=
∑

N∈Z(m,n)

cN (λ) e2πi σ{(N−2Mλ0)
tµ}

=
∑

N∈Z(m,n)

cN+2Mλ0(λ) e2πi σ(N tµ).

Hence we get

cN (λ + λ0) = cN+2Mλ0(λ) for all λ0 ∈ Z(m,n) and λ ∈ R(m,n). (1.6.19)

Consequently, it is enough to know only the coefficients cα(λ) for the repre-
sentatives α in Z(m,n) modulo 2M. It is obvious that the number of all such
representatives α’s is (det 2M)n. We denote by J a complete system of such
representatives α’s in Z(m,n) modulo 2M. Then we have
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φ([λ, µ, κ])

= e2πi σ(Mκ)

{ ∑

N∈Z(m,n)

cα+2MN (λ) e2πi σ{(α+2MN) tµ}

+
∑

N∈Z(m,n)

cβ+2MN (λ) e2πiσ{(β+2MN) tµ}

...

+
∑

N∈Z(m,n)

cγ+2MN (λ) e2πi σ{(γ+2MN) tµ}
}

,

where {α, β, · · · , γ } denotes the complete system J .

For each α ∈ J , we denote byHM,α the Hilbert space consisting of Fourier
expansions

e2πi σ(Mκ)
∑

N∈Z(m,n)

cα+2MN (λ) e2πi σ{ (α+2MN) tµ}, (λ, µ, κ) ∈ G,

where cN (λ) denotes the coefficients of the Fourier expansion (1.6.18) of
φ ∈ HM and φ runs over the set {φ ∈ πM }. It is easy to see that HM,α

is invariant under πM. We denote the restriction of πM to HM,α by πM,α.
Then we have

πM =
⊕

α∈J
πM,α. (1.6.20)

Let φα ∈ πM,α. Then for [λ, µ, κ] ∈ G, we get

φα([λ, µ, κ]) = e2πi σ(Mκ)
∑

N∈Z(m,n)

cα+2MN (λ) e2πi σ{(α + 2MN) tµ}. (1.6.21)

We put

Iλ =

(m×n)-times︷ ︸︸ ︷
[0, 1]× [0, 1]× · · · × [0, 1] ⊂

{
[λ, 0, 0] | λ ∈ R(m,n)

}

and

Iµ =

(m×n)-times︷ ︸︸ ︷
[0, 1]× [0, 1]× · · · × [0, 1] ⊂

{
[0, µ, 0] | µ ∈ R(m,n)

}
.

Then we obtain
∫

Iµ

φα([λ, µ, κ]) e−2πi σ(α tµ) dµ = e2πi σ(Mκ) cα(λ), α ∈ J . (1.6.22)

Since ΓL\G ∼= Iλ × Iµ, we get
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‖φα‖2π,M,α : = ‖φα‖2π,M =
∫

ΓL\G
|φα(ḡ)|2 dḡ

=
∫

Iλ

∫

Iµ

|φα(ḡ)|2 dλdµ

=
∫

Iλ×Iµ

∣∣∣∣
∑

N∈Z(m,n)

cα+2MN (λ) e2πi σ{(α + 2MN) tµ}
∣∣∣∣
2

dλdµ

=
∫

Iλ

∑

N∈Z(m,n)

|cα+2MN (λ)|2 dλ

=
∫

Iλ

∑

N∈Z(m,n)

|cα(λ + N)|2 dλ ( by (1.6.19) )

=
∫

R(m,n)
|cα(λ)|2 dλ.

Since φα ∈ πM,α, ‖φα‖π,M,α < ∞ and so cα(λ) ∈ L2
(
R(m,n), dξ

)
for all

α ∈ J .

For each α ∈ J , we define the mapping ϑM,α on L2(R(m,n), dξ) by

(ϑM,αf)([λ, µ, κ]) = e2πi σ(Mκ) (1.6.23)

×
∑

N∈Z(m,n)

f(λ + N) e2πi σ{(α + 2MN) tµ},

where f ∈ L2
(
R(m,n), dξ

)
and [λ, µ, κ] ∈ G.

Lemma 18. For each α ∈ J , the image of L2
(
R(m,n), dξ

)
under ϑM,α is

contained in HM,α. Moreover, the mapping ϑM,α is a one-to-one unitary
operator of L2

(
R(m,n), dξ

)
onto HM,α preserving the norms. In other words,

the mapping
ϑM,α : L2

(
R(m,n), dξ

)
−→ HM,α

is an isometry.

Proof. We already showed that ϑM,α preserves the norms. First we observe
that if (λ0, µ0, κ0) ∈ ΓL and g = [λ, µ, κ] ∈ G,

(λ0, µ0, κ0) ◦ g = [λ0, µ0, κ0 + µ0
tλ0] ¦ [λ, µ, κ]

= [λ0 + λ, µ0 + µ, κ + κ0 + µ0
tλ0 + λ0

tµ + µ tλ0].

Thus we get
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(ϑM,αf)((λ0, µ0, κ0) ◦ g)

= e2πi σ{M(κ+κ0+µ0
tλ0+λ0

tµ+µ tλ0)}

×
∑

N∈Z(m,n)

f(λ + λ0 + N) e2πi σ{(α + 2MN) t(µ0+µ)}

= e2πi σ(Mκ0) · e2πi σ(Mκ) · e2πi σ(α tµ0)
∑

N∈Z(m,n)

f(λ + N) e2πi σ{(α+2MN) tµ}

= e2πi σ(Mκ0) (ϑM,αf)(g).

Here in the above equalities we used the facts that 2σ(MN tµ0) ∈ Z and
α tµ0 ∈ Z. It is easy to show that

∫

ΓL\G
|ϑM,αf(ḡ)|2 dḡ =

∫

R(m,n)
|f(λ)|2 dλ = ‖f‖22 < ∞.

This completes the proof of Lemma 18.

Finally it is easy to show that for each α ∈ J , the mapping ϑM,α inter-
twines the Schrödinger representation

(
US,M, L2

(
R(m,n), dξ

))
and the rep-

resentation (πM,α,HM,α). Therefore, by Lemma 18, for each α ∈ J , πM,α

is unitarily equivalent to U(σM) and so πM,α is an irreducible unitary rep-
resentation of G. According to (1.6.20), the induced representation πM is
unitarily equivalent to

⊕
UM ( ( det 2M)n-copies ).

This completes the proof of Theorem 8. ¤
Now we state the connection between the lattice representation and theta

functions. As before, we write V = R(m,n) ×R(m,n) ∼= C(m,n), L = Z(m,n) ×
Z(m,n) and M is a positive symmetric half-integral matrix of degree m. The
function qM : L −→ R/2Z = [0, 2) defined by

qM((ξ, η)) = 2σ(Mξ tη), (ξ, η) ∈ L (1.6.24)

satisfies the condition (1.6.8). We let ϕM,qM : ΓL −→ C∗1 be the character of
ΓL defined by

ϕM,qM((l, κ)) = e2πi σ(Mκ) eπi qM(l) , (l, κ) ∈ ΓL.

We denote by HM,qM the Hilbert space consisting of measurable functions
φ : G −→ C which satisfy the conditions (1.6.24) and (1.6.25):

φ((l, κ) ◦ g) = ϕM,qM((l, κ)) φ(g) for all (l, κ) ∈ ΓLand g ∈ G. (1.6.25)
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∫

ΓL\G
‖φ(ġ)‖2 dġ l∞, ġ = ΓL ◦ g. (1.6.26)

Then the representation

πM,qM = IndG
ΓL

ϕM,qM

of G induced from the character ϕM,qM is realized in HM,qM as

(πM,qM(g0)φ ) (g) = φ(gg0), g0, g ∈ G, φ ∈ HM,qM .

Let HM,qM be the vector space consisting of measurable functions F : V −→
C satisfying the conditions (1.6.26) and (1.6.27).

F (λ + ξ, µ + η) = e2πi σ{M(ξ tη+λ tη−µ tξ)} F (λ, µ) (1.6.27)

for all (λ, µ) ∈ V and (ξ, η) ∈ L.

∫

L\V
‖F (v̇)‖2 dġ =

∫

Iλ×Iµ

‖F (λ, µ)‖2 dλdµ l∞. (1.6.28)

Given φ ∈ HM,qM and a fixed element Ω ∈ Hn, we put

Eφ(λ, µ) = φ((λ, µ, 0)), λ, µ ∈ R(m,n), (1.6.29)

Fφ(λ, µ) = φ([λ, µ, 0]), λ, µ ∈ R(m,n), (1.6.30)

FΩ,φ(λ, µ) = e−2πi σ(MλΩ tλ) Fφ(λ, µ), λ, µ ∈ R(m,n). (1.6.31)

In addition, we put for W = λΩ + µ ∈ C(m,n),

ϑΩ,φ(W ) = ϑΩ,φ(λΩ + µ) := FΩ,φ(λ, µ). (1.6.32)

We observe that Eφ, Fφ, FΩ,φ are functions defined on V and ϑΩ,φ is a
function defined on C(m,n).

Proposition 6. If φ ∈ HM,qM , (ξ, η) ∈ L and (λ, µ) ∈ V, then we have the
formulas

Eφ(λ + ξ, µ + η) = e2πi σ{M(ξ tη + λ tη−µ tξ)}Eφ(λ, µ). (1.6.33)

Fφ(λ + ξ, µ + η) = e−4πi σ(Mξ tµ) Fφ(λ, µ). (1.6.34)

FΩ,φ(λ + ξ, µ + η) = e−2πi σ{M(ξΩ tξ + 2 λΩ tξ + 2 µ tξ)} FΩ,φ(λ, µ). (1.6.35)

If W = λΩ + η ∈ C(m,n), then we have

ϑΩ,φ(W + ξΩ + η) = e−2πi σ{M(ξΩ tξ + 2 W tξ)} ϑΩ,φ(W ). (1.6.36)

Moreover, Fφ is an element of HM,qM .
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Proof. We note that

(λ + ξ, µ + η, 0) = (ξ, η,−ξ tµ + η tλ) ◦ (λ, µ, 0).

Thus we have

Eφ(λ + ξ, µ + η) = φ((λ + ξ, µ + η, 0))

= φ((ξ, η, −ξ tµ + η tλ) ◦ (λ, µ, 0))

= e2πi σ{M(ξ tη + λ tη−µ tξ)} φ((λ, µ, 0))

= e2πi σ{M(ξ tη + λ tη−µ tξ)}Eφ(λ, µ).

This proves the formula (1.6.33).

We observe that

[λ + ξ, µ + η, 0] = (ξ, η, −ξ tµ− µ tξ − η tξ) ◦ [λ, µ, 0].

Thus we have

Fφ(λ + ξ, µ + η) = φ([λ + ξ, µ + η, 0])

= e−2πi σ{M(ξ tµ + µ tξ + η tξ)}

× e2πi σ(Mξ tη) φ([λ, µ, 0])

= e−4πi σ(Mξ tµ) φ([λ, µ, 0])

= e−4πi σ(Mξ tµ) Fφ(λ, µ).

This proves the formula (1.6.34).

According to (1.6.34), we have

FΩ,φ(λ + ξ, µ + η) = e−2πi σ{M(λ+ξ)Ω t(λ+ξ)} Fφ(λ + ξ, µ + η)

= e−2πi σ{M(λ+ξ)Ω t(λ+ξ)}

× e−4πi σ(Mξ tµ) Fφ(λ, µ)

= e−2πi σ{M(ξΩ tξ + 2 λΩ tξ + 2 µ tξ)}

× e−2πi σ(MλΩ tλ) Fφ(λ, µ)

= e−2πi σ{M(ξΩ tξ + 2 λΩ tξ + 2 µ tξ)} FΩ,φ(λ, µ).

This proves the formula (1.6.34). The formula (1.6.35) follows immediately
from the formula (1.6.34).

Indeed, if W = λΩ + µ with λ, µ ∈ R(m,n), we have
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ϑΩ,φ(W + ξΩ + η) = FΩ,φ(λ + ξ, µ + η)

= e−2πi σ{M(ξΩ tξ + 2 (λΩ+µ) tξ)} FΩ,φ(λ, µ)

= e−2πi σ{M(ξΩ tξ + 2 W tξ)} ϑΩ,φ(W ).

¤

Remark 4. The function ϑΩ,φ(W ) is a theta function of level 2M with re-
spect to Ω if ϑΩ,φ is holomorphic. For any φ ∈ HM,qM , the function ϑΩ,φ

satisfies the transformation law (1.2.1) of a theta function. In this sense, the
lattice representation ( πM,qM , HM,qM ) is closely related to
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1.7 Coadjoint Orbits

In this section, we find the coadjoint orbits of the Heisenberg group H
(n,m)
R

and describe the connection between the coadjoint orbits and the unitary
dual of H

(n,m)
R explicitly.

For brevity, we let G := H
(n,m)
R as before. Let g be the Lie algebra of G

and let g∗ be the dual space of g. We observe that g can be regarded as the
subalgebra consisting of all (m + n)× (m + n) real matrices of the form

X(α, β, γ) :=




0 0 0 tβ
α 0 β γ
0 0 0 −tα
0 0 0 0


 , α, β ∈ R(m,n), γ = tγ ∈ R(m,m)

of the Lie algebra sp(m + n,R) of the symplectic group Sp(m + n,R). An
easy computation yields

[X(α, β, γ), X(δ, ε, ξ)] = X(0, 0, α tε + ε tα− β tδ − δ tβ).

The dual space g∗ of g can be identified with the vector space consisting of
all (m + n)× (m + n) real matrices of the form

F (a, b, c) :=




0 ta 0 0
0 0 0 0
0 tb 0 0
b c −a 0


 , a, b ∈ R(m,n), c = tc ∈ R(m,m)

so that

〈F (a, b, c), X(α, β, γ)〉 : = σ(F (a, b, c)X(α, β, γ)) (1.7.1)
= 2σ(tα a + tb β) + σ(c γ).

The adjoint representation Ad of G is given by AdG(g)X = gXg−1 for g ∈ G
and X ∈ g. For g ∈ G and F ∈ g∗, gFg−1 is not of the form F (a, b, c). We
denote by (gFg−1)∗ the 



0 ∗ 0 0
0 0 0 0
0 ∗ 0 0
∗ ∗ ∗ 0


− part

of the matrix gFg−1. Then it is easy to see that the coadjoint representation
Ad∗G : G −→ GL(g∗) is given by Ad∗G(g)F = (gFg−1)∗, where g ∈ G and
F ∈ g∗. More precisely,

Ad∗G(g)F (a, b, c) = F (a + cµ, b− cλ, c), (1.7.2)
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where g = (λ, µ, κ) ∈ G. Thus the coadjoint orbit Ωa,b of G at F (a, b, 0) ∈ g∗

is given by

Ωa,b = Ad∗G(G) F (a, b, 0) = {F (a, b, 0)}, a single point (1.7.3)

and the coadjoint orbit Ωc of G at F (0, 0, c) ∈ g∗ with c 6= 0 is given by

Ωc = Ad∗G(G)F (0, 0, c) =
{

F (a, b, c)
∣∣ a, b ∈ R(m,n)

}
. (1.7.4)

Therefore the coadjoint orbits of G in g∗ fall into two classes:

(I) The single point
{

Ωa,b

∣∣ a, b ∈ R(m,n)
}

located in the plane c = 0.

(II) The affine planes
{

Ωc

∣∣ c = tc ∈ R(m,m), c 6= 0
}

parallel to the ho-
mogeneous plane c = 0.

In other words, the orbit space O(G) of coadjoint orbits is parametrized
by {

c−axis, c 6= 0, c = tc ∈ R(m,m);
(a, b)−plane ∼= R(m,n) × R(m,n).

The single point coadjoint orbits of the type Ωa,b are said to be the degenerate
orbits of G in g∗. On the other hand, the flat coadjoint orbits of the type Ωc

are said to be the non-degenerate orbits of G in g∗.

Since G is connected and simply connected 2-step nilpotent Lie group,
according to A. Kirillov (cf. [16] or [17] p.249, Theorem 1), the unitary dual
Ĝ of G is given by

Ĝ =
(
R(m,n) × R(m,n)

) ∐ {
z ∈ R(m,m) | z = tz, z 6= 0

}
, (1.7.5)

where
∐

denotes the disjoint union. The topology of Ĝ may be described as
follows. The topology on {c−axis− (0)} is the usual topology of the Euclidean
space and the topology on {F (a, b, 0)|a, b ∈ R(m,n)} is the usual Euclidean
topology. But a sequence on the c-axis which converges to 0 in the usual topol-
ogy converges to the whole Euclidean space R(m,n) × R(m,n) in the topology
of Ĝ. This is just the quotient topology on g∗/G so that algebraically and
topologically Ĝ = g∗/G.

It is well known that each coadjoint orbit is a symplectic manifold. We
will state this fact in detail. For the present time being, we fix an element F
of g∗ once and for all. We consider the alternating R-bilinear form BF on g
defined by

BF (X, Y ) := 〈F, [X, Y ] 〉 = 〈 ad∗g(Y )F, X 〉, X, Y ∈ g, (1.7.6)

where ad∗g : g −→ End(g∗) denotes the differential of the coadjoint rep-
resentation Ad∗G : G −→ GL(g∗). More precisely, if F = F (a, b, c), X =
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X(α, β, γ), and Y = X(δ, ε, ξ), then

BF (X, Y ) = σ{c (α tε + ε tα− β tδ − δ tβ)}. (1.7.7)

For F ∈ g∗, we let

GF = { g ∈ G | Ad∗G(g)F = F }

be the stabilizer of the coadjoint action Ad∗ of G on g∗ at F. Since GF is a
closed subgroup of G, GF is a Lie subgroup of G. We denote by gF the Lie
subalgebra of g corresponding to GF . Then it is easy to show that

gF = radBF =
{

X ∈ g | ad∗g(X)F = 0
}

. (1.7.8)

Here radBF denotes the radical of BF in g. We let ḂF be the non-degenerate
alternating R-bilinear form on the quotient vector space g/rad BF induced
from BF . Since we may identify the tangent space of the coadjoint orbit
ΩF

∼= G/GF with g/gF = g/radBF , we see that the tangent space of ΩF at
F is a symplectic vector space with respect to the symplectic form ḂF .

Now we are ready to prove that the coadjoint orbit ΩF = Ad∗G(G)F is a
symplectic manifold. We denote by X̃ the smooth vector field on g∗ associated
to X ∈ g. That means that for each ` ∈ g∗, we have

X̃(`) = ad∗g(X) `. (1.7.9)

We define the differential 2-form BΩF
on ΩF by

BΩF
(X̃, Ỹ ) = BΩF

(ad∗g(X)F, ad∗g(Y )F ) := BF (X, Y ), (1.7.10)

where X, Y ∈ g.

Lemma 19. BΩF
is non-degenerate.

Proof. Let X̃ be the smooth vector field on g∗ associated to X ∈ g such that
BΩF

(X̃, Ỹ ) = 0 for all Ỹ with Y ∈ g. Since BΩF
(X̃, Ỹ ) = BF (X, Y ) = 0 for

all Y ∈ g, X ∈ gF . Thus X̃ = 0. Hence BΩF
is non-degenerate. ¤

Lemma 20. BΩF
is closed.

Proof. If X̃1, X̃2, and X̃3 are three smooth vector fields on g∗ associated to
X1, X2, X3 ∈ g, then

dBΩF
(X̃1, X̃2, X̃3)

= X̃1(BΩF (X̃2, X̃3))− X̃2(BΩF (X̃1, X̃3)) + X̃3(BΩF (X̃1, X̃2))

−BΩF ([X̃1, X̃2], X̃3) + BΩF ([X̃1, X̃3], X̃2)−BΩF ([X̃2, X̃3], X̃1)
= −〈F, [[X1, X2], X3] + [[X2, X3], X1] + [[X3, X1], X2]〉
= 0 (by the Jacobi identity).
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Therefore BΩF
is closed. ¤

In summary, (ΩF , BΩF
) is a symplectic manifold of dimension 2mn or 0.

In order to describe the irreducible unitary representations of G corre-
sponding to the coadjoint orbits under the Kirillov correspondence, we have
to determine the polarizations of g for the linear forms F ∈ g∗.

Case I. F = F (a, b, 0); the degenerate case.
According to (1.7.3), ΩF = Ωa,b = {F (a, b, 0)} is a single point. It follows

from (1.7.7) that BF (X,Y ) = 0 for all X, Y ∈ g. Thus g is the unique
polarization of g for F. The Kirillov correspondence says that the irreducible
unitary representation πa,b of G corresponding to the coadjoint orbit Ωa,b is
given by

πa,b(exp X(α, β, γ)) = e2πi 〈F,X(α,β,γ)〉 = e4πi σ( taα + tbβ). (1.7.11)

That is, πa,b is a one-dimensional degenerate representation of G.

Case II. F = F (0, 0, c), 0 6= c = tc ∈ R(m,m) : the non-degenerate case.
According to (1.7.4), ΩF = Ωc =

{
F (a, b, c) | a, b ∈ R(m,n)

}
. By (1.7.7),

we see that

k =
{

X(0, β, γ)
∣∣ β ∈ R(m,n), γ = tγ ∈ R(m,m)

}
(1.7.12)

is a polarization of g for F, i.e.,k is a Lie subalgebra of g subordinate to F ∈ g∗

which is maximal among the totally isotropic vector subspaces of g relative
to the alternating R-bilinear form BF . Let K be the simply connected Lie
subgroup of G corresponding to the Lie subalgebra k of g. We let

χc,k : K −→ C×1

be the unitary character of K defined by

χc,k(exp X(0, β, γ)) = e2πi 〈F,X(0,β,γ)〉 = e2πi σ(cγ). (1.7.13)

The Kirillov correspondence says that the irreducible unitary representation
πc,k of G corresponding to the coadjoint orbit ΩF = Ωc is given by

πc,k = IndG
K χc,k. (1.7.14)

According to Kirillov’s Theorem (cf. [16]), we know that the induced repre-
sentation πc,k is, up to equivalence, independent of the choice of a polarization
of g for F. Thus we denote the equivalence class of πc,k by πc. πc is realized
on the representation space L2(R(m,n), dξ) as follows:

(πc(g)f)(ξ) = e2πi σ{c(κ+µtλ+2ξtµ)}f(ξ + λ), (1.7.15)

where g = (λ, µ, κ) ∈ G and ξ ∈ R(m,n). Using the fact that
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expX(α, β, γ) =
(

α, β, γ +
1
2
(
α tβ − β tα

))
,

we see that πc is nothing but the Schrödinger representation Uc = U(σc) of
G induced from the one-dimensional unitary representation σc of K given
by σc((0, µ, κ)) = e2πi σ(cκ)I (cf. (1.4.6) and (1.4.8)). We note that πc is the
non-degenerate representation of G with central character χc : Z −→ C×1
given by χc((0, 0, κ)) = e2πi σ(cκ). Here Z =

{
(0, 0, κ) | κ = tκ ∈ R(m,m)

}
denotes the center of G.

It is well known that the monomial representation
(
πc, L

2
(
R(m,n), dξ

))
of

G extends to an operator of trace class

πc(φ) : L2
(
R(m,n), dξ

) −→ L2
(
R(m,n), dξ

)
(1.7.16)

for all φ ∈ C∞c (G). Here C∞c (G) is the vector space of all smooth functions
on G with compact support. We let C∞c (g) and C(g∗) the vector space of
all smooth functions on g with compact support and the vector space of all
continuous functions on g∗ respectively. If f ∈ C∞c (g), we define the Fourier
cotransform

CFg : C∞c (g) −→ C(g∗)

by

(CFg(f)) (F ′) :=
∫

g

f(X) e2πi 〈F ′,X〉dX, (1.7.17)

where F ′ ∈ g∗ and dX denotes the usual Lebesgue measure on g. According
to A. Kirillov (cf. [16]), there exists a measure β on the coadjoint orbit Ωc ≈
R(m,n) ×R(m,n) which is invariant under the coadjoint action of G such that

trπ1
c (φ) =

∫

Ωc

CFg(φ ◦ exp)(F ′)dβ(F ′) (1.7.18)

holds for all test functions φ ∈ C∞c (G), where exp denotes the exponentional
mapping of g onto G. We recall that

π1
c (φ)(f) :=

∫

G

φ(x) (πc(x)f) dx,

where φ ∈ C∞c (G) and f ∈ L2(R(m,n), dξ). By the Plancherel theorem, the
mapping

S(G/Z) 3 ϕ 7−→ π1
c (ϕ) ∈ TC(L2(R(m,n), dξ))

extends to a unitary isometry

π2
c : L2(G/Z, χc) −→ HS

(
L2

(
R(m,n), dξ

))
(1.7.19)

of the representation space L2(G/Z, χc) of IndG
Z χc onto the complex Hilbert

space HS
(
L2

(
R(m,n), dξ

))
consisting of all Hilbert-Schmidt operators on
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L2
(
R(m,n), dξ

)
, where S(G/Z) is the Schwartz space of all infinitely differen-

tiable complex-valued functions on G/Z ∼= R(m,n) × R(m,n) that are rapidly
decreasing at infinity and TC

(
L2

(
R(m,n), dξ

))
denotes the complex vector

space of all continuous C-linear mappings of L2
(
R(m,n), dξ

)
into itself which

are of trace class.

In summary, we have the following result.

Theorem 9. For F = F (a, b, 0) ∈ g∗, the irreducible unitary representation
πa,b of G corresponding to the coadjoint orbit ΩF = Ωc under the Kirillov
correspondence is degenerate representation of G given by

πa,b

(
expX(α, β, γ)

)
= e4πi σ(taα−tbβ).

On the other hand, for F = F (0, 0, c) ∈ g∗ with 0 6= c = tc ∈ R(m,m), the irre-
ducible unitary representation

(
πc, L

2
(
R(m,n), dξ

))
of G corresponding to the

coadjoint orbit Ωc under the Kirillov correspondence is unitary equivalent to
the Schrödinger representation

(
Uc, L

2
(
R(m,n), dξ

))
and this non-degenerate

representation πc is square integrable modulo its center Z. For all test func-
tions φ ∈ C∞c (G), the character formula

trπ2
c (φ) = C(φ, c)

∫

R(m,n)
φ(0, 0, κ) e2πi σ(cκ)dκ

holds for some constant C(φ, c) depending on φ and c, where dκ is the Lebesgue
measure on the Euclidean space R(m,m).

Now we consider the subgroup K of G (cf. (1.4.1)) given by

K :=
{

(0, 0, κ) ∈ G
∣∣ µ ∈ R(m,n), κ = tκ ∈ R(m,m)

}
.

The Lie algebra k of K is given by (1.7.12). The dual space k∗ of k may be
identified with the space

{
F (0, b, c)

∣∣ b ∈ R(m,n), c = tc ∈ R(m,m)
}
.

We let Ad∗K : K −→ GL(k∗) be the coadjoint representation of K on k∗. The
coadjoint orbit ωb,c of K at F (0, b, c) ∈ k∗ is given by

ωb,c = Ad∗K(K) F (0, b, c) = {F (0, b, c)}, a single point. (1.7.20)

Since K is a commutative group, [k, k] = 0 and so the alternating R-bilinear
form Bf on k associated to F := F (0, b, c) identically vanishes on k × k(cf.
(1.7.6)). k is the unique polarization of k for F = F (0, b, c). The Kirillov
correspondence says that the irreducible unitary representation χb,c of K
corresponding to the coadjoint orbit ωb,c is given by

χb,c

(
expX(0, β, γ)

)
= e2πi 〈F (0,b,c),X(0,β,γ)〉 = e2πi σ(2 tb β + c γ) (1.7.21)
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or
χb,c((0, µ, κ)) = e2πi σ(2 tb µ + c κ), (0, µ, κ) ∈ K. (1.7.22)

For 0 6= c = tc ∈ R(m,m), we let πc be the Schrödinger representation of G
given by (1.7.15). We know that the irreducible unitary representation of G
corresponding to the coadjoint orbit

Ωc = Ad∗G(G)F (0, 0, c) =
{

F (a, b, c) | a, b ∈ R(m,n)
}

.

Let p : g∗ −→ k∗ be the natural projection defined by p(F (a, b, c)) = F (0, b, c).
Obviously we have

p(Ωc) =
{

F (0, b, c)
∣∣ b ∈ R(m,n)

}
=

⋃

b∈R(m,n)

ωb,c.

According to Kirillov Theorem (cf. [17] p.249, Theorem 1), the restriction
πc|K of πc to K is the direct integral of all one-dimensional representations
χb,c of K (b ∈ R(m,n)). Conversely, we let χb,c be the element of K̂ correspond-
ing to the coadjoint orbit ωb,c of K. The induced representation IndG

K χb,c is
nothing but the Schrödinger representation πc. The coadjoint orbit Ωc of G
is the only coadjoint orbit such that Ωc ∩ p−1(ωb,c) is nonempty.
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1.8 Hermite Operators

We recall the Schrödinger representation Uc of G induced from σc (cf. (5.8)).
We consider the special case when c = Im is the identity matrix of degree m.
Then it is easy to see that

dUIm
(D0

kl) f(ξ) = 2 π i δkl f(ξ),

dUIm(Dka) f(ξ) =
∂f(ξ)
∂ξka

,

dUIm
(D̂lb) f(ξ) = 4 π i ξlb f(ξ),

where f ∈ S(R(m,n)) or C∞(R), the Schwartz space and ξ11, · · · , ξmn are the
coordinates of ξ. In section two, we put

Z0
kl : = −iD0

kl, 1 ≤ k ≤ l ≤ m,

Y +
ka : =

1
2

(Dka + i D̂ka), 1 ≤ k ≤ m, 1 ≤ a ≤ n,

Y −
lb : =

1
2

(Dlb − i D̂lb), 1 ≤ l ≤ m, 1 ≤ b ≤ n.

We set

A+
ka := dUIm

(Y +
ka) =

1
2

dUIm(Dka) +
i

2
dUIm(D̂ka), (1.8.1)

A−lb := dUIm(Y −
lb ) =

1
2

dUIm(Dlb)− i

2
dUIm(D̂lb)) (1.8.2)

and
Ckl : = dUIm

(Z0
kl) = −i dUIm(D0

kl). (1.8.3)

By Lemma 2, we have

[A+
ka, A−lb] = δab Ckl,

[A+
ka, A+

lb] = [A−ka, A−lb] = 0,

[Ckl, Cmn] = [Ckl, A
+
ma] = [Ckl, A

−
ma] = 0.

In particular, we have

[A+
ka, A−ka] = 2π · Id, 1 ≤ k ≤ m, 1 ≤ a ≤ n. (1.8.4)

We note that A+
ka and A−lb acts on the Schwartz space C∞(R(m,n)) or

S(R(m,n)) as the following linear differential operators

A+
ka =

1
2

(
∂

∂ξka
− 4 π ξka

)
(1.8.5)
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and

A−lb =
1
2

(
∂

∂ξlb
− 4 π ξlb

)
, (1.8.6)

where 1 ≤ k, l ≤ m and 1 ≤ a, b ≤ n. The differential operators A+
ka and A−lb

are called the creating operator of energy quantum and the annihilation operator
of energy quantum respectively. It is easy to see that the adjoint of A−ka is
−A+

ka.

We start with the ground state f0(ξ) given by

f0(ξ) = (
√

2)mne−2π
∑m

k=1
∑n

a=1 ξ2
ka . (1.8.7)

By an easy computation, we have

〈F0, f0〉 = 1, A−ka(f0) = 0 (1.8.8)

for all 1 ≤ k ≤ m and 1 ≤ a ≤ n. This means that f0 is a unit vecter
in L2(R(m,n), dξ) which is annihilated by the annihilation operator A−ka :
S(R(m,n)) −→ S(R(m,n)). For any J ∈ Z(m,n)

≥0 , we define

fJ (ξ) := (A+)Jf0(ξ) := (A+
11)

J11 · · · (A+
ka)Jka · · · (A+

mn)Jmn f0(ξ). (1.8.9)

We give a lexicographic orderring on Z(m,n)
≥0 . That is, for J,K ∈ Z(m,n)

≥0 , J <
K if and only if J11 = K11, · · · , Jij = Kij , Ji,j+1 < Ki,j+1, · · · .

Lemma 21. For each k, a with 1 ≤ k ≤ m and 1 ≤ a ≤ n, we have

A−ka(fJ) = −2 π Jka fJ−εka
. (1.8.10)

Proof. We prove this by induction on J. If J = (0, · · · , 0), (1.8.10) holds.
Suppose (1.8.10) holds for J. For J̃ = J + εka,

A−ka (fJ+εka
) = A−ka ◦A+

ka(fJ )

=
(
A+

ka ◦A−ka − [A+
ka, A−ka]

)
(fJ)

= A+
ka(−2 π Jka fJ−εka

)− 2 π fJ

= −2 π Jka fJ − 2 π fJ

= −2 π (Jka + 1) fJ .

This completes the proof. ¤

Lemma 22.

〈fJ , fK〉 =

{
(2 π)J J ! if J = K

0 otherwise.

Proof. If J > K, we have
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〈 fJ , fK 〉 = 〈 (A+)Jf0, (A+)Kf0 〉
= (−1)J〈 f0, (A−)J ◦ (A+)K f0 〉
= 0 (by Lemma 21).

In case J < K, 〈 fJ , fK 〉 = 〈 fK , fJ 〉 = 0. In case when J = K, we prove
the above identity by induction on J. If J = (0, 0, · · · , 0), then 〈 f0, f0 〉 = 1.
Assume that (fJ , fJ) = (2 π)J J !. Then according to (1.8.4) and Lemma 21,
we have,

〈 fJ+εka
, fJ+εka

〉 = 〈A+
ka(fJ), A+

ka(fJ) 〉
= −〈 fJ , A−ka ◦A+

ka(fJ) 〉
= −〈 fJ , (A+

ka ◦A−ka − [A+
ka, A−ka])fJ 〉

= −〈 fJ ,−2 π Jka fJ − 2 π fJ 〉
= 2 π (Jka + 1) 〈 fJ , fJ 〉
= (2 π)J+εka(J + εka)!.

¤

We define the normalized function hJ ∈ S(R(m,n)) by

hJ :=
(

1√
2π

)J

(J !)−1/2 fJ , J ∈ Z(m,n)
≥0 . (1.8.11)

Lemma 23. For each J ∈ Z(m,n)
≥0 and all k, a ∈ Z with 1 ≤ k ≤ m and

1 ≤ a ≤ n, we have

A+
ka(hJ) = {2 π (Jka + 1)}1/2 hJ+εka

(1.8.12)

and
A−ka(hJ) = −(2π Jka)1/2 hJ−εka

. (1.8.13)

Proof. According to (1.8.9), we have

A+
ka(hJ) =

(
1√
2π

)J

(J !)−1/2 fJ+εka

= (2 π)1/2 (Jka + 1)1/2 hJ+εka

= {2 π(Jka + 1)}1/2 hJ+εka
.

According to Lemma 21, we have
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A−ka(hJ) =
(

1√
2π

)J

(J !)−1/2A−ka(fJ )

=
(

1√
2π

)J

(J !)−1/2(−2π)JkafJ−εka

= −(2π Jka)1/2

(
1√
2π

)J−εka

{(J − εka)!}−1/2fJ−εka

= −(2π Jka)1/2hJ−εka
.

¤

Lemma 24. For each J ∈ Z(m,n)
≥0 and k, a ∈ Z+ with 1 ≤ k ≤ m and

1 ≤ a ≤ n, we have

A+
ka ◦A−ka(hJ ) = −2 π JkahJ , (1.8.14)

A−ka ◦A+
ka(hJ ) = −2 π (Jka + 1) hJ . (1.8.15)

Proof. It follows immediately from (1.8.12) and (1.8.13).

A+
ka ◦A−ka(hJ) = −(2π Jka)1/2 A+

ka(hJ−εka
)

= −(2π Jka)1/2 (2πJka)1/2 hJ

= −(2π Jka)hJ ,

A−ka ◦A+
ka(hJ) = {2 π (Jka + 1)}1/2 A−ka(hJ+εka

)

= {2 π (Jka + 1)}1/2 (−1) {2π(Jka + 1)}1/2 hJ

= −2π(Jka + 1) hJ .

¤
The linear differential operators

A+
ka ◦A−ka =

1
4

(
∂2

∂ξ2
ka

− 16 π2 ξ2
ka + 4 π

)

and

A−ka ◦A+
ka =

1
4

(
∂2

∂ξ2
ka

− 16 π2 ξ2
ka − 4 π

)

are called the number operators for the family {hJ | J ∈ Z(m,n)
≥0 }. Now we

consider the so-called Hermite differential operator

Hka : = −2
(
A+

ka ◦A−ka + A−ka ◦A+
ka

)
= − ∂2

∂ξ2
ka

+ 16 π2 ξ2
ka.

Hka is also called the Schrödinger Hamiltonian for the harmonic oscillator
system in quantum mechanics. Obviously we have
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Hka(hJ) = 8 π

(
Jka +

1
2

)
hJ , J ∈ Z(m,n)

≥0 . (1.8.16)

Thus the
{

hJ |J ∈ Z(m,n)
≥0

}
is the set of normalized eigenforms of all Hermite

operators Hka with eigenvalues
{
8 π (Jka + 1

2 ) | J ∈ Z(m,n)
}
. In other words,

each hJ (J ∈ Z(m,n)) is the harmonic oscillator wave function with equidis-
tant energies

{
8 π (Jka + 1

2 ) | 1 ≤ k ≤ m, 1 ≤ a ≤ n
}

in natural units. The
Hermite operator Hka acts on the Schwartz space S(R(m,n)) ⊂ L2

(
R(m,n), dξ

)
and is self-adjoint.

Lemma 25. For each J ∈ Z(m,n)
≥0 and k, a ∈ Z with 1 ≤ k ≤ m and 1 ≤ a ≤

n,
hJ(−ξ) = (−1)J hJ (ξ), (1.8.17)

(
∂

∂ξka
− 4 π ξka

)
hJ(ξ) = 2 {2 π (Jka + 1)}1/2

hJ+εka
(ξ), (1.8.18)

ĥJ = (−i)J hJ , (1.8.19)

CF (hJ) = iJ hJ . (1.8.20)

Thus ĥJ and CF (hJ ) satisfy the differential equation (1.8.18). Here f̂(η)
denotes the Fourier transform of f(ξ) on R(m,n) defined by

f̂(η) :=
∫

R(m,n)
f(ξ) e−2 π i 〈ξ,η〉 dξ, η ∈ R(m,n)

and CF (f) denotes the Fourier cotransform of f on R(m,n) defined by

CF (f)(ξ) : =
∫

R(m,n)
f(η) e2 π i 〈η,ξ〉 dη, ξ ∈ R(m,n).

Proof. (1.8.17) is obvious. (1.8.18) follows immediately from (1.8.5) and
(1.8.12). (1.8.19) and (1.8.20) follow from a simple computation. ¤

For ξ = (ξka) ∈ R(m,n), we briefly put |ξ|2 : =
∑m

k=1

∑n
a=1 ξ2

ka. We define

the functions PJ

(
J ∈ Z(m,n)

≥0

)
by

hJ(ξ) : = PJ(ξ) e−2 π |ξ|2 , ξ ∈ R(m,n). (1.8.21)

Indeed, PJ(ξ) are the Hermite polynomials of degree J = (J11, · · · , Jmn)
normalized in such a way that they form an orthonormal family in
L2

(
R(m,n), e−4π|ξ|2dξ

)
(it will proved later).

Lemma 26. For each J ∈ Z(m,n)
≥0 and k, a ∈ Z+ with 1 ≤ k ≤ m, and

1 ≤ a ≤ n, we have
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∂PJ (ξ)
∂ξka

− 8 π ξka PJ (ξ)− 2 {2 π (Jka + 1)}1/2 PJ+εka
(ξ) = 0 (1.8.22)

and
∂PJ+εka

(ξ)
∂ξka

+ 2 {2 π (Jka + 1)}1/2 PJ(ξ) = 0. (1.8.23)

Proof. (1.8.22) follows from (1.8.18). (1.8.23) follows from (1.8.6) and (1.8.13).
¤

Differentiating (1.8.22) with respect to ξka, and then using (1.8.23), we see
that PJ(ξ) satisfies the so-called Hermite equation.

∂2PJ(ξ)
∂ξ2

ka

− 8 π ξka
∂PJ(ξ)
∂ξka

+ 8 π Jka PJ (ξ) = 0, (1.8.24)

where J ∈ Z(m,n)
≥0 , 1 ≤ k ≤ m and 1 ≤ a ≤ n. We set ∂ka : = ∂

∂ξka
. Then

(1.8.24) becomes

∂2
kaPJ(ξ)− 8 π ξka ∂ka PJ(ξ) + 8πJkaPJ(ξ) = 0.

Differentiating (1.8.18) with respect to ξka, we obtain

∂2
kahJ(ξ)− 4 π ξka ∂kahJ(ξ)− 4 π hJ(ξ) (1.8.25)

−2 {2 π (Jka + 1)}1/2 ∂kahJ+εka
(ξ) = 0.

By the way, according to (1.8.23), we have

∂kahJ+εka
(ξ) = ∂kaPJ+εka

(ξ) e−2π|ξ|2 − 4 π ξka PJ+εka
(ξ) e−2π|ξ|2

=− 2 {2 π (Jka + 1)}1/2 hJ(ξ)− 4 π ξka hJ+εka
(ξ).

If we substitute this relation into (1.8.25), we obtain

∂2
kahJ(ξ)− 16 π2 ξ2

ka hJ(ξ) = −8 π

(
Jka +

1
2

)
hJ(ξ). (1.8.26)

Theorem 10. The set
{

hJ | J ∈ Z(m,n)
≥0

}
of normalized Hermitian function

in S(R(m,n)) forms an orthonormal basis of L2
(
R(m,n), dξ

)
. These hJ are

eigenfunctions of the Fourier transform and the Fourier cotransform with
eigenvalues (−i)J and iJ respectively.

Proof. If X is a left-invariant vector field on G, we set, for brevity

U(X) : = dUIm(X).

We will prove that the set
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

U


expG


∑

k,a

xkaDka +
∑

l,b

ylbD̂lb





(f0)

∣∣∣∣ xka, ylb ∈ R




(1 ≤ k, l ≤ m, 1 ≤ a, b ≤ n) is contained to the closed vector subspace of
L2

(
R(m,n), dξ

)
spanned by the set

{
hJ |J ∈ Z(m,n)

≥0

}
and the subspace gener-

ated by the above set is invariant under the action of U. Since the Schrödinger
representation

(
UIm

, L2
(
R(m,n), dξ

))
is irreducible, we conclude that the set{

hJ |J ∈ Z(m,n)
≥0

}
is a complete orthonormal basis for L2

(
R(m,n), dξ

)
.

According to the commutation relation among D0
kl, Dka, D̂lb (cf. Lemma

2.1) and the fact that U(D0
kl)f = 2 π i δkl f for all f ∈ S(R(m,n)), it suffices

to prove the case m = 1 and n = 1. We put D0 : = D0
11, D : = D11 and

D̂ : = D̂11. In other words, it remains to prove that the set
{

U(expG(xD + yD̂))(f0)
∣∣ x, y ∈ R

}

is contained in the closed vector subspace of L2(R, dξ) spanned by the set
{hj | j = 0, 1, 2, · · · }.

First we note that by (1.8.1) and (1.8.2)

A+ =
1
2

(
U(D) + i U(D̂)

)
and A− =

1
2

(
U(D)− i U(D̂)

)
.

For the present time being, we fix real numbers x, y ∈ R. We put z = x+ iy ∈
C. It is obvious that U(xD+yD̂) = z̄A+ +zA−. For all integers k ≥ 0, ` ≥ 0
with 0 ≤ k ≤ `, We define the complex numbers ck` by

U(xD + yD̂)`(f0) =
∑̀

k=0

ck,`fk.

By the fact that A−(f0) = 0 and by (1.8.10), we have

U(xD + yD̂)`+1(f0) = (z̄A+ + zA−)

(∑̀

k=0

ck,`fk

)

=
∑̀

k=0

ck,` (z̄fk+1 − 2 π k z fk−1).

Thus we get the recurrence formula

ck,`+1 = z̄ck−1,` − 2 π (k + 1) z ck+1,`, 1 ≤ k ≤ `− 1.

Let z = |z| e2 π i ϕ with ϕ ∈ [0, 1) for z 6= 0. We put
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dk,` : =
(
|z|−1/2 eπ i ϕ

)`+k (
(2π |z|)−1/2 e−π i (ϕ− 1

2 )
)`−k

ck,`.

Then we have the recurrence formula

dk,`+1 = dk−1,` + (k + 1) dk+1,`, 1 ≤ k ≤ `− 1.

For 1 ≤ k ≤ `− 1, we put
bk,` : = d`−k,`.

Then we get the recurrence formula

bk,` = bk,`−1 + (`− k + 1) bk−2,`−1, 2 ≤ k ≤ `− 1.

If the starting value is b0,0 and we define bk,0 = 0 for k ≥ 1, then we get

b2p+1,` = 0 for 0 ≤ p ≤ 1
2
(`− 1)

and
b2p,` =

`!
2p p! (`− 2p)!

for 0 ≤ p ≤ 1
2
`.

So we obtain

U(xD + yD̂)`(f0) =
∑̀

k=0

ck,`fk

=
∑̀

k=0

(
|z|1/2 e−πiϕ

)`+k (
(2π |z|)1/2 eπ i (ϕ− 1

2 )
)`−k

dk,`fk

=
∑̀

k=0

(
|z|1/2 e−πiϕ

)2`−k (
(2 π |z|)1/2 eπ i (ϕ− 1

2 )
)k

bk,` f`−k

=
[ `
2 ]∑

p=0

(
|z|1/2 e−π i ϕ

)2`−2p (
(2π |z|)1/2 eπ i (ϕ− 1

2 )
)2p

b2p,` f`−2p

=
[ `
2 ]∑

p=0

z̄`−p(−2 π z)p `!
2p p! (`− 2p)!

f`−2p

=
[ `
2 ]∑

p=0

z̄`−p(−π z)p `!
p! (`− 2p)!

f`−2p.

Thus we get
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eU(xD+yD̂)(f0) =
∞∑

`=0

1
`!

U(xD + yD̂)`(f0)

=
∞∑

`=0

[ `
2 ]∑

p=0

1
`!

z̄`−p (−πz)p `!
p! (`− 2p)!

f`−2p

=
∞∑

`=0

[ `
2 ]∑

p=0

1
p! (`− 2p)!

(−π|z|2)p z̄`−2p f`−2p

=
∞∑

k=0

{ ∞∑
p=0

1
p!

(−π |z|2)p

}
z̄k

k!
fk

= e−π|z|2ez̄A+
(f0)

= e−π|z|2
∞∑

k=0

(
√

2π z̄)k

(k!)1/2
hk.

Therefore U(expG(xD+yD̂))(f0) belongs to the closed subspace of L2(R, dξ)
spanned by the set {hj | j = 0, 1, 2, · · · }. The latter part of the theorem
follows immediately from (1.8.19) and (1.8.20). This completes the proof. ¤

Corollary 1. The set
{

PJ | J ∈ Z(m,n)
≥0

}
of Hermite polynomials forms an

orthonormal basis for the L2-space L2
(
R(m,n), e−4π|ξ|2dξ

)
.

Proof. The proof follows immediately from Theorem 10 and (1.8.21). ¤
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1.9 Harmonic Analysis on the Quotient Space of H
(n,m)
R

We fix an element Ω ∈ Hn once and for all. Let M be a positive symmetric
half-integral matrix of degree m. Let L2

(
R(m,n), dξΩ,M

)
be the L2-space of

R(m,n) with respect to the measure

dξΩ,M = eπ i σ{Mξ(Ω−Ω) tξ}dξ.

It is easy to show that the transformation f(ξ) 7−→ eπ i σ{MξΩ tξ}f(ξ) of
L2

(
R(m,n), dξΩ,M

)
into L2

(
R(m,n), dξ

)
is an isomorphism. Since the set{

ξJ | J ∈ Z(m,n)
≥0

}
is a basis of L2

(
R(m,n), dξΩ,M

)
, the set

{
eπ i σ{MξΩ tξ} ξJ | J ∈ Z(m,n)

≥0

}

is a basis of L2
(
R(m,n), dξ

)
. We observe that there exists a canonical bijection

A from the cosets T : = Z(m,n)/(2M)Z(m,n). We denote by Aα the image of
α ∈ T under the bijection A.

For brevity, we put G = H
(n,m)
R . For each Aα ∈ L and each J ∈ Z(m,n)

≥0 ,

we define a function Φ
(M)
J

[
Aα

0

]
(Ω| · ) on G by

Φ
(M)
J

[
Aα

0

] (
Ω|(λ, µ, κ)

)
:

= e2πi σ{M(κ−λ tµ)} ∑

N∈Z(m,n)

(λ + N + Aα)J

× e2πi σ{M((λ+N+Aα)Ω t(λ+N+Aα) + 2(λ+N+Aα) tµ)},

(1.9.1)

where (λ, µ, κ) ∈ G. We let ΓG = H
(n,m)
Z be the discrete subgroup of G

consisting of integral elements. That is,

ΓG = {(λ, µ, κ) ∈ G | λ, µ, κ integral } .

According to [42], Proposition 1.3, the function Φ
(M)
J

[
Aα

0

] (
Ω|(λ, µ, κ)

)
sat-

isfies the transformation behaviour

Φ
(M)
J

[
Aα

0

] (
Ω|γ ◦ g

)
= Φ

(M)
J

[
Aα

0

]
(Ω|g) (1.9.2)

holds for all γ ∈ ΓG and g ∈ G. Thus the functions

Φ
(M)
J

[
Aα

0

]
(Ω|(λ, µ, κ))

(
J ∈ Z(m,n)

≥0

)
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are real analytic functions on the quotient space ΓG\G. Let H
(M)
Ω

[
Aα

0

]
be

the completion of the vector space spanned by

Φ
(M)
J

[
Aα

0

] (
Ω|(λ, µ, κ)

) (
J ∈ Z(m,n)

≥0

)

and let H
(M)
Ω

[
Aα

0

]
be the complex conjugate of H

(M)
Ω

[
Aα

0

]
.

Let L2(ΓG\G) be the L2-space of the quotient space ΓG\G with respect
to the invariant measure

dλ11 · · · dλm,n−1dλmndµ11 · · · dµm,n−1dµmndκ11dκ12 · · · dκmm.

Let ρ be he right regular representation of G on the Hilbert space L2(ΓG\G)
given by

(ρ(g0)φ)(g) : = φ(gg0), g0, g ∈ G, φ ∈ L2(ΓG\G).

In [42], the author proved that the subspaces H
(M)
Ω

[
Aα

0

]
and H

(M)
Ω

[
Aα

0

]

are irreducible invariant subspaces of L2(ΓG\G) with respect to ρ and the
decomposition of the right regular representation ρ is given by

L2(ΓG\G) =
⊕

M,α

H
(M)
Ω

[
Aα

0

]
⊕


⊕

M,α

H
(M)
Ω

[
Aα

0

]


⊕
(⊕

c

R(c)

)
⊕


 ⊕

k,`∈Z(m,n)

C e2πi σ(k tλ + ` tµ)


 ,

where M (respectively c) runs over the set of all positive symmetric half
integral matrices of degree m (respectively the set of all half integral nonzero
matrices of degree m which are neither positive nor negative definite), R(c) is
the sum of irreducible representations πc which occur in ρ and Aα runs over
a complete system of representatives of the cosets (2M)−1Z(m,n)/Z(m,n).

Lemma 27. The transform of L2
(
R(m,n), dξΩ,M

)
onto H

(M)
Ω

[
Aα

0

]
given by

ξJ 7−→ Φ
(M)
J

[
Aα

0

] (
Ω|(λ, µ, κ)

)
(1.9.3)

is an isomorphism of Hilbert spaces.

Proof. For the proof, we refer to [42], Lemma 3.2. ¤
We write

f
(M)
Ω,J (ξ) : = e2πi σ(MξΩ tξ)ξJ , J ∈ Z(m,n)

≥0 . (1.9.4)
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We let Φ
(M)
Ω,α be the transform of L2

(
R(m,n), dξ

)
onto H

(M)
Ω

[
Aα

0

]
defined by

Φ
(M)
Ω,α

(
f

(M)
Ω,J

)
: = Φ

(M)
J

[
Aα

0

] (
Ω|(λ, µ, κ)

)
. (1.9.5)

Then Φ
(M)
Ω,α is an isometry of L2

(
R(m,n), dξ

)
onto H

(M)
Ω

[
Aα

0

]
such that

US,M ((λ, µ, κ)) ◦ Φ
(M)
Ω,α = Φ

(M)
Ω,α ◦ US,M(

(λ,−µ,−κ)
)
,

where US,M is the Schrödinger representation of G defined by (6.45).

Let ∆Ω,M be the isometry of L2
(
R(m,n), dξΩ,M

)
onto L2

(
R(m,n), dξ

)
de-

fined by
(∆Ω,Mf)(ξ) := eπi σ{MξΩ tξ}f(ξ). (1.9.6)

We define the unitary representation US,M
Ω of G on L2

(
R(m,n), dξΩ,M

)
by

(
US,M

Ω (g)f
)

(ξ) : = ∆−1
Ω,M

((
US,M

Ω (g)(∆Ω,Mf)
)

(ξ)
)

, (1.9.7)

where f ∈ L2
(
R(m,n), dξΩ,M

)
and ξ ∈ R(m,n).

Now we write down the image of f
(M)
Ω,J ∈ L2

(
R(m,n), dξ

)
under ϑM,α (cf.

(1.6.22)) explicitly.
(
ϑM,αf

(M)
Ω,J

)
((λ, µ, κ))

=
(
ϑM,αf

(M)
Ω,J

)
([λ, µ, κ + µ tλ])

= e2πi σ{M(κ + µ tλ)} ∑

N∈Z(m,n)

e2πi σ{M((λ+N)Ω t(λ+N) + 2 N tµ)} (λ + N)J

= e2πi σ{M(κ−λ tµ) + α tµ}

×
∑

N∈Z(m,n)

e2πi σ{M((λ+N)Ω t(λ+N) + 2 (λ+N) tµ)} (λ + N)J .

In particular, if α = 0, κ = 0 and J = 0, then we have
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(
ϑM,0f

(M)
Ω,0

)
((λ, µ, 0))

= e−2πi σ(Mλ tµ)
∑

N∈Z(m,n)

e2πi σ{M((λ+N)Ω t(λ+N) + 2 (λ+N) tµ)}

= e2π i σ{M(λ Ω tλ + λ tµ)} ∑

N∈Z(m,n)

e2πi σ{M(NΩ tN + 2 (λΩ+µ)tN)}

= e2πi σ{M(λ Ω tλ + λ tµ)} ϑ(2M)

[
0
0

]
(Ω, λΩ + µ).

Therefore we obtain

Proposition 7. Let M be a positive symmetric half-integral matrix of degree
m. Let α ∈ T and J ∈ Z(m,n)

≥0 . Then we have

(
ϑM,αf

(M)
Ω,J

)
((λ, µ, κ))

= e2πi σ{(κ−λ tµ) + α tµ} ∑

N∈Z(m,n)

e2πi σ{M((λ+N)Ω t(λ+N) + 2(λ+N) tµ)}(λ + N)J .

In particular,

(
ϑM,0f

(M)
Ω,0

)
((λ, µ, 0)) = e2πi σ{M(λΩ tλ + λ tµ)} ϑ(2M)

[
0
0

]
(Ω,λ Ω + µ).

It is easy to see that the following diagrams are commutative.

L2
(
R(m,n), dξ

) US,M(g)−−−−−−→ L2
(
R(m,n), dξ

)

ϑM,α

y
yϑM,α

HM,α

q
πM,α

πM,α(g)−−−−−→
HM,α

q
πM,α

diagram 10.1

L2
(
R(m,n), dξΩ,M

) US,M
Ω (g)−−−−−−→ L2

(
R(m,n), dξΩ,M

)

∆Ω,M

y
y∆Ω,M

L2
(
R(m,n), dξ

) US,M(g)−−−−−−→ L2
(
R(m,n), dξ

)

diagram 10.2
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L2
(
R(m,n), dξ

) US,M(g)−−−−−−→ L2
(
R(m,n), dξ

)

IM

y
yIM

HF,M
UF,M(g)−−−−−−→ HF,M

diagram 10.3

L2
(
R(m,n), dξ

) US,M(g)−−−−−−→ L2
(
R(m,n), dξ

)

Φ
(M)
Ω,α

y
yΦ

(M)
Ω,α

H
(M)
Ω

[
Aα

0

]
ρM(g)−−−−→ H

(M)
Ω

[
Aα

0

]

diagram 10.4

Here g ∈ G and ρM denotes the restriction of the right regular representation

ρ to H
(M)
Ω

[
Aα

0

]
. We know that the mapping ϑM,α, ∆Ω,M, IM and Φ

(M)
Ω,α

are all the isomorphisms preserving the norms. Hence we have

Theorem 11. For each α ∈ T , Ω ∈ Hn and M positive symmetric half-
integral matrix of degree m, the following five representations are unitarily
equivalent to each other via the intertwining operators ϑM,α, IM, Φ

(M)
Ω,α and

∆Ω,M :

(1) the Schrödinger representation
(
US,M, L2

(
R(m,n), dξ

))
,

(2) the lattice representation (πM,α,HM,α),

(3) the Fock representation
(
UF,M,HF,M

)
,

(4) the representation
(

ρM,H
(M)
Ω

[
Aα

0

])

and

(5) the representation
(
US,M

Ω , L2
(
R(m,n), dξΩ,M

))
.

Remark 5. The multiplicity of the Schrödinger representation US,M of G in(
ρ, L2(ΓG\G)

)
is (det 2M)n.

We refer to [42] for detail. Theorem 11 may be pictured as follows.
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MF,M

↑ IM
∆M,α ϑM,α

L2
(
R(m,n), dξΩ,M

) −−−−→ L2
(
R(m,n), dξ

) −−−−→ HM,α

↓ Φ
(M)
Ω,α

H
(M)
Ω

[
Aα

0

]

figure 10.5

Finally we describe explicitly the orthonormal bases of

L2
(
R(m,n), dξ

)
, L2

(
R(m,n), dξΩ,M

)
, HM,α, HF,M and H

(M)
Ω

[
Aα

0

]

respectively.

In the previous section, we proved that the family of the functions

hJ(ξ) =
(

1√
2π

)J

(J !)−1/2 fJ(ξ), J ∈ Z(m,n)
≥0

forms an orthonormal basis of L2
(
R(m,n), dξ

)
. Therefore the set

{
e−π i σ(MξΩ tξ) hJ(ξ) | J ∈ Z(m,n)

≥0

}

forms an orthonormal basis for L2
(
R(m,n), dξΩ,M

)
. For each J ∈ Z(m,n)

≥0 , the
set of functions

ϑM,α,J(λ, µ, κ) :
= (ϑM,αhJ)(λ, µ, κ)

= e2πi σ{M(κ + µ tλ + α tµ)} ∑

N∈Z(m,n)

hJ(λ + N) e4πi σ(MN tµ), J ∈ Z(m,n)
≥0

forms an orthonormal basis for HM,α. For each J ∈ Z(m,n)
≥0 , we define the

function
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H
(M)
J

[
Aα

0

] (
Ω|(λ, µ, κ)

)
: = 2

mn
4 − |J|2 (J !)−1/2 (det 2M)n/4(det Im Ω)m/4

× eπi σ(M(κ−λ tµ))
∑

N∈Z(m,n)

HJ

(√
2π (2M)1/2 (λ + N + Aα)(ImΩ)1/2

)

× eπi σ{M((λ+N+Aα)Ω t(λ+N+Aα) + 2 (λ+N+Aα) tµ)},

where HJ(ξ) is the Hermite polynomial on R(m,n) in several variables defined
by

HJ(ξ) : = HJ11(ξ11)HJ12(ξ12) · · ·HJmn(ξmn).

It was proved in [43] that the functions H
(M)
J

[
Aα

0

] (
Ω|(λ, µ, κ)

) (
J ∈ Z(m,n)

≥0

)

form an orthonormal basis for H
(M)
Ω

[
Aα

0

]
.

Theorem 12. We have an orthonormal basis for each of the above five rep-
resentation:

(1) The set
{

hJ

∣∣ J ∈ Z(m,n)
≥0

}
forms an orthonormal basis for L2

(
R(m,n), dξ

)
.

(2) The set
{

e−πi σ(MξΩ tξ) hJ | J ∈ Z(m,n)
≥0

}
forms an orthonormal basis for

L2
(
R(m,n), dξΩ,M

)
.

(3) The set
{

ϑM,α,J

∣∣ J ∈ Z(m,n)
≥0

}
forms an orthonormal basis for HM,α.

(4) The set
{

ΦM,J | J ∈ Z(m,n)
≥0

}
(cf. (1.5.36)) forms an orthonormal basis

for HF,M.

(5) The set H
(M)
J

[
Aα

0

] (
Ω|(λ, µ, κ)

) (
J ∈ Z(m,n)

≥0

)
forms an orthonormal

basis for H
(M)
Ω

[
Aα

0

]
.



Chapter 2

Theta Functions and the Weil
Representation

2.1 The Symplectic Group

We recall that

Sp(n,R) = {M ∈ R(2n,2n) | tMJnM = Jn }

is the symplectic group of degree n, where

Jn =
(

0 In

−In 0

)
.

If M =
(

A B
C D

)
∈ Sp(n,R) with A,B, C,D ∈ R(n,n), then

tAD − tCB = In, tAC = tCA, tBD = tDB. (2.1.1)

We note that Sp(1,R) = SL(2,R). The inverse of M =
(

A B
C D

)
∈ Sp(n,R)

is

M−1 = J−1
n

tM Jn =
(

tD −tB
−tC tA

)
.

Since J−1
n = −Jn and tM−1JnM−1 = Jn with M ∈ Sp(n,R), we see that

tM−1J−1
n M−1 = J−1

n , that is, MJn
tM = Jn.

Thus if M ∈ Sp(n,R), then tM ∈ Sp(n,R). If M =
(

A B
C D

)
∈ Sp(n,R), then

A tD −B tC = In, A tB = B tA, C tD = D tC. (2.1.2)

81
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Lemma 28. Let M =
(

A B
C D

)
∈ Sp(n,R) and Ω ∈ Hn. Then

(a) CΩ + D is nonsingular.
(b) (AΩ + B)(CΩ + D)−1 is an element of Hn.

Proof. Let Ω = X + iY ∈ Hn with X,Y ∈ R(n,n) and Y > 0. Then

t(
Ω
In

)
Jn

(
Ω
In

)
= 0 (2.1.3)

and
t(

Ω
In

)
Jn

(
Ω
In

)
= 2 i Y > 0. (2.1.4)

We set
S = AΩ + B and T = CΩ + D.

By (2.1.3), we have

t(
S
T

)
Jn

(
S
T

)
=

t{
M

(
Ω
In

)}
Jn

{
M

(
Ω
In

)}

=
t(

Ω
In

)
tMJnM

(
Ω
In

)

=
t(

Ω
In

)
Jn

(
Ω
In

)
= 0.

By (2.1.4), we have

1
2i

t(
S
T

)
Jn

(
S
T

)
=

1
2i

t(
Ω
In

)
Jn

(
Ω
In

)
= Y > 0.

Thus we have

tST − tTS = 0 and
1
2i

(
tST − tTS

)
= Y > 0. (2.1.5)

Assume Tv = (CΩ + D)v = 0 for some v ∈ Cn. Then Tv = 0, tv tT = 0 and
hence

1
2i

tv
(

tST − tTS
)
v = 0.

By (2.1.5), v = 0 and so T = CΩ + D is nonsingular. This proves the
statement (a).

We set
Ω∗ = (AΩ + B)(CΩ + D)−1 = ST−1.

By (2.1.5), we have Ω∗ = tΩ∗ and
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Im Ω∗ =
1
2 i

(
Ω∗ −Ω∗

)
=

1
2 i

(
tΩ∗ −Ω∗

)

=
1
2 i

tT−1
(

tST − tTS
)
T
−1

= tT−1Y T
−1

> 0.

Therefore Ω∗ ∈ Hn. This completes the proof of the statement (b). ¤

Lemma 29. The symplectic group Sp(n,R) acts on the Siegel upper half
plane Hn transitively by

M ·Ω = (AΩ + B)(CΩ + D)−1, (2.1.6)

where M =
(

A B
C D

)
∈ Sp(n,R) and Ω ∈ Hn.

Proof. Let Ω = X + i Y ∈ Hn with X, Y ∈ Sym(n,R) and Y > 0. It suffices
to show that there exists an element M ∈ Sp(n,R) such that M ·(iIn) = Ω.
We choose Q ∈ GL(n,R) such that Q2 = Y. We take

M =
(

In X
0 In

)(
tQ 0
0 Q−1

)
.

According to (2.1.2), M ∈ Sp(n,R). Clearly M ·(iIn) = X + i Y = Ω. ¤
It is known (cf. [7], p. 322-328, [15], p. 10) that Sp(n,R) is generated by

the following elements

tb =
(

In b
0 In

)
with b = tb ∈ R(n,n),

da =
(

ta 0
0 a−1

)
with a ∈ GL(n,R),

σn =
(

0 −In

In 0

)
.

Thus if M ∈ Sp(n,R), det M = 1.

A subgroup Γ is said to be discrete if Γ ∩ K is finite for any compact
subset K of Sp(n,R).

Theorem 13. A discrete subgroup Γ of Sp(n,R) acts properly discontinu-
ously on Hn, that is, for any two compact subsets C1, C2 of Hn, the set

{ γ ∈ Γ | γ · C1 ∩ C2 6= ∅ }

is finite.

Proof. We can show that the mapping
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p : Sp(n,R) −→ Hn, M −→ M · (iIn), M ∈ Sp(n,R)

is proper, i.e., for any compact subset X ⊂ Hn, p−1(X) is compact in Sp(n,R)
(cf. [7], pp. 28-29). Suppose X1 and X2 are two compact subsets of Hn. Then
Z1 = p−1(X1) and Z2 = p−1(X2) are compact in Sp(n,R). Since the image
of Z2 × Z1 under the continuous mapping (M2,M1) 7→ M2M

−1
1 is compact,

the set
Z2Z

−1
1 = {M2M

−1
1 | M1 ∈ Z1, M2 ∈ Z2 }

is compact. It remains to show that {γ ∈ Γ | γ · X1 ∩ X2 6= ∅ } is finite. If
γ ∈ Γ such that γ ·X1 ∩X2 6= ∅, then

γ ·Ω1 = M2 · (iIn) ∈ X2 for some Ω1 ∈ X1 and M2 ∈ Z2.

Since (γ−1M2) · (iIn) = Ω1 ∈ X1, we have γ−1M2 ∈ Z1, that is, M−1
2 γ ∈

Z−1
1 . Therefore γ ∈ M2Z

−1
1 ⊂ Z2Z

−1
1 . Since Γ ∩ Z2Z

−1
1 is finite, the set

{γ ∈ Γ | γ ·X1 ∩X2 6= ∅ } is finite. ¤
By Theorem 13, the Siegel modular group Γn = Sp(n,Z) acts properly

discontinuously on Hn. Therefore the stabilizer (Γn)Ω of Ω ∈ Hn given by

(Γn)Ω = { γ ∈ Γn | γ ·Ω = Ω }

is a finite subgroup of Γn.

Let q be a positive integer. The set

Γn(q) = {M ∈ Γn | M ≡ I2n mod q }

is a normal subgroup of Γn because it is the kernel of the homomorphism
Γn −→ Sp(n,Z/qZ) defined by γ −→ γ mod q. It is called the principal con-
gruence subgroup of level q. We have Γn(1) = Γn. A subgroup Γ of Sp(n,R)
which contains Γn(`) for some positive integer ` as a subgroup of finite index
is called a modular group. A subgroup Γ of Γn which contains Γn(`) for some
positive integer ` as a subgroup of finite index is called a congruence subgroup

of Γn. The subset Γϑ,n of Γn consisting of elements γ =
(

A B
C D

)
∈ Γn such

that the diagonal elements of AtB and C tD are even integers is a subgroup
of Γn called the theta group. For a positive integer q, we let

Γn,0(q) =
{(

A B
C D

)
∈ Γn

∣∣∣ C ≡ 0 mod q

}
.

Then Γn,0(q) is a congruence subgroup of Γn containing the principal con-
gruence subgroup Γn(q) of level q.

Let Ω1 and Ω2 be two points of Hn and M =
(

A B
C D

)
∈ Sp(n,R). We

write Ω∗
i = M ·Ωi (i = 1, 2). Then by the symplectic conditions (2.1.1) and
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(2.1.2), we have

Ω∗
2 −Ω∗

1 = t(CΩ2 + D)−1(Ω2 −Ω1)(CΩ1 + D)−1 (2.1.7)

and
Ω∗

2 −Ω∗
1 = t(CΩ2 + D)−1

(
Ω2 −Ω1

)
(CΩ1 + D)−1 (2.1.8)

Let Ω = X + i Y ∈ Hn with X, Y ∈ R(n,n). If Ω∗ = M ·Ω, then we write
Ω∗ = X∗ + i Y ∗ with X∗, Y ∗ ∈ R(n,n). Then by (2.1.8),

Ω∗ −Ω∗ = t(CΩ + D)−1(Ω −Ω )(CΩ + D)−1 (2.1.9)

and hence
Y ∗ = t(CΩ + D)−1Y (CΩ + D)−1. (2.1.10)

Therefore we obtain

detY ∗ = det Y · | det(CΩ + D)|−2. (2.1.11)

And

dΩ∗ = d(M ·Ω) = d
{
(AΩ + B)(CΩ + D)−1

}

= AdΩ (CΩ + D)−1 − (AΩ + B)(CΩ + D)−1C dΩ (CΩ + D)−1

= t(CΩ + D)−1
{
Ω( tCA− tAC) + ( tDA− tBC)

}
dΩ (CΩ + D)−1

= t(CΩ + D)−1dΩ (CΩ + D)−1.

Thus we have
dΩ∗ = t(CΩ + D)−1 dΩ (CΩ + D)−1. (2.1.12)

By Formulas (2.1.10) and (2.1.12),

ds2 = σ(Y −1dΩ Y −1dΩ)

is invariant under the action (2.1.6) of Sp(n,R). For Ω = iIn,

ds2 =
∑

i=1

(
dx2

ii + dy2
ii

)
+ 2

∑

1≤i≤j≤n

(
dx2

ij + dy2
ij

)
.

Since Sp(n,R) acts on Hn transitively, ds2 is an Sp(n,R)-invariant Rieman-
nian metric on Hn.

The tangent space TΩ(Hn) of Hn at Ω is identified with the vector space
Sym(n,C) consisting of all n×n symmetric complex matrices (cf. (2.2.20) in
Section 2.2). By (2.1.12), the differential

dMΩ : TΩ(Hn) −→ TM ·Ω(Hn)



86 2 Theta Functions and the Weil Representation

of the symplectic transformation M at Ω is given by

dMΩ(W ) = t(CΩ + D)−1 W (CΩ + D)−1, W ∈ Sym(n,C). (2.1.13)

We can see that the Jacobian of the symplectic transformation M ∈ Sp(n,C)
is given by

∂(Ω∗)
∂(Ω)

= det(CΩ + D)−(n+1),

where Ω∗ = M ·Ω with M =
(

A B
C D

)
∈ Sp(n,R).

Finally we describe the universal covering group of Sp(n,R) using the
so-called Maslov index. Let (V,B) be a symplectic (real) vector space of di-
mension 2 n with a non-degenerate alternating form B on V . A subspace of
(V, B) such that B(x, y) = 0 for all x, y ∈ L is said to be totally isotropic. For
a subspace L of (V,B), we will denote by L⊥ the orthogonal complement of
L in V relative to B, i.e.,

L⊥ =
{
x ∈ V

∣∣ B(x, y) = 0 for all y ∈ V
}
.

If L is a subspace of (V,B) such that L = L⊥, then L is called a Lagrangian
subspace of (V,B). If L is a totally isotropic subspace of V such that
B(x, L) = 0 implies x ∈ L, then L is said to be maximally totally isotropic. We
note that if L is a Lagrangian subspace of (V, B), then dim L = n because
dim L + dim L⊥ = 2 n.

Let Sp(B) be the symplectic group defined by

Sp(B) =
{

g ∈ GL(V )
∣∣ B(gx, gy) = B(x, y) for all x, y ∈ V

}
.

Definition 5. Let L1, L2, L3 be three Lagrangian subspaces of V . The integer
τ(L1, L2, L3) is defined to be the signature of the quadratic form Q(x1 +x2 +
x3) on the 3 n-dimensional vector space L1 ⊕ L2 ⊕ L3 defined by

Q(x1 + x2 + x3) := B(x1, x2) + B(x2, x3) + B(x3, x1),

where x1 ∈ L1, x2 ∈ L2 and x3 ∈ L3. The integer τ(L1, L2, L3) is called the
Maslov index of (V,B).

Lemma 30. Let L1, L2, L3 be three Lagrangian subspaces of (V, B). Then we
have the following properties :
(1) The Maslov index is Sp(n,R)-invariant, i.e., for any g ∈ Sp(n,R), we

have τ(gL1, gL2, gL3) = τ(L1, L2, L3).
(2) τ(L1, L2, L3) = −τ(L2, L1, L3) = −τ(L1, L3, L2).

Proof. It follows immediately from the definition. ¤
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For a sequence (L1, L2, · · · , Lk) with k ≥ 4 of Lagrangian subspaces of
(V, B), we define the generalized Maslov index τ(L1, L2, · · · , Lk) by

τ(L1, L2, · · · , Lk) = τ(L1, L2, L3) + τ(L1, L3, L4) + · · ·+ τ(L1, Lk−1, Lk).

Proposition 8. (1) The Maslov index τ(L1, L2, · · · , Lk) is invariant under
the action of the symplectic group Sp(B), and its value is unchanged under
circular permutation.
(2) For any Lagrangian subspace L1, L2, L3, L

′
1, L

′
2, L

′
3, we have

τ(L′1, L
′
2, L

′
3)= τ(L1, L2, L3) + τ(L′1, L

′
2, L2, L1) + τ(L′2, L

′
3, L3, L2)

+ τ(L′3, L
′
1, L1, L3).

Proof. See [21, pp. 45-46]. ¤

Let Λ be the space of all Lagrangian subspaces of (V, B). Then Λ may
be regarded as a closed submanifold of the Grassmannian manifold of all
n-dimensional subspaces in R2n. We define

Λ̃ := Λ× Z =
{

(L, u)
∣∣ L ∈ Λ, u ∈ Z}

.

We fix a Lagrangian subspace L0 of (V,B). Let (L1, u1) ∈ Λ̃ and let U be a
neighborhood of L1. Let L2 be a Lagrangian subspace of V transverse to L1.
We define

U(L1, u1;U , L2) :=
{

(L, u)
∣∣ L ∈ U , u = u1 + τ(L, L0, L1, L2)

}
.

It is proved in Proposition 1.9.5 in [21] that the set of all such U(L1, u1;U , L2)’s
form a neighborhood for a topology on Λ̃. Let π : Λ̃ −→ Λ be the projection
defined by π(L, u) = L. Clearly π is a continuous map and hence Λ̃ is a
covering of Λ.

Let L∗ be a fixed element of Λ. We define the group

S̃p(B)∗ := Sp(B)× Z (2.1.14)

equipped with the multiplication law

(g1, n1) · (g2, n2) =
(
g1g2, n1 + n2 + τ(L∗, g1L∗, g1g2L∗)

)
,

where g1, g2 ∈ Sp(B) and n1, n2 ∈ Z. Then it is easy to see that S̃p(B)∗ acts
on Λ̃ by

(g, n) · (L, u) =
(
gL, n + u + τ(L∗, gL∗, gL)

)
,

where g ∈ Sp(B), n, u ∈ Z and L ∈ Λ.
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Let L2 be a Lagrangian subspace of (V, B) transverse to L∗ and E be a
neighborhood of e in Sp(B), where e is the identity element of Sp(B). We
define

W (E , L2) :=
{ (

g,−τ(gL∗, L2, L∗)
) ∣∣ g ∈ E

}
.

Then the set of all such W (E , L2)’s form a fundamental system of neighbor-

hoods of (e, 0) on S̃p(B)∗. Therefore S̃p(B)∗ has the structure of a topological

group. It is easily seen that S̃p(B)∗ acts on Λ̃ continuously.

Definition 6. An oriented vector space of dimension n is a pair (W, ε), where
W is a real vector space of dimension n and ε is an orientation of W , i.e., a
connected component of ΛnL−{0}. If (W1, ε1) and (W2, ε2) are two oriented
vector spaces of dimension n and A is a linear invertible map from W1 to
W2, we define the sign of the determinant of A denoted by δ(A) = ±1, by
the condition

(ΛnA) ε1 = c δ(A) ε2 with c > 0.

L and M be two Lagrangian subspaces of a symplectic vector space (V,B).
We define gM,L : L −→ M∗ by 〈 gM,L(x), y〉 = B(x, y) for all x ∈ L and
y ∈ M. Here M∗ denotes the dual vector space of M . Let (L1, ε1) and (L2, ε2)
be two oriented Lagrangian subspaces of (V, B) which are transverse. Then
gL2,L1 : (L1, ε1) −→ (L2, ε2). We define

ξ
(
(L1, ε1), (L2, ε2)

)
:= δ(gL2,L1).

This depends only on the relative orientation of (L1, ε1) and (L2, ε2). More
generally if L1 and L2 are not transverse, we define (L1, ε1) and (L2, ε2) as
follows: Let ε be an orientation of H = L1∩L2. Then ε defines an orientation
ε̃i (i = 1, 2) on Li/H by ε̃i∧ε = εi. Since L1/H and L2/H are two transverse
subspaces of (L1 + L2)/H = H⊥/H, we can define

ξ
(
(L1, ε1), (L2, ε2)

)
:= ξ

(
(L1/H, ε̃1), (L2/H, ε̃2)

)
.

We observe that this is independent of the choice of the orientation ε of H
because ε̃1 and ε̃2 change simultaneously if we change ε to −ε.

If L1 = L2, we define

ξ
(
(L1, ε1), (L2, ε2)

)
:=

{
1 if ε1 = ε2,

−1 if ε1 6= ε2.

Definition 7. Let (L1, ε1) and (L2, ε2) be two oriented Lagrangian subspaces
of a symplectic vector space (V, B). We define

s
(
(L1, ε1), (L2, ε2)

)
:=

(√−1
)n−dim(L1∩L2)

ξ
(
(L1, ε1), (L2, ε2)

)
.
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Definition 8. Let L be a Lagrangian subspace of a symplectic vector space
(V, B). We choose an orientation L+ on L. We define the map sL : Sp(B) −→
C by

sL(g) := s(L+, gL+), g ∈ Sp(B).

This is well-defined because sL(g) is independent of the choice of the orien-
tation on L.

We define the map s̃∗ : S̃p(B)∗ −→ C by

s̃∗(g, n) := e
πni
2 sL∗(g), g ∈ Sp(B), n ∈ Z.

Lemma 31. s̃∗(g, n) is a character of S̃p(B)∗ with values in Z/4Z.

Proof. The proof can be found in [21, p. 72]. ¤
We see that the kernel of s̃∗ is the universal covering group of Sp(B) and

the fundamental group π1(Sp(B)) of Sp(B) is isomorphic to Z. Therefore

S̃p(B)∗ is the union of four connected components such that each of them is
simply connected.

We now consider the group

Sp(B, L∗) := Sp(B)× C∗1
equipped with the multiplication law

(g1, t1) · (g2, t2) =
(
g1g2, t1t2 c∗(g1, g2)

)
,

where g1, g2 ∈ Sp(B), t1, t2 ∈ C∗1 and

c∗(g1, g2) := e−
πi
4 τ(L∗,g1L∗,g1g2L∗).

It is easily checked that the ϕ : S̃p(B)∗ −→ Sp(B, L∗) defined by

ϕ(g, n) :=
(
g, e

πni
4

)
, g ∈ Sp(B), n ∈ Z

is a group homomorphism. We define

Mp(B)∗ :=
{

(g, t) ∈ Sp(B,L∗)
∣∣ t2 = sL∗(g)−1

)
. (2.1.15)
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2.2 Some Geometry on Siegel Space

For Ω = (ωij) ∈ Hn, we write Ω = X + i Y with X = (xij), Y = (yij) real
and dΩ = (dωij). We put

∂

∂Ω
=

(
1 + δij

2
∂

∂ωij

)
and

∂

∂Ω
=

(
1 + δij

2
∂

∂ωij

)
.

C. L. Siegel [35] introduced the symplectic metric ds2 on Hn invariant under
the action (2.1.5) of Sp(n,R) given by

ds2 = σ(Y −1dΩ Y −1dΩ) (2.2.1)

and H. Maass [22] proved that its Laplacian is given by

∆ = 4 σ

(
Y

t(
Y

∂

∂Ω

)
∂

∂Ω

)
. (2.2.2)

And
dvn(Ω) = (det Y )−(n+1)

∏

1≤i≤j≤n

dxij

∏

1≤i≤j≤n

dyij (2.2.3)

is a Sp(n,R)-invariant volume element on Hn (cf. [37], p. 130).

Theorem 14. (Siegel [35]). (1) There exists exactly one geodesic joining
two arbitrary points Ω0, Ω1 in Hn. Let R(Ω0, Ω1) be the cross-ratio defined
by

R(Ω0, Ω1) = (Ω0 −Ω1)(Ω0 −Ω1)−1(Ω0 −Ω1)(Ω0 −Ω1)−1. (2.2.4)

For brevity, we put R∗ = R(Ω0, Ω1). Then the symplectic length ρ(Ω0, Ω1) of
the geodesic joining Ω0 and Ω1 is given by

ρ(Ω0, Ω1)2 = σ




(
log

1 + R
1
2∗

1−R
1
2∗

)2

 , (2.2.5)

where (
log

1 + R
1
2∗

1−R
1
2∗

)2

= 4 R∗

( ∞∑

k=0

Rk
∗

2k + 1

)2

.

(2) For M ∈ Sp(n,R), we set

Ω̃0 = M ·Ω0 and Ω̃1 = M ·Ω1.

Then R(Ω1, Ω0) and R(Ω̃1, Ω̃0) have the same eigenvalues.
(3) All geodesics are symplectic images of the special geodesics
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α(t) = i diag(at
1, a

t
2, · · · , at

n), (2.2.6)

where a1, a2, · · · , an are arbitrary positive real numbers satisfying the condi-
tion

n∑

k=1

(log ak)2 = 1.

The proof of the above theorem can be found in [35], pp. 289-293.

Let
Dn =

{
W ∈ C(n,n) | W = tW, In −WW > 0

}

be the generalized unit disk of degree n. The Cayley transform Ψ : Dn −→ Hn

defined by
Ψ(W ) = i (In + W )(In −W )−1, W ∈ Dn (2.2.7)

is a biholomorphic mapping of Dn onto Hn which gives the bounded realiza-
tion of Hn by Dn (cf. [35]). A. Korányi and J. Wolf [20] gave a realization of
a bounded symmetric domain as a Siegel domain of the third kind investi-
gating a generalized Cayley transform of a bounded symmetric domain that
generalizes the Cayley transform Ψ of Dn.

Let

T =
1√
2

(
In In

iIn −iIn

)
(2.2.8)

be the 2n× 2n matrix represented by Ψ. Then

T−1Sp(n,R) T =
{(

P Q
Q P

) ∣∣∣ tPP − tQQ = In, tPQ = tQP

}
. (2.2.9)

Indeed, if M =
(

A B
C D

)
∈ Sp(n,R), then

T−1MT =
(

P Q
Q P

)
, (2.2.10)

where
P =

1
2

{
(A + D) + i (B − C)

}
(2.2.11)

and
Q =

1
2

{
(A−D)− i (B + C)

}
. (2.2.12)

For brevity, we set
G∗ = T−1Sp(n,R)T.

Then G∗ is a subgroup of SU(n, n), where
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SU(n, n) =
{

h ∈ C(n,n)
∣∣ thIn,nh = In,n

}
, In,n =

(
In 0
0 −In

)
.

In the case n = 1, we observe that

T−1Sp(1,R)T = T−1SL2(R)T = SU(1, 1).

If n > 1, then G∗ is a proper subgroup of SU(n, n). In fact, since tTJnT =
− i Jn, we get

G∗ =
{

h ∈ SU(n, n)
∣∣ thJnh = Jn

}
= SU(n, n) ∩ Sp(n,C), (2.2.13)

where
Sp(n,C) =

{
α ∈ C(2n,2n)

∣∣ tα Jn α = Jn

}
.

Let

P+ =
{(

In Z
0 In

) ∣∣∣ Z = tZ ∈ C(n,n)

}

be the P+-part of the complexification of G∗ ⊂ SU(n, n). We note that the

Harish-Chandra decomposition of an element
(

P Q
Q P

)
in G∗ is

(
P Q
Q P

)
=

(
In QP

−1

0 In

) (
P −QP

−1
Q 0

0 P

) (
In 0

P
−1

Q In

)
.

For more detail, we refer to [19, p. 155]. Thus the P+-component of the
following element (

P Q
Q P

)
·
(

In W
0 In

)
, W ∈ Dn

of the complexification of GJ
∗ is given by

(
In (PW + Q)(QW + P )−1

0 In

)
. (2.2.14)

We note that QP
−1 ∈ Dn. We get the Harish-Chandra embedding of Dn into

P+ (cf. [19, p. 155] or [33, pp. 58-59]). Therefore we see that G∗ acts on Dn

transitively by
(

P Q
Q P

)
·W = (PW + Q)(QW + P )−1,

(
P Q
Q P

)
∈ G∗, W ∈ Dn. (2.2.15)

The isotropy subgroup K∗ of G∗ at the origin o is given by

K∗ =
{(

P 0
0 P

) ∣∣∣ P ∈ U(n)
}

.
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Thus G∗/K∗ is biholomorphic to Dn. It is known that the action (2.1.6) is
compatible with the action (2.2.15) via the Cayley transform Ψ (cf. (2.2.7)).
In other words, if M ∈ Sp(n,R) and W ∈ Dn, then

M · Ψ(W ) = Ψ(M∗ ·W ), (2.2.16)

where M∗ = T−1MT ∈ G∗.

For W = (wij) ∈ Dn, we write dW = (dwij) and dW = (dwij). We put

∂

∂W
=

(
1 + δij

2
∂

∂wij

)
and

∂

∂W
=

(
1 + δij

2
∂

∂wij

)
.

Using the Cayley transform Ψ : Dn −→ Hn, Siegel showed (cf. [35]) that

ds2
∗ = 4σ

(
(In −WW )−1dW (In −WW )−1dW

)
(2.2.17)

is a G∗-invariant Riemannian metric on Dn and Maass [22] showed that its
Laplacian is given by

∆∗ = σ

(
(In −WW )

t(
(In −WW )

∂

∂W

)
∂

∂W

)
. (2.2.18)

Now we discuss the differential operators on Hn invariant under the action
(2.1.6). The isotropy subgroup K at iIn for the action (2.1.6) is a maximal
compact subgroup given by

K =
{(

A −B
B A

) ∣∣∣ A tA + B tB = In, A tB = B tA, A, B ∈ R(n,n)

}
.

Let k be the Lie algebra of K. Then the Lie algebra sp(n,R) of Sp(n,R) has
a Cartan decomposition sp(n,R) = k⊕ p, where

p =
{(

X Y
Y −X

) ∣∣∣ X = tX, Y = tY, X, Y ∈ R(n,n)

}
.

The subspace p of sp(n,R) may be regarded as the tangent space of Hn at
iIn. The adjoint representation of Sp(n,R) on sp(n,R) induces the action of
K on p given by

k · Z = kZ tk, k ∈ K, Z ∈ p. (2.2.19)

Let Tn be the vector space of n× n symmetric complex matrices. We let
ψ : p −→ Tn be the map defined by

ψ

((
X Y
Y −X

))
= X + i Y,

(
X Y
Y −X

)
∈ p. (2.2.20)
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We let δ : K −→ U(n) be the isomorphism defined by

δ

((
A −B
B A

))
= A + i B,

(
A −B
B A

)
∈ K, (2.2.21)

where U(n) denotes the unitary group of degree n. We identify p (resp. K)
with Tn (resp. U(n)) through the map Ψ (resp. δ). We consider the action of
U(n) on Tn defined by

h · Z = hZ th, h ∈ U(n), Z ∈ Tn. (2.2.22)

Then the adjoint action (2.2.19) of K on p is compatible with the action
(2.2.22) of U(n) on Tn through the map ψ. Precisely for any k ∈ K and
ω ∈ p, we get

ψ(k ω tk) = δ(k)ψ(ω) tδ(k). (2.2.23)

The action (2.2.22) induces the action of U(n) on the polynomial alge-
bra Pol(Tn) and the symmetric algebra S(Tn) respectively. We denote by
Pol(Tn)U(n)

(
resp. S(Tn)U(n)

)
the subalgebra of Pol(Tn)

(
resp. S(Tn)

)

consisting of U(n)-invariants. The following inner product ( , ) on Tn de-
fined by

(Z,W ) = tr
(
Z W

)
, Z, W ∈ Tn

gives an isomorphism as vector spaces

Tn
∼= T∗n, Z 7→ fZ , Z ∈ Tn, (2.2.24)

where T∗n denotes the dual space of Tn and fZ is the linear functional on Tn

defined by
fZ(W ) = (W,Z), W ∈ Tn.

It is known that there is a canonical linear bijection of S(Tn)U(n) onto the
algebra D(Hn) of differential operators on Hn invariant under the action
(2.1.6) of Sp(n,R). Identifying Tn with T∗n by the above isomorphism (2.2.24),
we get a canonical linear bijection

Φ : Pol(Tn)U(n) −→ D(Hn) (2.2.25)

of Pol(Tn)U(n) onto D(Hn). The map Φ is described explicitly as follows. Sim-
ilarly the action (2.2.19) induces the action of K on the polynomial algebra
Pol(p) and S(p) respectively. Through the map ψ, the subalgebra Pol(p)K

of Pol(p) consisting of K-invariants is isomorphic to Pol(Tn)U(n). We put
N = n(n + 1). Let {ξα | 1 ≤ α ≤ N } be a basis of p. If P ∈ Pol(p)K , then

(
Φ(P )f

)
(gK) =

[
P

(
∂

∂tα

)
f

(
g exp

(
N∑

α=1

tαξα

)
K

)]

(tα)=0

, (2.2.26)
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where f ∈ C∞(Hn) and g ∈ Sp(n,R). We refer to [11, 12] for more detail. In
general, it is hard to express Φ(P ) explicitly for a polynomial P ∈ Pol(p)K .

According to the work of Harish-Chandra [9, 10], the algebra D(Hn) is
generated by n algebraically independent generators and is isomorphic to the
commutative ring C[x1, · · · , xn] with n indeterminates. We note that n is the
real rank of Sp(n,R). Let sp(n,C) be the complexification of sp(n,R). It is
known that D(Hn) is isomorphic to the center of the universal enveloping
algebra of sp(n,C) (cf. [34]).

Using a classical invariant theory (cf. [13, 40]), we can show that Pol(Tn)U(n)

is generated by the following algebraically independent polynomials

qj(Z) = σ
((

ZZ
)j

)
, j = 1, 2, · · · , n. (2.2.27)

For each j with 1 ≤ j ≤ n, the image Φ(qj) of qj is an invariant differential op-
erator on Hn of degree 2j. The algebra D(Hn) is generated by n algebraically
independent generators Φ(q1), Φ(q2), · · · , Φ(qn). In particular,

Φ(q1) = c1 σ

(
Y

t(
Y

∂

∂Ω

)
∂

∂Ω

)
for some constant c1. (2.2.28)

We observe that if we take Z = X + i Y with real X,Y , then q1(Z) =
q1(X, Y ) = σ

(
X2 + Y 2

)
and

q2(Z) = q2(X, Y ) = σ
((

X2 + Y 2
)2 + 2 X

(
XY − Y X

)
Y

)
.

We propose the following problem.

Problem. Express the images Φ(qj) explicitly for j = 2, 3, · · · , n.

We hope that the images Φ(qj) for j = 2, 3, · · · , n are expressed in the
form of the trace as Φ(q1).

Example 2.2.1. We consider the case n = 1. The algebra Pol(T1)U(1) is
generated by the polynomial

q(z) = z z, z ∈ C.

Using Formula (2.2.26), we get

Φ(q) = 4 y2

(
∂2

∂x2
+

∂2

∂y2

)
.

Therefore D(H1) = C
[
Φ(q)

]
.



96 2 Theta Functions and the Weil Representation

Example 2.2.2. We consider the case n = 2. The algebra Pol(T2)U(2) is
generated by the polynomial

q1(Z) = σ
(
Z Z

)
, q2(Z) = σ

((
Z Z

)2
)
, Z ∈ T2.

Using Formula (2.2.26), we may express Φ(q1) and Φ(q2) explicitly. Φ(q1)
is expressed by Formula (2.2.28). The computation of Φ(q2) might be quite
tedious. We leave the detail to the reader. In this case, Φ(q2) was essen-
tially computed in [3], Proposition 6. Therefore D(H2) = C

[
Φ(q1), Φ(q2)

]
.

The authors of [3] computed the center of the universal enveloping algebra
U(sp(2,C)) of sp(2,C).

Now we describe the Siegel’s fundamental domain for Γn\Hn. We let

Pn =
{

Y ∈ R(n,n) | Y = tY > 0
}

be an open cone in Rd with d = n(n+1)/2. The general linear group GL(n,R)
acts on Pn transitively by

g ◦ Y := gY tg, g ∈ GL(n,R), Y ∈ Pn. (2.2.29)

Thus Pn is a symmetric space diffeomorphic to GL(n,R)/O(n).

The fundamental domain Rn for GL(n,Z)\Pn which was found by H.
Minkowski [25] is defined as a subset of Pn consisting of Y = (yij) ∈ Pn

satisfying the following conditions (M.1)–(M.2) (cf. [14] p. 191 or [23] p. 123):
(M.1) aY ta ≥ ykk for every a = (ai) ∈ Zn in which ak, · · · , an are

relatively prime for k = 1, 2, · · · , n.
(M.2) yk,k+1 ≥ 0 for k = 1, · · · , n− 1.

We say that a point of Rn is Minkowski reduced or simply M-reduced. Rn has
the following properties (R1)–(R4):

(R1) For any Y ∈ Pn, there exist a matrix A ∈ GL(n,Z) and R ∈ Rn

such that Y = R[A] (cf. [14] p. 191 or [23] p. 139). That is,

GL(n,Z) ◦ Rn = Pn.

(R2) Rn is a convex cone through the origin bounded by a finite number
of hyperplanes. Rn is closed in Pn (cf. [23] p. 139).

(R3) If Y and Y [A] lie in Rn for A ∈ GL(n,Z) with A 6= ±In, then Y lies
on the boundary ∂Rn of Rn. Moreover Rn ∩ (Rn[A]) 6= ∅ for only
finitely many A ∈ GL(n,Z) (cf. [23] p. 139).

(R4) If Y = (yij) is an element of Rn, then
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y11 ≤ y22 ≤ · · · ≤ ynn and |yij | < 1
2
yii for 1 ≤ i < j ≤ n.

We refer to [14] p. 192 or [23] pp. 123-124 for more detail.

Remark 6. Grenier [8] found another fundamental domain for GL(n,Z)\Pn.

For Y = (yij) ∈ Pn, we put

dY = (dyij) and
∂

∂Y
=

(
1 + δij

2
∂

∂yij

)
.

Then we can see easily that

ds2 = σ((Y −1dY )2) (2.2.30)

is a GL(n,R)-invariant Riemannian metric on Pn and its Laplacian is given
by

∆ = σ

((
Y

∂

∂Y

)2
)

.

We also can see that

dµn(Y ) = (det Y )−
n+1

2

∏

i≤j

dyij

is a GL(n,R)-invariant volume element on Pn. The metric ds2 on Pn induces
the metric ds2

R on Rn. Minkowski [25] calculated the volume of Rn for the
volume element [dY ] :=

∏
i≤j dyij explicitly. Later Siegel computed the vol-

ume of Rn for the volume element [dY ] by a simple analytic method and
generalized this case to the case of any algebraic number field.

Siegel [35] determined a fundamental domain Fn for Γn\Hn. We say that
Ω = X + i Y ∈ Hn with X, Y real is Siegel reduced or S-reduced if it has the
following three properties:

(S.1) det(Im (γ ·Ω)) ≤ det(Im (Ω)) for all γ ∈ Γn;
(S.2) Y = Im Ω is M-reduced, that is, Y ∈ Rn ;
(S.3) |xij | ≤ 1

2 for 1 ≤ i, j ≤ n, where X = (xij).

Fn is defined as the set of all Siegel reduced points in Hn. Using the highest
point method, Siegel proved the following (F1)–(F3) (cf. [14] pp. 194-197 or
[23] p. 169):

(F1) Γn · Fn = Hn, i.e., Hn = ∪γ∈Γnγ · Fn.

(F2) Fn is closed in Hn.

(F3) Fn is connected and the boundary of Fn consists of a finite number
of hyperplanes.
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The metric ds2 given by (2.2.1) induces a metric ds2
F on Fn. Siegel [35] com-

puted the volume of Fn

vol (Fn) = 2
n∏

k=1

π−k Γ (k) ζ(2k), (2.2.31)

where Γ (s) denotes the Gamma function and ζ(s) denotes the Riemann zeta
function. For instance,

vol (F1) =
π

3
, vol (F2) =

π3

270
, vol (F3) =

π6

127575
, vol (F4) =

π10

200930625
.
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2.3 The Weil Representation

We recall that for a real symmetric positive definite matrix c ∈ R(m,m), the
Schrödinger representation Uc of H

(n,m)
R is defined by Formula (1.4.8). We

refer to Formula (1.5.45). For convenience, we rewrite Formula (1.4.8)

(1.4.8)
(
Uc(g0)f

)
(x) = e2πiσ(c(κ0+µ0

tλ0+2 x tµ0))f(x+λ0)

for g0 = (λ0, µ0, κ0) ∈ H
(n,m)
R , x ∈ R(m,n) and f ∈ L2

(
R(m,n)

)
.

We let

GJ = Sp(n,R)nH
(n,m)
R (semi-direct product)

be the Jacobi group endowed with the following multiplication law
(
M, (λ, µ, κ)

)(
M ′, (λ′, µ′, κ′)

)
=

(
MM ′, (λ̃+λ′, µ̃+µ′, κ+κ′+λ̃ tµ′−µ̃ tλ′)

)

with M,M ′ ∈ Sp(n,R), (λ, µ, κ), (λ′, µ′, κ′) ∈ H
(n,m)
R and (λ̃, µ̃) = (λ, µ)M ′.

Then Sp(n,R) acts on H
(n,m)
R by conjugation inside GJ

M ? (λ, µ, κ) = M(λ, µ, κ)M−1 = (λ∗, µ∗, κ), (2.3.1)

where M ∈ Sp(n,R), (λ, µ, κ) ∈ H
(n,m)
R and (λ∗, µ∗) = (λ, µ)M−1.

We fix an element M ∈ Sp(n,R). We consider the mapping UM
c of H

(n,m)
R

into Aut
(
L2

(
R(m,n)

))
defined by

UM
c (g) = Uc(M ? g) = Uc(MgM−1), g ∈ H

(n,m)
R . (2.3.2)

Lemma 32. UM
c is an irreducible representation of H

(n,m)
R on L2

(
R(m,n)

)
such that

UM
c

(
(0, 0, κ)

)
= Uc

(
(0, 0, κ)

)
for all κ = tκ ∈ R(m,m).

Thus UM
c is unitarily equivalent to Uc.

Proof. If g1, g2 ∈ H
(n,m)
R , then

UM
c (g1g2) = Uc(M ? (g1g2)) = Uc

(
M(g1g2)M−1

)

= Uc

(
(Mg1M

−1)(Mg2M
−1)

)

= Uc

(
Mg1M

−1
)
Uc

(
Mg2M

−1
)

= UM
c (g1)UM

c (g2).
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Thus UM
c is a representation of H

(n,m)
R . The irreducibility of UM

c follows
immediately from that of Uc. It is easily seen that

UM
c

(
(0, 0, κ)

)
= Uc

(
M ? (0, 0, κ)

)
= Uc

(
(0, 0, κ)

)
for all κ ∈ Sym(n,R).

Therefore it follows from Stone-von Neumann Theorem that UM
c is unitarily

equivalent to Uc. ¤
Since UM

c is unitarily equivalent to Uc, there exists an unitary operator
Rc(M) : L2

(
R(m,n)

) −→ L2
(
R(m,n)

)
such that UM

c (g) Rc(M) = Rc(M) Uc(g)
for all g ∈ H

(n,m)
R . For convenience, we take Rc(I2n) = Ic, where Ic is the iden-

tity operator on L2
(
R(m,n)

)
. We observe that Rc(M) is determined uniquely

up to a scalar of modulus one. For any two elements M1,M2 of Sp(n,R), the
unitary operator Rc(M2)−1Rc(M1)−1Rc(M1M2) commutes with Uc. Indeed,
for any element g ∈ H

(n,m)
R , we have

Uc(g)Rc(M2)−1 Rc(M1)−1 Rc(M1M2)
= Rc(M2)−1UM2

c (g)Rc(M1)−1 Rc(M1M2)
= Rc(M2)−1Uc(M2 ? g)Rc(M1)−1 Rc(M1M2)
= Rc(M2)−1 Rc(M1)−1 UM1

c (M2 ? g)Rc(M1M2)
= Rc(M2)−1 Rc(M1)−1 Uc

(
(M1M2) ? g

)
Rc(M1M2)

= Rc(M2)−1 Rc(M1)−1 UM1M2
c (g)Rc(M1M2)

= Rc(M2)−1 Rc(M1)−1 Rc(M1M2) Uc(g).

According to Schur’s lemma, we obtain a map αc : Sp(n,R)×Sp(n,R) −→ C∗1
satisfying the condition

Rc(M1M2) = αc(M1,M2) Rc(M1)Rc(M2) (2.3.3)

for all M1,M2 ∈ Sp(n,R). Thus Rc is a projective representation of Sp(n,R)
with its multiplier αc.

Lemma 33. The map αc satisfies the cocycle condition

αc(M1M2, M3) αc(M1,M2) = αc(M1,M2M3)αc(M2, M3) (2.3.4)

for all M1,M2,M3 ∈ Sp(n,R).

Proof. Let M1,M2,M3 ∈ Sp(n,R). Then according to Formula (2.3.3),

Rc

(
(M1M2)M3

)
= αc(M1M2,M3)Rc(M1M2)Rc(M3)
= αc(M1M2,M3)αc(M1,M2) Rc(M1)Rc(M2)Rc(M3)

and
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Rc

(
M1(M2M3)

)
= αc(M1,M2M3)Rc(M1)Rc(M2M3)
= αc(M1,M2M3)αc(M2,M3) Rc(M1)Rc(M2)Rc(M3)

Hence we obtain the cocycle condition (2.3.4). ¤

For M =
(

A B
C D

)
∈ Sp(n,R) and Ω ∈ Hn, we put

J(M, Ω) = det(CΩ + D) (2.3.5)

and

J∗(M,Ω) =
J(M,Ω)1/2

|J(M,Ω)1/2| . (2.3.6)

In fact, if M1,M2 ∈ Sp(n,R), the cocycle αc(M1, M2) is given by

αc(M1,M2) =
J∗(M1, iIn) J∗(M2, iIn)

J∗(M1M2, iIn)
. (2.3.7)

The cocycle αc yields the central extension Sp(n,R)∗ of Sp(n,R) by C∗1. The
group Sp(n,R)∗ is the set Sp(n,R) × C∗1 with the following group multipli-
cation

(M1, t1) · (M2, t2) =
(
M1M2, t1t2 αc(M1,M2)−1

)
(2.3.8)

for all M1,M2 ∈ Sp(n,R) and t1, t2 ∈ C∗1. We see that the map R̃c :
Sp(n,R)∗ −→ Aut

(
L2

(
R(m,n)

))
defined by

R̃c(M, t) = tRc(M), M ∈ Sp(n,R), t ∈ C∗1 (2.3.9)

is a true representation of Sp(n,R)∗. We define the function sc : Sp(n,R) −→
C∗1 by

sc(M) = |J(M, iIn)|J(M, iIn)−1, M ∈ Sp(n,R). (2.3.10)

The following subset

Mp(n,R) =
{
(M, t) ∈ Sp(n,R)∗ | t2 = sc(M)−1

}

is a subgroup of Sp(n,R)∗ that is called the metaplectic group. We can show
that Mp(n,R) is a two-fold covering group of Sp(n,R). The restriction ωc

of R̃c to Mp(n,R) is a true representation of Mp(n,R) which is called the
Weil representation of Sp(n,R)

Now we describe the action of ωc explicitly. It is known that Sp(n,R) is
generated by the following elements
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tb =
(

In b
0 In

)
with b = tb ∈ R(n,n),

da =
(

ta 0
0 a−1

)
with a ∈ GL(n,R),

σn =
(

0 −In

In 0

)
.

Theorem 15. The actions of Rc on the generators tb, da and σn of Sp(n,R)
are given by

(Rc(tb)f) (x) = e2 π i σ(c x b tx) f(x), (2.3.11)
(Rc(da)f) (x) = (det a)

m
2 f(x ta), (2.3.12)

(Rc(σn)f) (x) =
(

2
i

)mn
2

(det c)
n
2 (2.3.13)

×
∫

R(m,n)
f(y)e−4 π i σ(c y tx) dy,

where f ∈ L2
(
R(m,n)

)
and x ∈ R(m,n).

Proof. Let g = (λ, µ, κ) ∈ H
(n,m)
R , x ∈ R(m,n) and f ∈ L2

(
R(m,n)

)
. For for

each tb ∈ Sp(n,R) with b = tb ∈ R(n,n), we put

(
Tc(tb)f

)
(x) = e2 π i σ(c x b tx) f(x) for all f ∈ L2

(
R(m,n)

)
.

Then

(
Tc(tb)Uc(g)f

)
(x) = e2 π i σ(c x b tx)

(
Uc(g)f

)
(x)

= e2 π i σ(c x b tx) · e2 π i σ(c(κ+µ tλ+2x tµ))f(x + λ)

= e2 π i σ(c(κ+µ tλ+2x tµ+x b tx))f(x + λ).

Since tb ? (λ, µ, κ) = tb(λ, µ, κ) t−1
b = (λ,−λ b + µ, κ), we obtain

(
U tb

c (g)Tc(tb)f
)
(x)

=
(
Uc(tb ? g) Tc(tb)f

)
(x)

=
(
Uc(λ,−λ b + µ, κ)Tc(tb)f

)
(x)

= e2 π i σ(c(κ+(−λ b+µ) tλ+2x t(−λb+µ)))
(
Tc(tb)f

)
(x + λ)

= e2 π i σ(c(κ+(−λ b+µ) tλ+2x t(−λb+µ))) · e2 π i σ(c(x+λ)b t(x+λ))f(x + λ).

= e2 π i σ(c(κ+µ tλ+2x tµ+x b tx))f(x + λ).

Therefore



2.3 The Weil Representation 103

Tc(tb)Uc(g)f = U tb
c (g)Tc(tb)f

for all b = tb ∈ R(n,n), g ∈ H
(n,m)
R and f ∈ L2

(
R(m,n)

)
.

Since Tc(t0) = Tc(I2n) = Ic = Rc(I2n), we see that

Rc(tb) = Tc(tb) for all b = tb ∈ R(n,n).

We recall that Ic is the identity operator on L2
(
R(m,n)

)
.

On the other hand, for each f ∈ GL(n,R) and f ∈ L2
(
R(m,n)

)
, we put

(
Ac(da)f

)
(x) = (det a)

m
2 f(x ta).

Then we have
(
Ac(da)Uc(g)f

)
(x)

=
(
det a

)m
2

(
Uc(g)f

)
(x ta)

=
(
det a

)m
2 e2 π i σ(c(κ+µ tλ+2 x ta tµ))f(x ta + λ).

Since da ? (λ, µ, κ) = da(λ, µ, κ) d−1
a = (λ ta−1, µ a, κ),

(
Uda

c (g) Ac(da)f
)
(x)

=
(
Uc(da ? g)Ac(da)f

)
(x)

=
(
Uc(λ ta−1, µ a, κ)Ac(da)f

)
(x)

= e2 π i σ(c(κ+(µ a) t(λ ta−1)+2 x t(µ a)))
(
Ac(da)f

)(
x + λ ta−1

)

=
(
det a

)m
2 e2 π i σ(c(κ+µ tλ+2 x ta tµ)) f(x ta + λ).

Thus
Ac(da)Uc(g)f = Uda

c (g)Ac(da)f

for all a ∈ GL(n,R), g ∈ H
(n,m)
R and f ∈ L2

(
R(m,n)

)
.

Since Ac(dIn
) = Ic = Rc(dIn

), we obtain Rc(da) = Ac(da) for all a ∈
GL(n,R).

Finally we put

(
Bc(σn)f

)
(x) =

(
2
i

)mn
2

(det c)
n
2

∫

R(m,n)
f(y) e−4 π i σ(c y tx) dy

for all f ∈ L2
(
R(m,n)

)
.
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(
Bc(σn)Uc(g)f

)
(x)

=
(

2
i

)mn
2

(det c)
n
2

∫

R(m,n)

(
Uc(g)f

)
(y) e−4 π i σ(c y tx) dy

=
(

2
i

)mn
2

(det c)
n
2

∫

R(m,n)
e2 π i σ(c(κ+µ tλ+2 y tµ)) · e−4 π i σ(c y tx) f(y + λ) dy

=
(

2
i

)mn
2

(det c)
n
2 e2 π i σ(c(κ+µ tλ))

∫

R(m,n)
e4 π i σ(c y t(µ−x)) f(y + λ) dy

=
(

2
i

)mn
2

(det c)
n
2 e2 π i σ(c(κ+µ tλ))

∫

R(m,n)
e4 π i σ(c (ỹ−λ) t(µ−x)) f(ỹ) dỹ

=
(

2
i

)mn
2

(det c)
n
2 e2 π i σ(c(κ+µ tλ)) · e−4 π i σ(c λ t(µ−x))

×
∫

R(m,n)
f(y) e4 π i σ(c y t(µ−x)) dy

=
(

2
i

)mn
2

(det c)
n
2 e2 π i σ(c(κ−λ tµ+ 2 x tλ))

∫

R(m,n)
f(y) e−4 π i σ(c y t(x−µ)) dy.

Since σn ? (λ, µ, κ) = σn(λ, µ, κ)σn = (−µ, λ, κ), we obtain

(
Uσn

c (g)Bc(σn)f
)
(x)

=
(
Uc(σn ? g)Bc(σn)f

)
(x)

=
(
Uc(−µ, λ, κ)Bc(σn)f

)
(x)

= e2 π i σ(c(κ−λ tµ+ 2 x tλ))
(
Bc(σn)f

)
(x− µ)

=
(

2
i

)mn
2

(det c)
n
2 e2 π i σ(c(κ−λ tµ+ 2 x tλ))

∫

R(m,n)
f(y) e−4 π i σ(c y t(x−µ)) dy.

Therefore

Bc(σn)Uc(g)f = Uσn
c (g) Bc(σn)f for all f ∈ L2

(
R(m,n)

)
.

We note that we can take

Rc(σn) = Bc(σn).

Hence we complete the proof of the above theorem. ¤

Corollary 2. We have the following

(a) ωc((tb, 1)) = Rc(tb) and ωc((tb,−1)) = −Rc(tb).

(b) If det a > 0, then (da,±1) ∈ Mp(n,R) and hence we have
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ωc((da, 1)) = Rc(da) and ωc((da,−1)) = −Rc(da).

(c) If det a < 0, then (da,±i) ∈ Mp(n,R) and hence we have

ωc((da, i)) = i Rc(da) and ωc((da,−i)) = −i Rc(da).

(d) ωc

(
(σn, in/2)

)
= in/2Rc(σn) and ωc

(
(σn,−in/2)

)
= −in/2Rc(σn).

Proof. The proof follows immediately from the definition of Mp(n,R) and
Theorem 15. ¤

Now we review some properties of ωc. The Weil representation ωc is not an
irreducible representation of Mp(n,R). In [15], Kashiwara and Vergne found
an explicit decomposition of ωc into irreducibles. First we observe that the
orthogonal group O(m) acts on L2

(
R(m,n)

)
by

(α · f)(x) = f(α−1x), α ∈ O(m), x ∈ R(m,n), f ∈ L2
(
R(m,n)

)
.

This action commutes with ωc. For each irreducible representation (σ, Vσ) of
O(m), we let L2

(
R(m,n); σ

)
be the space of all Vσ-valued square integrable

functions f : R(m,n) −→ Vσ satisfying the condition

f(α−1x) = σ(α−1)f(x) for all α ∈ O(m), x ∈ R(m,n).

We let ωc(σ) be the representation of Mp(n,R) on L2
(
R(m,n); σ

)
defined

by the formulas in Corollary 1. We denote by Ô(m) the unitary dual of
O(m). In other words, Ô(m) is the set of all equivalence classes of irreducible
representations of O(m). Let

Σm :=
{

σ ∈ Ô(m)
∣∣ L2

(
R(m,n); σ

) 6= 0
}

.

Kashiwara and Vergne proved that for any σ ∈ Σm, the representation ωc(σ)
is an irreducible unitary representation of Mp(n,R) on L2

(
R(m,n);σ

)
and

that ωc is decomposed into irreducibles as follows :

ωc =
⊕

σ∈Σm

(dimVσ)ωc(σ).

We realize ωc(σ) in the space of vector valued holomorphic functions on
Hn. We note that Hn is biholomorphic to the Hermitian complex manifold
Sp(n,R)/K with K := U(n) via the map

Sp(n,R)/K −→ Hn, gK 7→ g · (iIn), M ∈ Sp(n,R).

Let K̂ be the unitary dual of K. For any (τ, Vτ ) ∈ K̂, we let O(Hn, Vτ ) be the
space of Vτ -valued holomorphic functions on Hn. Let Tτ be the representation
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of Mp(n,R) on O(Hn, Vτ ) defined by
(
Tτ (M)f

)
(Ω) := τ( t(CΩ + D))f(M−1 ·Ω), (2.3.14)

where M−1 =
(

A B
C D

)
∈ Sp(n,R), f ∈ O(Hn, Vτ ) and Ω ∈ Hn. Here τ can

be extended uniquely to a representation of the complexification GL(n,C)
of K. If vτ is a highest weight vector of τ , then Φτ (Ω) := τ(Ω + iIn)vτ is
a a highest weight vector of Tτ . It can be shown that Tτ is an irreducible
representation of Sp(n,R) with highest weight vector Φτ .

Definition 9. A polynomial f : R(m,n) −→ C is called pluriharmonic if

m∑

k=1

∂2f

∂xki∂xkj
= 0 for all 1 ≤ i, j ≤ n.

Let H be the space of all pluriharmonic polynomials on R(m,n). Then O(m)×
GL(n,R) acts on H by

(
(α, a) · P )

= P (α−1xa), α ∈ O(m), a ∈ GL(n,R), P ∈ H.

For (σ, Vσ) ∈ Σm, we let H(σ) be the space of all Vσ-valued pluriharmonic
polynomials P : R(m,n) −→ Vσ such that

P (αx) = σ(α−1)−1P (x) for all α ∈ O(m) and x ∈ R(m,n).

Let τ(σ) be the representation of GL(n,R) on H(σ) defined by
(
τ(σ)(a)P

)
(x) = P (xa) a ∈ GL(n,R), P ∈ H(σ).

For σ ∈ Σm, we see that H(σ) 6= 0 and τ(σ) is an irreducible finite dimensional
representation of GL(n,R) on H(σ). They proved that the mapping σ −→
τ(σ) is an injection from Σm into ̂GL(n,R) and

H =
⊕

σ∈Σm

τ(σ)⊗ σ∗ =
⊕

σ∈Σm

H(σ)⊗ σ∗

as O(m)×GL(n,R)-module.

Let σ ∈ Σm. We assume that P : R(m,n) −→ HomC(Vτ(σ), Vσ) is a
HomC(Vτ(σ), Vσ)-valued pluriharmonic polynomial on R(m,n) satisfying the
conditions

(A) P (αx) = σ(α−1)−1P (x) for all α ∈ O(m) and x ∈ R(m,n)

and

(B) P (xa) = P (x)
(
τ(σ)⊗det

m
2
)
(a) for all a ∈ GL(n,R).
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The unitary operator

Fσ : L2
(
R(m,n);σ

) −→ O(
Hn, Vτ(σ)

)

defined by

(Fσf)(Ω) :=
∫

R(m,n)
eπ i σ(x Ω tx) P (x)∗f(x) dx, f ∈ L2

(
R(m,n); σ

)
, Ω ∈ Hn

intertwines ωc(σ) with T
τ(σ)⊗det−

m
2

.
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2.4 Covariant Maps for the Weil Representation

Let c be a symmetric positive definite real matrix of degree m. We define the
map F (c) : Hn −→ L2

(
R(m,n)

)
by

F (c)(Ω)(x) := e2 π i σ(c x Ω tx), Ω ∈ Hn, x ∈ R(m,n). (2.4.1)

We define the automorphic factor Jm : Sp(n,R)×Hn −→ C∗ for Sp(n,R) on
Hn by

Jm(M, Ω) = det(CΩ + D)
m
2 , (2.4.2)

where M =
(

A B
C D

)
∈ Sp(n,R) and Ω ∈ Hn. We see that Sp(n,R) acts on

Hn transitively by

M ·Ω = (AΩ + B)(CΩ + D)−1, (2.4.3)

where M =
(

A B
C D

)
∈ Sp(n,R) and Ω ∈ Hn.

Theorem 16. The map F (c) : Hn −→ L2
(
R(m,n)

)
defined by Formula

(2.4.1) is a covariant map for the Weil representation ωc of Mp(n,R) with
respect to the automorphic factor Jm defined by Formula (2.4.2). In other
words, F (c) satisfies the following covariant relation

Rc(M)F (c)(Ω) = Jm(M, Ω)−1 F (c)(M ·Ω) (2.4.4)

for all M ∈ Sp(n,R) and Ω ∈ Hn. We recall that

ωc

(
(M, t)

)
= tRc(M) (cf. (2.3.9))

for all (M, t) ∈ Mp(n,R) with M ∈ Sp(n,R) and t ∈ C∗1.

Proof. For M =
(

A B
C D

)
∈ Sp(n,R) and Ω ∈ Hn, we put

Ω∗ = M ·Ω = (AΩ + B)(CΩ + D)−1. (2.4.5)

In this section, we use the notations tb, da and σn in Section 2.3. It suf-
fices to prove the covariance relation (2.4.4) for the generators tb (b = tb ∈
R(n,n)), da (a ∈ GL(n,R)) and σn of Sp(n,R).

Case I. M = tb with b = tb ∈ R(n,n).

In this case, we have
Ω∗ = Ω + b.

By Formula (2.3.11) in Theorem 15,
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(
Rc(M)F (c)(Ω)

)
(x)

=
(
Rc(tb)F (c)(Ω)

)
(x)

= e2 π i σ(c x b tx) F (c)(Ω)(x).

On the other hand, according to Formula (2.4.2),

Jm(M, Ω)−1F (c)(M ·Ω)(x)
= F (c)(Ω + b)(x)

= e2 π i σ(c x(Ω+b) tx))

= e2 π i σ(c x b tx) F (c)(Ω)(x).

Thus
Rc(tb)F (c)(Ω) = Jm(tb, Ω)−1F (c)(tb ·Ω)

for all b = tb ∈ R(n,n) and Ω ∈ Hn. Therefore we proved the covariance
relation (2.4.4) in the case M = tb with b = tb ∈ R(n,n).

Case II. M = da =
(

ta 0
0 a−1

)
with a ∈ GL(n,R).

In this case, we have
Ω∗ = taΩ a.

By Formula (2.3.12) in Theorem 15,

(
Rc(M)F (c)(Ω)

)
(x)

= (det a)
m
2 F (c)(Ω)(x ta)

= (det a)
m
2 e2 π i σ(c x ta Ω a tx).

On the other hand, according to Formula (2.4.2),

Jm(M, Ω)−1F (c)(M ·Ω)(x)

=
(
det

(
a−1

))−m
2 F (c)

(
taΩ a

)
(x)

= (det a)
m
2 e2 π i σ(c x ta Ω a tx).

Thus
Rc(da)F (c)(Ω) = Jm(da, Ω)−1F (c)(da ·Ω)

for all a ∈ GL(n,R) and Ω ∈ Hn. Therefore we proved the covariance relation
(2.4.4) in the case M = da with da ∈ GL(n,R).
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Case III. M = σn =
(

0 −In

In 0

)
.

In this case, we have

Ω∗ = −Ω−1 and Jm(M, Ω) = (det Ω)
m
2 .

In order to prove the covariance relation (2.4.4), we need the following
useful lemma.

Lemma 34. For a fixed element Ω ∈ Hn and a fixed element Z ∈ C(m,n), we
obtain the following property

∫

R(m,n)
eπ i σ(x Ω tx+2 x tZ)dx11 · · · dxmn (2.4.6)

=
(

det
Ω

i

)−m
2

e−π i σ(Z Ω−1 tZ),

where x = (xij) ∈ R(m,n).

Proof of Lemma 34. By a simple computation, we see that

eπi σ(xΩ tx+2x tZ) = e−πi σ(ZΩ−1 tZ) · eπi σ{(x+ZΩ−1)Ω t(x+ZΩ−1)}.

We observe that the real Jacobi group Sp(n,R)nH
(n,m)
R acts on Hn×C(m,n)

holomorphically and transitively by
(
M, (λ, µ, κ)

) · (Ω, Z) =
(
M ·Ω, (Z + λΩ + µ)(CΩ + D)−1

)
, (2.4.7)

where M ∈ Sp(n,R), (λ, µ, κ) ∈ H
(n,m)
R , Ω ∈ Hn and Z ∈ C(m,n). So we

may put

Ω = i A tA, Z = iV, A ∈ R(n,n), V = (vij) ∈ R(m,n).

Then we obtain
∫

R(m,n)
eπi σ(xΩ tx+2x tZ)dx11 · · · dxmn

= e−πi σ(ZΩ−1 tZ)

×
∫

R(m,n)
eπi σ[{x+iV (iA tA)−1}(iA tA) t{x+iV (iA tA)−1}]dx11 · · · dxmn
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= e−πi σ(ZΩ−1 tZ)

∫

R(m,n)
eπi σ[{x+V (A tA)−1}A tA t{x+V (A tA)−1}] dx11 · · · dxmn

= e−πi σ(ZΩ−1 tZ)

∫

R(m,n)
e−π σ{(uA) t(uA)} du11 · · · dumn

(
Put u = x + V (A tA)−1 = (uij)

)

= e−πi σ(ZΩ−1 tZ)

∫

R(m,n)
e−π σ(w tw)(det A)−m dw11 · · · dwmn

(
Put w = uA = (wij)

)

= e−πi σ(ZΩ−1 tZ) (detA)−m ·



m∏

i=1

n∏

j=1

∫

R
e−π w2

ij dwij




= e−πi σ(ZΩ−1 tZ) (detA)−m
(
because

∫

R
e−π w2

ij dwij = 1 for all i, j
)

= e−πi σ(ZΩ−1 tZ)
(
det

(
A tA

))−m
2

= e−πi σ(ZΩ−1 tZ)

(
det

(
Ω

i

))−m
2

.

This completes the proof of Lemma 34. ¤

According to Formula (2.3.13) in Theorem 15,

(
Rc(σn)F (c)(Ω)

)
(x)

=
(

2
i

)mn
2

(det c)
n
2

∫

R(m,n)
F (c)(Ω)(y) e−4 π i σ(c y tx) dy

=
(

2
i

)mn
2

(det c)
n
2

∫

R(m,n)
e2 π i σ(c y Ω ty) · e−4 π i σ(c y tx) dy

=
(

2
i

)mn
2

(det c)
n
2

∫

R(m,n)
eπ i σ{c (y (2 Ω) ty + 2 y t(−2 x))} dy

If we substitute u = c1/2 y, then du =
(
det c

)n
2 dy. Therefore according to

Lemma 34, we obtain



112 2 Theta Functions and the Weil Representation

(
Rc(σn)F (c)(Ω)

)
(x)

=
(

2
i

)mn
2

(det c)
n
2

∫

R(m,n)
eπ i σ(u (2 Ω) tu + 2 c1/2 u t(−2 x)) (det c)−

n
2 du

=
(

2
i

)mn
2

∫

R(m,n)
eπ i σ(u (2 Ω) tu + 2 u t(−2 c1/2 x)) du

=
(

2
i

)mn
2

(
det

2 Ω

i

)−m
2

e−π i σ((−2 c1/2 x) (2 Ω)−1 t(−2 c1/2 x))

=
(
detΩ

)−m
2 e−2 π i σ(c x Ω−1 tx).

On the other hand, according to Formula (2.4.2),

Jm(M, Ω)−1F (c)(M ·Ω)(x)
= Jm(σ,Ω)−1 F (c)

(−Ω−1
)
(x)

=
(
detΩ

)−m
2 e2 π i σ(c x (−Ω−1) tx)

=
(
detΩ

)−m
2 e−2 π i σ(c x Ω−1 tx).

So we see that

Rc(σn)F (c)(Ω) = Jm(σn, Ω)−1 F (c)(σn ·Ω). (2.4.8)

Therefore the covariance relation (2.4.4) holds for the case σn =
(

0 −In

In 0

)
.

Since Jm is an automorphic factor for Sp(n,R) on Hn, we see that if the
covariance relation (2.4.4) holds for M1, M2 in Sp(n,R), then it holds for
M1M2. Finally we complete the proof. ¤

Now we can give another realization of the metaplectic group Mp(n,R)
that was dealt with in Section 2.1 and Section 2.3.

Proposition 9. Let (Uc,Hc) be the Schrödinger representation of the Heisen-
berg group H

(n,m)
R defined by Formula (1.4.8) with the model Hc = L2

(
R(m,n), dξ

)
.

We denote by U(Hc) the group of all unitary isomorphisms of Hc. Let M̃p(c)
be the set of all R ∈ U(Hc) such that

R Uc(g) = Uc(M ? g)R = Uc(MgM−1)R

for all g ∈ H
(n,m)
R and for some M ∈ Sp(n,R). Then for a given element

R ∈ M̃p(c), the corresponding M ∈ Sp(n,R) is determined uniquely, denoted
by M = νc(R). Moreover there is an exact sequence of groups
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1 −→ C∗1 −→ M̃p(c)−νc−→ Sp(n,R) −→ 1. (2.4.9)

Proof. First of all we observe that M̃p(c) is a subgroup of U(Hc). Let R ∈
M̃p(c), and M1,M2 ∈ Sp(n,R) such that

R Uc(g) = Uc(M1 ? g) R = Uc(M2 ? g) R for all g ∈ H
(n,m)
R .

Then Uc(M1 ? g) = Uc(M2 ? g) for all g ∈ H
(n,m)
R . According to Formula

(1.4.8), (M−1
1 M2)g = g(M−1

1 M2) for all g ∈ H
(n,m)
R . Thus M1 = M2. It

follows that the map νc : M̃p(c) −→ Sp(n,R) is well defined. it is easily
checked that νc is a group homomorphism. The kernel of νc is given by

ker νc =
{

R ∈ U(Hc)
∣∣ R Uc(g) = Uc(g)R for all g ∈ H

(n,m)
R

}
.

Since Uc is irreducible and unitary, according to Schur’s lemma, ker νc = C∗1.
The surjectivity of νc follows from the arguments in Section 2.3. ¤

According to Theorem 15, Rc(tb), Rc(da) and Rc(σn) are members of

M̃p(c) sitting above the generators tb, da and σn of Sp(n,R) respectively.
That is, νc(Rc(tb)) = tb, νc(Rc(da)) = da and νc(Rc(σn)) = σn.

Theorem 17. Let P ∈ M̃p(c) and νc(P ) = M =
(

A B
C D

)
∈ Sp(n,R). Then

for any Ω ∈ Hn,

PF (c)(Ω) = Bc(P ;Ω)F (c)(M ·Ω),

where Bc(P ; Ω) is, up to a scalar of absolute one, a branch of the holomorphic
function

{
det(CΩ + D)

1
2
}−m on Hn.

Proof. Let G1 be the subgroup of M̃p(c) consisting of all P ∈ M̃p(c) such
that

PF (c)(Ω) = cP F (c)
(
νc(P ) ·Ω)

for all Ω ∈ Hn,

where cP is a constant depending only on P . For P ∈ G1, we write

PF (c)(Ω) = Bc(P ; Ω) F (c)
(
νc(P ) ·Ω)

for all Ω ∈ Hn.

Let G2 be the set of all P ∈ G1 satisfying the following conditions (G1) and
(G2) :

(G1) Bc(P ;Ω) is continuous in Ω ∈ Hn ;
(G2) {Bc(P ; Ω)}2 | det(CΩ +D)|m is independent of Ω with values in C∗1

for νc(P ) =
(

A B
C D

)
∈ Sp(n,R).

It is easily checked that for P, Q ∈ G2,
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Bc(QP ;Ω) = Bc(P ; Ω)Bc(Q; ν2(P ) ·Ω) for all Ω ∈ Hn. (2.4.10)

Indeed, we get

(QP )F (c)(Ω) = Q
(
PF (c)(Ω)

)

= Bc(P ; Ω)
(
Q

(
F (c)(νc(P ) ·Ω)

))

= Bc(P ; Ω) Bc(Q; νc(P ) ·Ω)F (c)
(
νc(Q) · (νc(P ) ·Ω)

)

= Bc(P ; Ω) Bc(Q; νc(P ) ·Ω)F (c)
(
νc(QP ) ·Ω)

)
.

By Formula (2.4.9) together with the fact that J(M, Ω) := det(CΩ + D)

for M =
(

A B
C D

)
∈ Sp(n,R) and Ω ∈ Hn is automorphic factor, we see

that G2 is a subgroup of G1. We observe that Rc(tb), Rc(da), Rc(σn) in

Theorem 15 and α ∈ C∗1 generate the group M̃p(c). We shall show that

Rc(tb), Rc(da), Rc(σn) and α ∈ C∗1 belong to G2. Then G1 = G2 = M̃p(c).
This implies the proof of the theorem.

Now we shall prove that Rc(tb), Rc(da), Rc(σn) and α ∈ C∗1 belong to
G2. For brevity we put Fc(P ;Ω) = {Bc(P ; Ω)}2 | det(CΩ+D)|m for νc(P ) =(

A B
C D

)
∈ Sp(n,R) with P ∈ M̃p(c).

Case I. P = α ∈ C∗1 ⊂ M̃p(c).
In this case, we obtain

PF (c)(Ω) = α F (c)(Ω).

So we get Bc(P ;Ω) = α and Fc(P ; Ω) = α2. Thus α ∈ G2.

Case II. P = Rc(tb) with tb =
(

In b
0 In

)
∈ Sp(n,R).

In this case, according to Formula (2.3.11), we obtain

PF (c)(Ω) = e2πi σ(c xb tx)F (c)(Ω)(x)

= e2πi σ{c x(Ω+b) tx}

= F (c)(Ω + b)(x) = F (c)(tb ·Ω)(x)
= F (c)

(
νc(Rc(tb)) ·Ω

)
(x).

We get Bc(P ;Ω) = 1 and Fc(P ;Ω) = 1. Thus Rc(tb) ∈ G2.

Case III. P = Rc(da) with da =
(

ta 0
0 a−1

)
∈ Sp(n,R).

In this case, according to Formula (2.3.12), we obtain
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PF (c)(Ω) = (det a)
m
2 F (c)(Ω)(x ta)

= (det a)
m
2 e2πi σ{c x(ta Ω a) tx}

= (det a)
m
2 F (c)(da ·Ω)(x)

= (det a)
m
2 F (c)

(
νc(Rc(da)) ·Ω)

(x).

We get Bc(P ;Ω) = (det a)
m
2 and Fc(P ;Ω) = 1. Thus Rc(da) ∈ G2.

Case IV. P = Rc(σn) with σn =
(

0 −In

In 0

)
∈ Sp(n,R).

In this case, according to Formula (2.3.13), we obtain

PF (c)(Ω) =
(

2
i

)mn
2

(det c)
n
2

∫

R(m,n)
F (c)(Ω)(y) e−4πi σ(c y tx) dy

=
(

2
i

)mn
2

(det c)
n
2

∫

R(m,n)
e2πi σ{c (y Ω ty−2 ytx)} dy

= (detΩ)−
m
2 e−2πi σ(c x Ω−1 tx) (by Lemma 14.2)

= (detΩ)−
m
2 F (c)(−Ω−1)(x)

= (detΩ)−
m
2 F (c)

(
νc(Rc(σn)) ·Ω)

(x).

We get Bc(P ;Ω) = (det Ω)−
m
2 with Bc(P ; iIn) = i−

mn
2 , and Fc(P ; Ω) =

i−
mn
2 . Thus Rc(σn) ∈ G2. Hence we complete the proof. ¤

Definition 10. Let χc : M̃p(c) −→ C be the map defined by

χc(P ) = det(CΩ + D)m
{
Bc(P ;Ω)

}2
, P ∈ M̃p(c),

where νc(P ) =
(

A B
C D

)
∈ Sp(n,R). According to Theorem 17, the image

of χc is contained in C∗1 and χc : M̃p(c) −→ C∗1 is a character of M̃p(c).
Furthermore we have

χc(α) = α2 for any α ∈ C∗1 ⊂ M̃p(c).

We denote by Mp(n,R)c the kernel of χc. We call Mp(n,R)c the metaplectic
group attached to Uc.

We let
m¦ : M̃p(c)× M̃p(c) −→ M̃p(c)

be the multiplication map and let

Φ[c] : M̃p(c)×Hn −→ C∗
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be the map defined by

Φ[c](P,Ω) := Bc(P ;Ω), P ∈ M̃p(c), Ω ∈ Hn.

We provide M̃p(c) with the weakest topology such that the following three
maps

νc : M̃p(c) −→ Sp(n,R), m¦ : M̃p(c)× M̃p(c) −→ M̃p(c),

Φ[c] : M̃p(c)×Hn −→ C∗

are all continuous.
Then we have the following properties.

Lemma 35. M̃p(c) is a Hausdorff space on the above weakest topology.

Proof. Fix an element Ω0 ∈ Hn. Let η : M̃p(c) −→ Sp(n,R)× C∗ by

η(P ) :=
(
νc(P ), Bc(P ; Ω0)

)
, P ∈ M̃p(c). (2.4.11)

Then by the weak topology on M̃p(c), η is continuous. If P,Q ∈ M̃p(c)
such that η(P ) = η(Q), then νc(P ) = νc(Q) and Bc(P ; Ω0) = Bc(Q; Ω0).
QP−1 = α ∈ C∗1 because νc(QP−1) = 1. Thus Q = αP. By assumption,

Bc(Q; Ω0) = Bc(αP ; Ω0) = αBc(P ; Ω0) = Bc(P ;Ω0).

Therefore α = 1, that is, P = Q. This implies that η is one-to-one.
Let f : Sp(n,R)× C∗ −→ C∗ be the map defined by

f(M,α) := α2 {det(CΩ0 + D)}m, (2.4.12)

where M =
(

A B
C D

)
∈ Sp(n,R) and α ∈ C∗. By Theorem 17, η

(
M̃p(c)

)
=

f−1(C∗1). Since ∂f
∂α 6= 0 and C∗1 is a submanifold of C∗, we see that η

(
M̃p(c)

)

is a submanifold of Sp(n,R)×C∗. Therefore η
(
M̃p(c)

)
is Hausdorff because

Sp(n,R) and C∗ are Hausdorff. ¤

Lemma 36. Let h : M̃p(c) −→ Sp(n,R)× C∗1 be the map defined by

h(P ) :=
(
νc(P ), χc(P )

)
, P ∈ M̃p(c).

Then the map h defines a connected double covering of the Lie group Sp(n,R)×
C∗1, and hence gives M̃p(c) the structure of a Lie group.

Proof. We note that h is continuous. We see that
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kerh = ker νc ∩ kerχc = C∗1 ∩ kerχc = ker
(
χc|C∗1

)
= {±1}.

Let h∗ : Sp(n,R)× C∗ −→ Sp(n,R)× C∗ be the map defined by

h∗(M,α) := (M, f(M, α)), M ∈ Sp(n,R), α ∈ C∗, (2.4.13)

where f is the map defined by (2.4.12). Then h = h∗ ◦ η, where η is the
map defined by (2.4.11). Clearly h∗ is a double covering projection. Since

h−1
∗

(
Sp(n,R × C∗1

)
= η

(
M̃p(c)

)
, the restriction h∗,η of h∗ to η

(
M̃p(c)

)
is a

double covering
h∗,η : M̃p(c) −→ Sp(n,R)× C∗1

of the manifold Sp(n,R) × C∗1. It only remains to prove that M̃p(c) is con-
nected. Since Sp(n,R) and C∗1 are connected, according to the exact sequence

(2.4.9), M̃p(c) is connected. ¤

Proposition 10. Mp(n,R)c is a closed connected subgroup of M̃p(c) and qc :
Mp(n,R)c −→ Sp(n,R) is a double covering projection with ker qc = {±1},
where qc is the restriction of νc to Mp(n,R)c.

Proof. By Lemma 36, qc is a double covering projection of Sp(n,R). Ir only
remains to prove that Mp(n,R)c is connected. The stabilizer at i In under
the action (2.1.6) of Sp(n,R) is given by

{(
A B
−B A

)
∈ Sp(n,R)

∣∣∣ A tA + B tB = In, A tB = B tB

}

that is isomorphic to U(n) via
(

A B
−B A

)
. The map

Mp(n,R)c −→ Hn, P 7−→ qc(P ) · (i In), P ∈ MP (n,R)c

gives the coset space of Mp(n,R)c with respect to q−1
c (U(n)), i.e.,

Mp(n,R)c/q−1
c (U(n)) = Hn.

For Ω = i In, the map Bc;iIn
: q−1

c (U(n)) −→ C∗1 defined by

Bc;iIn(P ) := Bc(P ; i In), P ∈ q−1
c (U(n)) (2.4.14)

is a continuous character. If P ∈ q−1
c (U(n)) with qc(P ) =

(
A B
−B A

)
∈ U(n),

then {
Bc;iIn(P )

}2 =
{
Bc(P ; iIn)

}2 =
{

det(A− i B)
}−m

.

We define the map det∗c : U(n) −→ C∗1 by
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det∗c

(
A B
−B A

)
:= {det(A− i B)}−m

,

(
A B
−B A

)
∈ U(n). (2.4.15)

and the map Sq : C∗1 −→ C∗1 by Sq(α) = α2 with α ∈ C∗1. The we have the
following commutative diagram :

q−1
c (U(n))

Bc;iIn−−−−→ C∗1
qc

y
ySq

U(n)
det∗c−−−−→ C∗1

diagram 14.1

Thus q−1
c (U(n)) along with its topology is the fibre product of det∗c and Sq.

Since U(n) and C∗1 are connected, q−1
c (U(n)) is connected. ¤

Corollary 3. The exact sequence

1 −→ {±1} −→ Mp(n,R)c−qc−→ Sp(n,R) −→ 1 (2.4.16)

is non-split and [Mp(n,R)c,Mp(n,R)c] = Mp(n,R)c.

Proof. Embed U(1) into U(n) via z 7→ diag(z, 1, 1, · · · , 1), and embedd U(n)
into Sp(n,R) via

U(n) 3 A + iB 7−→
(

A B
−B A

)
∈ Sp(n,R) with A,B ∈ R(n,n).

So U(1) ⊂ U(n) ⊂ Sp(n,R). According to the commutative diagram in the
proof of Proposition 10, the exact sequence

1 −→ {±1} −→ q−1
c (U(1)) −qc−→ U(1) −→ 1

can be identified to

1 −→ {±1} −→ C∗1 −
Sq−→ C∗1 −→ 1. (2.4.17)

If we restrict the exact sequence (2.4.17) to the torsion subgroups, then we
get the non-split exact sequence

1 −→ Z/2Z −→ Q/Z −m2−→ Q/Z −→ 1, (2.4.18)

where m2 : Q/Z −→ Q/Z is the map defined by m2(x) = 2 x for x ∈ Q/Z.
Thus the exact sequence (2.4.16) is non-split.
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For brevity, we put Mp(c) := Mp(n,R)c. Since [Sp(n,R), Sp(n,R)] =
Sp(n,R), [Mp(c),Mp(c)] sits in the exact sequence

1 −→ {±1} ∩ [Mp(c),Mp(c)] −→ [Mp(c),Mp(c)] −→ Sp(n,R) −→ 1.
(2.4.19)

Assume {±1} ∩ [Mp(c), Mp(c)] is trivial. Then according to the above exact
sequence (2.4.19), we have an isomorphism φ : Sp(n,R) −→ [Mp(c),Mp(c)] 6=
Mp(c). Thus the exact sequence (2.4.16) is split because qc ◦ φ the identity
map. This contradicts the fact that the exact sequence (2.4.16) is non-split.
Hence we obtain

{±1} ∩ [Mp(c),Mp(c)] = {±1} and [Mp(c),Mp(c)] = Mp(c).

¤

Corollary 4. For a fixed element Ω ∈ Hn, we let

U(Ω) =
{

M ∈ Sp(n,R)
∣∣ M ·Ω = Ω

}
.

Let MΩ ∈ Sp(n,R) such that Ω = M · (iIn). Then U(Ω) = MΩ U(n)M−1
Ω .

If P ∈ q−1
c (U(Ω)) such that qc(P ) = MΩ qc(P0)M−1

Ω with P0 ∈ q−1
c (U(n)),

then {
Bc(P ; Ω)

}2 = det∗c
(
qc(P )

)
,

where det∗c : U(n) −→ C∗1 is the map defined by Formula (2.4.15).

Proof. The case Ω = i In has already been proved before. We note that

U(iIn) = U(n). For M =
(

A B
C D

)
and Ω ∈ Hn, we put J(M, Ω) = det(CΩ+

D). By definition, if P ∈ q−1
c (U(Ω)) such that qc(P ) = MΩ qc(P0)M−1

Ω with

P0 ∈ q−1
c (U(n)) and qc(P0) =

(
A B
−B A

)
∈ U(n), then

{
Bc(P ; Ω)

}2 = J(qc(P ), Ω)−m =
{
J
(
MΩ qc(P0)M−1

Ω , Ω
)}−m

=
{
J(MΩ qc(P0), iIn) J(M−1

Ω , Ω)
}−m

=
{
J(MΩ , iIn)J(M−1

Ω , Ω)J(qc(P0), iIn)
}−m

=
{
J(qc(P0), iIn)

}−m

=
{

det(A− iB)
}−m = det∗c

(
qc(P0)

)
.

¤
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2.5 Theta Series with Quadratic Forms

In this chapter, we review the theta series of several type.

Definition 11. A symmetric integral matrix S of degree m is said to be
even if tξ S ξ ≡ 0 mod 2 for all ξ ∈ Z(m,1). The level q of an even symmetric
nonsingular matrix S is defined to be the smallest positive integer such that
qS−1 is even.

It is well known that if S is positive definite even integral matrix of degree
m such that det S = 1, then m is divisible by 8.

Definition 12. For a symmetric integral matrix T of degree n and a sym-
metric integral matrix S of degree m, we define

A(S, T ) := ]{ ξ ∈ Z(m,n) | tξ S ξ = T }.

We observe that if S is positive definite, A(S, T ) is finite. It is easy to see
that S1 and S2 are equivalent, that is, tUS1U = S2 for some U ∈ GL(m,Z)
if and only if A(S1, T ) = A(S2, T ) for all n and symmetric integral matrices
T of degree n.

Let S be a positive definite integral matrix of degree m. We define the
theta series ϑS : Hn −→ C by

ϑS(Ω) =
∑

ξ∈Z(m,n)

eπ i σ(S ξ Ω tξ), Ω ∈ Hn. (2.5.1)

Then ϑS(Ω) is a holomorphic function on Hn. We see that

ϑS(Ω) =
∑

T= tT≥0

A(S, T ) eπ i σ(TΩ),

where T runs over the set of all semipositive symmetric integral matrices of
degree n.

Theorem 18. Let S be a positive definite symmetric integral matrix of degree
m. Then ϑS(Ω) satisfies the transformation formula

ϑS−1(−Ω−1) = (det S)
n
2

(
det

Ω

i

)m
2

ϑS(Ω) for all Ω ∈ Hn. (2.5.2)

Here the function h : Hn −→ C given by

h(Ω) =
(

det
Ω

i

) 1
2

, Ω ∈ Hn

is the function determined uniquely by the following properties
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(a) h2(Ω) =
(
det Ω

i

)
, Ω ∈ Hn,

(b) h(iY ) = (det Y )
1
2 for any positive definite symmetric real matrix Y

of degree n.

For a positive integer m, we define

(
det

Ω

i

)m
2

=

{(
det

Ω

i

) 1
2
}m

, Ω ∈ Hn.

Proof. For a fixed element Ω ∈ Hn, we define f : R(m,n) −→ C by

f(x) =
∑

ξ∈Z(m,n)

eπ i σ(S(ξ+x) Ω t(ξ+x)), x ∈ R(m,n). (2.5.3)

We observe that f is well defined because the sum of the right hand side of
(2.5.3) converges absolutely. It is clear that if x = (xij) is a coordinate in
R(m,n), then f is periodic in xij with period 1. That is,

f(x + α) = f(x) for all α ∈ Z(m,n).

Thus f has the Fourier series

f(x) =
∑

α∈Z(m,n)

cα e2 π i σ(x tα), x ∈ R(m,n), (2.5.4)

where

cα =
∫ 1

0

· · ·
∫ 1

0

f(y) e−2 π i σ(y tα) dy

=
∫ 1

0

· · ·
∫ 1

0

∑

ξ∈Z(m,n)

eπ i σ{S(ξ+y) Ω t(ξ+y)} · e−2 π i σ(y tα) dy

=
∫

R(m,n)
eπ i σ(S y Ω ty−2 y tα) dy

=
∫

R(m,n)
eπ i σ{S(y Ω ty−2 y t(S−1 α))} dy

= (det S)−
n
2

(
det

Ω

i

)−m
2

e−π i σ(S−1 α Ω−1 tα) (by Lemma 34.

According to Formulas (2.5.3) and (2.5.4),
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ϑS(Ω) = f(0) =
∑

α∈Z(m,n)

cα

= (det S)−
n
2

(
det

Ω

i

)−m
2

eπ i σ{S−1α (−Ω−1) tα}

= (det S)−
n
2

(
det

Ω

i

)−m
2

ϑS−1(−Ω−1).

Consequently we obtain the formula (2.5.2). ¤
Let S be an positive definite even integral symmetric matrix of degree m.

Let A and B be m× n rational matrices. We define the theta series

ϑS;A,B(Ω) =
∑

ξ∈Z(m,n)

eπ i σ{S(ξ+ 1
2 A) Ω t(ξ+ 1

2 A) + tB ξ}.

Theorem 19. Let S be an positive definite even integral symmetric matrix of
degree m. Let A and B be m×n rational matrices. Then ϑS;A,B(Ω) satisfies
the transformation formula

ϑS−1;A,B(−Ω−1) = e−
1
2 π i σ( tAB) (det S)

n
2

(
det

Ω

i

)m
2

ϑS;B,−A(Ω) (2.5.5)

for all Ω ∈ Hn.

Proof. Following the argument of the proof of Theorem 18, we can obtain the
formula (2.5.5). We leave the detail to the reader. ¤

Definition 13. A holomorphic function f : Hn −→ C is called a Siegel
modular form of weight k ∈ Z if it satisfies the following properties :

1) f(M ·Ω) = det(CΩ + D)kf(Ω) for γ =
(

A B
C D

)
∈ Γn.

2) f is bounded in the domain Y ≥ Y0 > 0 with Ω = X + i Y, X, Y real.

We will give some examples of Siegel modular forms using the so-called
thetanullwerte. For a, b ∈ Zn, we consider the thetanullwerte

ϑ(Ω ; a, b) =
∑

ξ∈Zn

eπ i σ{ t(ξ+ 1
2 a) Ω (ξ+ 1

2 a) + tb ξ }, Ω ∈ Hn. (2.5.6)

Lemma 37. Let a, b ∈ Zn. Then ϑ(Ω ; a, b) satisfies the following properties

(a) ϑ(Ω ; a, b1) = ϑ(Ω ; a, b2) if b1 ≡ b2 mod 2.

(b) If ã ∈ Zn, then ϑ(Ω ; a + 2 ã, b) = (−1)
tb ã ϑ(Ω ; a, b).

(c) ϑ(Ω ; a, b) = (−1)
tab ϑ(Ω ; a, b).

(d) ϑ(Ω ; a, b) = 0 if tab 6≡ 0 mod 2.
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Proof. (a) follows from a direct computation. If we put ξ∗ = ξ + ã,

ϑ(Ω ; a + 2 ã, b) =
∑

ξ∈Zn

eπ i σ{ t(ξ+ 1
2 a+ã) Ω (ξ+ 1

2 a+ã) + tb ξ }

=
∑

ξ∗∈Zn

eπ i σ{ t(ξ∗+ 1
2 a) Ω (ξ∗+ 1

2 a) + tb(ξ∗−ã) }

= e−π i tbã ϑ(Ω ; a, b).

Therefore we get the formula (b). If we substitute ξ into −ξ − a, we obtain
the formula (c). (d) follows immediately from the formula (c). ¤

A pair {a, b} with a, b ∈ {0, 1}n is called a theta characteristic. A theta
characteristic {a, b} is said to be even (resp. odd) if tab is even (resp. odd).
By induction on n, we can show that the number of even theta characteristics
is (2n + 1) 2n−1.

Let γ =
(

A B
C D

)
∈ Γn and let {a, b} be a theta characteristic. We define

γ ¦
(

a
b

)
:≡

(
D −C
−B A

)(
a
b

)
+

(
(C tD)0
(A tB)0

)
mod 2, (2.5.7)

where T0 is the column vector determined by the diagonal entries of an n×n
matrix T .

Theorem 20. (1) The Siegel modular group Γn acts on the set C of theta
characteristics by

(
a
b

)
7→ γ ¦

(
a
b

)
, γ ∈ Γn, {a, b} ∈ C .

(2) The sign (−1)
tab of the theta characteristic {a, b} is invariant under the

action (2.5.7) of Γn.
(3) Γn acts on the set C e of all even theta characteristics transitively.

(4) If γ =
(

A B
C D

)
∈ Γn, Ω ∈ Hn and {a, b} ∈ C , then we have

ϑ2(γ ·Ω ; a, b) = ν(γ) det(CΩ + D)ϑ2
(
Ω ; ã, b̃

)
, (2.5.8)

where
(a) ν(γ)4 = 1,

(b)
(

ã

b̃

)
= γ ¦

(
a
b

)
.

Proof. By a direct computation, we prove the statement (a). It suffices to show

the invariance of the sign of (−1)
tab under the generators tS =

(
In S
0 In

)
with
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S = tS ∈ Z(n,n) and Jn. By a simple computation,
(

In S
0 In

)
¦

(
a
b

)
≡

(
a

b− S a + S0

)
mod 2,

(
In S
0 In

)
¦

(
a
b

)
≡

(
b
−a

)
mod 2.

Therefore it is obvious that the sign of (−1)
tab is invariant under the actions

of tS and Jn. In order to prove the transitivity of Γn on C e, first of all we
have to prove the fact that given an even characteristic {a, b} ∈ C e, there

exists an element γ =
(

A B
C D

)
∈ Γn such that

γ ¦
(

0
0

)
=

(
a
b

)
, i.e., a ≡ (C tD)0, b ≡ (A tB)0 mod 2.

We decompose

a =
(

a1

a2

)
, a1 ∈ Z, a2 ∈ Zn−1,

b =
(

b1

b2

)
, b1 ∈ Z, b2 ∈ Zn−1.

Case 1. a1 b1 = 0

Then {a1, b1} is even and also {a2, b2} is even. By induction on n, we can

find γ ∈ Γn such that γ ¦
(

0
0

)
=

(
a
b

)
.

Case 2. a1 = b1 = 1

Since tab is even, there exists an index ν with 2 ≤ ν ≤ n such that aν =
bν = 1. Therefore we can find a symmetric integral matrix S = tS ∈ Z(n,n)

so that (
In S
0 In

)
¦

(
a
b

)
≡

(
a

b− S a + S0

)
mod 2

is an even theta characteristic satisfying the assumption of Case 1.

According to Case 1 and Case 2, we see that Γn acts on C e transitively.

The transformation formula (2.5.8) for the generator Jn follows from the
formula (2.5.5) with S = 1 and m = 1. For a generator tS with S = tS ∈
Z(n,n), it is easy to see that

ϑ(Ω + S ; a, b) = e
π i
4

taSa ϑ(Ω ; a, b + Sa + S0). (2.5.9)
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In fact, (2.5.9) follows from the following simple fact that tξSξ ≡ tS0 ξ mod 2
for any ξ ∈ Zn and x2 ≡ x mod 2 for any x ∈ Z. We know that ϑ(Ω ; 0, 0) 6= 0
because ϑ(i Y ; 0, 0) > 0. ¤

Theorem 21. We set

kn =





8 if n = 1
2 if n = 2
1 if n ≥ 3.

We define the function ∆(n)(Ω) on Hn by

∆(n)(Ω) :=
∏

{a,b}
ϑ(Ω ; a, b)kn ,

where {a, b} runs through even theta characteristics. Then ∆(n)(Ω) is a
nonzero Siegel modular form on Hn of weight 12, 10 and (2n + 1) 2n−2 re-
spectively if n = 1, 2 and n ≥ 3 respectively.

Proof. The proof can be found in [7]. ¤

Theorem 22. Let m be an even positive integer. Let S be a positive definite
even integral symmetric matrix of degree m and of level q. Then for all γ =(

A B
C D

)
∈ Γn,0(q) with detD > 0,

ϑS(γ ·Ω) = νS(γ) det(CΩ + D)
m
2 ϑS(Ω), Ω ∈ Hn,

where

νS(γ) = (det D)
m
2 −mn

∑

ξ∈Z(m,n)

eπ i σ(BD−1 tξ S ξ)

= (sgn detD)
m
2

(
(−1)

m
2 detS

| detD|
)

.

Here
(

a
b

)
denotes the generalized Legendre symbol.

Proof. The proof can be found in [7], pp. 302 -303. ¤

Theorem 23. Let m be an even positive integer. Let S be a positive definite
even integral symmetric matrix of degree m and of level q. Then ϑS(Ω) is a
modular form with respect to the principal congruence subgroup Γn(q) of Γn.

Proof. The proof follows from Theorem 22. ¤

Theorem 24. Let S be an positive definite even integral symmetric matrix
of degree m. Let A and B be m× n rational matrices. Then the theta series

ϑS;A,B(Ω) =
∑

ξ∈Z(m,n)

eπ i σ{S(ξ+ 1
2 A) Ω t(ξ+ 1

2 A) + tB ξ}
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is a modular form of weight m
2 with respect to a certain congruence subgroup

Γn(`) of Γn.

Proof. The proof can be found in [1]. ¤
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2.6 Theta Series in Spherical Harmonics

Let S be a positive definite symmetric m×m rational matrix, and let α and
β be an m× n rational matrix. We define the theta series

ϑS

[
α
β

]
: Hn × C(m,n) −→ C

by

ϑS

[
α
β

]
(Ω, Z) :=

∑

N∈Q(m,n)

χ

[
α
β

]
(N) eπ i σ( tNSNΩ + 2 tNZ), (2.6.1)

where Ω ∈ Hn, Z ∈ C(m,n) and

χ

[
α
β

]
(N) =

{
1 if N − α 6∈ Z(m,n)

e2 π i σ( tNB) otherwise.

Let Pm,n be the algebra of complex valued polynomial functions on C(m,n).
We take a coordinate Z = (zkj) in C(m,n).

Definition 14. Let S, α and β be as above. For a homogeneous polynomial
P ∈ Pm,n, we define

ϑS,P

[
α
β

]
(Ω,Z) =

∑

N∈Q(m,n)

χ

[
α
β

]
(N) P (N) eπ i σ( tNSNΩ + 2 tNZ), (2.6.2)

ϑS,P (Ω,Z) = ϑS,P

[
0
0

]
(Ω,Z), (2.6.3)

ϑS,P

[
α
β

]
(Ω) = ϑS,P

[
α
β

]
(Ω, 0). (2.6.4)

For any homogeneous polynomial P in Pm,n, we put

P (∂) = P

(
∂

∂zkj

)
, 1 ≤ k ≤ m, 1 ≤ j ≤ n.

Then we get

P (∂)ϑS

[
α
β

]
(Ω, Z) (2.6.5)

=
∑

N∈Q(m,n)

χ

[
α
β

]
(N) P (2πiN) eπ i σ( tNSNΩ + 2 tNZ).
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Definition 15. Let T = (tkj) be the inverse matrix of S. Then a polynomial
P in Pm,n is said to be pluriharmonic with respect to S if it satisfies the
equations

m∑

k,l=1

∂2P

∂zki∂zlj
tkl = 0 for all i, j = 1, 2, · · · , n.

Theorem 25. Let S, α and β be as above. Then for all
(

A B
C D

)
in a suitable

subgroup Γ of Γn, we have

ϑS

[
α
β

](
(AΩ + B)(CΩ + D)−1, Z(CΩ + D)−1

)
(2.6.6)

= det(CΩ + D)
m
2 eπ i σ(Z(CΩ+D)−1C tZS−1) ϑS

[
α
β

]
(Ω, Z)

Proof. Sp(n,R) acts on the homogeneous space Hn × C(m,n) by

M · (Ω,Z) =
(
(AΩ + B)(CΩ + D)−1, Z(CΩ + D)−1

)
,

where M =
(

A B
C D

)
∈ Sp(n,R), Ω ∈ Hn and Z ∈ C(m,n). It is known that

Sp(n,R) is generated by the translations tb with b = tb and the inversion σn.
Thus it suffices to prove the functional equation (2.6.6) for the generators tb
and σn in a suitable congruence subgroup Γ of Γn.

For tb =
(

In b
0 In

)
∈ Sp(n,R),

ϑS

[
α
β

]
(Ω + b, Z) =

∑

N∈Q(m,n)

χ

[
α
β

]
(N) eπ i σ( tNSN(Ω+b) + 2 tNZ)

= ϑS

[
α
β

]
(Ω,Z)

if we choose suitable b’s so that eπ i σ(tNSNb) = 1. This is possible because
S, α and β are rational matrices.

For the inversion σn =
(

0 −In

In 0

)
, we can prove the functional equation

(2.6.6) following the argument in the proof of Theorem 18. We leave the
details to a reader. Another representation theoretic proof can be found in
[28] ¤

Lemma 38. Let PN := C[X1, · · · , XN ]. For P ∈ PN , we let P (∂) denote
the differential operator P

(
∂

∂X1
, · · · , ∂

∂XN

)
. For P, Q ∈ PN , we define
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〈P,Q〉 = (P (∂)Q)(0).

Then 〈 , 〉 is a symmetric nondegenerate bilinear form on PN which satisfies
the property 〈P, QR〉 = 〈Q(∂)P, R〉 = 〈R(∂)P, Q〉 for all P, Q,R ∈ PN .

Proof. We first observe that

〈
Xa1

1 · · ·XaN

N , Xb1
1 · · ·XbN

N

〉
=

{
a1! · · · aN ! if (a1, · · · , aN ) = (b1, · · · , bN ),

0 otherwise.

Thus 〈P,Q〉 is a symmetric nondegenerate bilinear form on PN . Similarly
〈P, QR〉 = 〈Q(∂)P,R〉 = 〈R(∂)P, Q〉 is easily shown for monomials P, Q, R.
Hence we complete the proof. ¤

Lemma 39. Let H(S) ⊂ Pm,n be the space of pluriharmonic polynomi-
als with respect to S, and I ⊂ Pm,n be the ideal generated by the hij =∑m

k,l=1 tklzkizlj for all i, j = 1, · · · , n, where T = (tkl) = S−1 as before in
Definition 16.2. Then H(S) = I⊥ with respect to the pairing 〈 , 〉 introduced
in Lemma 16.4, and

Pm,n = H(S)⊕ I (orthogonal sum).

Proof. Let P ∈ Pm,n. Then 〈fhij , P 〉 =
(
f(∂)hij(∂)P

)
(0) = 0 for all f ∈

Pm,n if and only if hij(∂)P = 0 for all i, j if and only if P is pluriharmonic
with respect to S. Thus H(S) = I⊥. Let Pm,n(R) = R[Z11, Z12, · · · , Zmn]. By
the same argument, we have H(S)R = I⊥R , where H(S)R = H(S) ∩ Pm,n(R)
and IR = I ∩ Pm,n(R). It is easy to see that 〈 , 〉 is positive definite on
Pm,n(R). So Pm,n(R) = H(S)R⊕ IR. Therefore we have Pm,n = H(S)⊕ I. ¤

Lemma 40. If P is a pluriharmonic polynomial in H(S) ⊂ Pm,n, then
(
P (∂)

[
g(Z) eσ(ZC tZS−1)

])
(0) =

(
P (∂)g(Z)

)
(0) (2.6.7)

for any C ∈ C(n,n) and any analytic function g defined in a neighborhood of
0.

Proof. We put h(Z) = σ(ZC tZS−1) and T = (tkl) = S−1. It suffices to prove
the formula (2.6.7) for any polynomials g(Z).
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(
P (∂)

[
g(Z) eh(Z)

])
(0) =

∞∑
n=0

1
n!

(
P (∂)

[
g(Z)h(Z)n

])
(0)

=
∞∑

n=0

1
n!
〈P, ghn〉

=
∞∑

n=0

1
n!
〈h(∂)nP, g〉 (by Lemma 38).

By the way, h(∂)P = 0 because P is pluriharmonic. Indeed, if we put C =
(cij) and Z = (zki), then we have

h(Z) = σ(ZC tZS−1)

=
n∑

i,j=1

cij




m∑

k,l=1

tkl zki zlj


 .

We put fij(Z) =
∑m

k,l=1 tkl zki zlj . Then h(∂)P =
∑n

i,j=1 cij

(
fij(∂)P

)
= 0

because P is pluriharmonic. Therefore we get
(
P (∂)

[
g(Z) eh(Z)

])
(0) = 〈P, g 〉 =

(
P (∂)g(Z)

)
(0).

¤

Corollary 5. If P is a pluriharmonic polynomial in H(S) ⊂ Pm,n and C is
an n× n symmetric complex matrix, then

P (∂)eσ(ZC tZS−1) = P (2C tZS−1) eσ(ZC tZS−1).

Proof. We put h(Z) = eσ(ZC tZS−1). For any A ∈ C(m,n), we let

f(Z) = h(Z + A) = h(Z) h(A) g(Z),

where g(Z) = e2 σ(AC tZS−1). Then
(
P (∂)h(Z)

)
(A) =

(
P (∂)f(Z)

)
(0)

= h(A)
(
P (∂)[h(Z) g(Z)]

)
(0)

= h(A)
(
P (∂)g(Z)

)
(0) (Lemma 40).

But
∂g

∂zki
= (2C tAS−1)ki g(Z).

By a repeated application of this, we have

P (∂)g(Z) = P (2 C tAS−1) g(Z).
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Therefore
(
P (∂)h(Z)

)
(A) = h(A)

(
P (∂)g(Z)

)
(0)

= h(A)P (2C tAS−1) g(0)
= h(A)P (2C tAS−1).

Hence P (∂)h(Z) = P (2C tAS−1) h(Z). ¤

Lemma 41. Let f be an analytic function on C(m,n) and let P ∈ Pm,n. For
A ∈ C(n,n) and B ∈ C(m,m), we let

fA,B(Z) = f(BZA) and PA,B(Z) = P ( tBZA−1).

Then
P (∂)fA,B(Z) =

(
PA,B(∂)f

)
(BZA).

In particular, 〈P, fA,B〉 = 〈PA,B , f〉.
Proof. We let A = (aij) ∈ C(n,n), b = (bkl) ∈ C(m,m) and Z = (zlp). By an
easy computation, we get

∂fA,B

∂zlp
(Z) =

m∑

k=1

n∑

i=1

bkl api
∂f

∂zki
(BZA), 1 ≤ l ≤ m, 1 ≤ p ≤ n.

We put
Z̃ = tBZA−1 with Z̃ =

(
z̃lp

)
.

Since
∂

∂z̃lp
=

m∑

k=1

n∑

i=1

bkl api
∂

∂zki
, 1 ≤ l ≤ m, 1 ≤ p ≤ n,

we have
∂fA,B

∂zlp
(Z) =

∂f

∂z̃lp
(BZA) for all l, p.

Therefore we have P (∂)fA,B(Z) =
(
PA,B(∂)f

)
(BZA). ¤.

Lemma 42. GL(n,C)×O(S) acts on Hm,n by

(A,B)P (Z) = P (B−1ZA), (2.6.8)

where A ∈ GL(n,C), B ∈ O(S) and P ∈ Pm,n. The space H(S) of plurihar-
monic polynomials in Pm,n is invariant under the action (2.6.8).

Proof. According to Lemma 39, I = H(S)⊥ is the ideal of Pm,n generated
by hij(Z) =

∑m
k,l=1 tkl zki zlj for all i, j. So by Lemma 41, it suffices to show

that hij(ZA) and hij(BZ) belong to I for all A ∈ GL(n,C) and B ∈ O(S).
If A = (aij) ∈ GL(n,C), Z = (zki) ∈ C(m,n) and T = (tkl) = S−1, then
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hij(ZA) =
n∑

p,q=1

api aqj




m∑

k,l=1

tklzkpzlq




=
n∑

p,q=1

api aqj hpq(Z) ∈ I.

If B = (bkl) ∈ O(S), then

hij(BZ) =
n∑

p,q=1

zpi zqj




m∑

k,l=1

tklbkpblq




=
n∑

p,q=1

zpi zqj

(
tBTB

)
pq

.

Since B ∈ O(S), we have T = tBTB. Indeed BS tB = and hence
tB S−1 B−1 = S−1. Thus tBTB = T. Hence we have

hij(BZ) =
n∑

p,q=1

tpq zpi zqj = hij(Z) ∈ I.

Therefore we complete the proof. ¤

Theorem 26. Let S, α and β be as above. Let P be a pluriharmonic poly-
nomial in Pm,n with respect to S. Then

ϑS,P

[
α
β

]
(Ω) = det(CΩ +D)−

m
2 ϑS,P̃

[
α
β

](
(AΩ +B)(CΩ +D)−1

)
, (2.6.9)

where P̃ (Z) = P (Z(CΩ + D)), for all
(

A B
C D

)
in a suitable subgroup Γ of

Γn.

Proof. Let P be a homogeneous pluriharmonic polynomial of degree k. Then
according to Formula (2.6.5), we get

(2 π i)−kP (∂)ϑS

[
α
β

]
(Ω,Z)

= (2 π i)−k
∑

N∈Q(m,n)

χ

[
α
β

]
(N)P (2πiN) eπ i σ( tNSNΩ + 2 tNZ)

=
∑

N∈Q(m,n)

χ

[
α
β

]
(N)P (N) eπ i σ( tNSNΩ + 2 tNZ)

= ϑS,P

[
α
β

]
(Ω, Z).
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Here the fact that P is homogeneous of degree k was used in the second
equality. Putting Z = 0, we get

(2π i)−k

(
P (∂)ϑS

[
α
β

])
(Ω, 0) = ϑS,P

[
α
β

]
(Ω). (2.6.10)

By Theorem 25,

ϑS

[
α
β

]
(Ω, Z)=det(CΩ + D)−

m
2

×e−π i σ(Z(CΩ+D)−1C tZS−1) (2.6.11)

×ϑS

[
α
β

](
(AΩ + B)(CΩ + D)−1, Z(CΩ + D)−1

)
.

If we apply the differential operator (2 π i)−kP (∂) to both sides of Formula
(2.6.11) and put Z = 0, according to Formula (2.6.10), Lemma 40 and Lemma
41, we obtain

ϑS,P

[
α
β

]
(Ω)

= (2π i)−k det(CΩ + D)−
m
2

×
[
P (∂)ϑS

[
α
β

](
(AΩ + B)(CΩ + D)−1, Z(CΩ + D)−1

)]

Z=0

= (2π i)−k det(CΩ + D)−
m
2

[
P̃ (∂)ϑS

[
α
β

](
(AΩ + B)(CΩ + D)−1, Z

)]

Z=0

= det(CΩ + D)−
m
2 ϑS,P̃

[
α
β

](
(AΩ + B)(CΩ + D)−1, 0

)

= det(CΩ + D)−
m
2 ϑS,P̃

[
α
β

](
(AΩ + B)(CΩ + D)−1

)
,

where P̃ (Z) = P (Z(CΩ + D)). We note that we used Formula (2.6.6) and
Lemma 40 in the first equality, and Lemma 41 in the second equality. In the
third equality we used the fact that P̃ is homogeneous of degree k. Conse-
quently we complete the proof. ¤

Definition 16. Let (ρ, Vρ) be a finite dimensional rational representation of
GL(n,C). A vector valued function f : Hn −→ Vρ is called a modular form
with respect to ρ if it is a holomorphic function on Hn such that

f((AΩ + B)(CΩ + D)−1) = ρ(CΩ + D)f(Ω), Ω ∈ Hn

for all
(

A B
C D

)
in a suitable congruence subgroup of Γn.
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We recall that H(S) denotes the space of all pluriharmonic polynomials in
Pm,n with respect to S. Let W be some GL(n,C)-stable subspace of H(S).

We define the W ∗-valued function ϑW

[
α
β

]
: Hn −→ W ∗ by

(
ϑW

[
α
β

]
(Ω)

)
(P ) := ϑS,P

[
α
β

]
(Ω) (2.6.12)

for all Ω ∈ Hn and P ∈ W ⊂ H(S). Here W ∗ denotes the dual space of W .

Now we introduce the homogeneous line bundle L 1
2 over Hn. First of all

we consider the double covering ˜GL(n,C) of GL(n,C) defined by

˜GL(n,C) =
{

(g, α) | α2 = det(g), g ∈ GL(n,C), α ∈ C∗ }

equipped with the multiplication

(g1, α1)(g2, α2) = (g1g2, α1α2), g1, g2 ∈ GL(n,C), α1, α2 ∈ C∗.

Let ρ be a one-dimensional representation of GL(n,C) defined by

ρ(g, α) = α = (det(g))
1
2 , g ∈ GL(n,C), α ∈ C∗.

Then ρ yields the homogeneous line bundle on Hn, denoted by L 1
2 . The

complex manifold
L 1

2 = Hn × C
is a holomorphic line bundle over Hn with the action of the metaplectic group
Mp(n,R) given by

M̃ · (Ω, z) =
(
(AΩ + B)(CΩ + D)−1, det(CΩ + D)1/2 z

)
, M̃ ∈ Mp(n,R),

where
(

A B
C D

)
∈ Sp(n,R) is the image of M̃ under the surjective homomor-

phism of Mp(n,R) onto Sp(n,R). For a positive integer k, we define

L k
2 =

(L 1
2
)⊗k = L 1

2 ⊗ · · · ⊗ L 1
2 ( k−times ).

Let τ be the representation of GL(n,C) on W defined by
(
τ(g)P

)
(Z) : = P (Zg), g ∈ GL(n,C), P ∈ W, Z ∈ C(m,n).

We observe that if P̃ is a homogeneous pluriharmonic polynomial given by
Theorem 16.9, then P̃ = τ(CΩ + D)P. Let τ∗ be the contragredient of τ .
That is,

(
τ∗(g)`

)
(P ) = `

(
τ(g)−1P

)
, g ∈ GL(n,C), ` ∈ W ∗, P ∈ W.
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Theorem 27. Let α and β as above. Then the function ϑW

[
α
β

]
(Ω) defined

in (2.6.12) is a modular form with values in W ∗ ⊗ Lm
2 with respect to the

representation τ∗ ⊗ det
m
2 for a suitable congruence subgroup Γ . For any W

and Ω, it is non-zero for suitable α and β.

Proof. By Theorem 26, for all P ∈ W ⊂ H(S) and for all
(

A B
C D

)
in a suitable

congruence subgroup Γ of Γn, we get
(

ϑW

[
α
β

]
(Ω)

)
(P )

= det(CΩ + D)−
m
2 · ϑS,P̃

[
α
β

](
(AΩ + B)(CΩ + D)−1

)

= det(CΩ + D)−
m
2 ·

(
ϑW

[
α
β

](
(AΩ + B)(CΩ + D)−1

))
(P̃ )

= det(CΩ + D)−
m
2 ·

(
ϑW

[
α
β

](
(AΩ + B)(CΩ + D)−1

))
(τ(CΩ + D)P )

= det(CΩ + D)−
m
2 ·

(
τ∗(CΩ + D)−1ϑW

[
α
β

](
(AΩ + B)(CΩ + D)−1

))
(P ),

where P̃ is a homogeneous pluriharmonic polynomial defined by P̃ (Z) =
P (Z(CΩ + D)). Therefore

ϑW

[
α
β

](
(AΩ +B)(CΩ +D)−1

)
= det(CΩ +D)

m
2 ·τ∗(CΩ +D)ϑW

[
α
β

]
(Ω).

Hence ϑW

[
α
β

]
(Ω) is a modular form on Hn with values in W ∗ ⊗ Lm

2 with

respect to a suitable congruence subgroup Γ of Γn. ¤

Remark 7. Using Theorem 27, we can prove that for all n ≥ 2 and 1 ≤ r ≤
n−1, there are congruence subgroups Γ ⊂ Γn and Γ -invariant non-vanishing
holomorphic k-forms on Hn, where k = n(n+1)

2 − r(r+1)
2 . The proof can be

found in [28]. This fact was proved by Freitag and Stillman.

Definition 17. Let (ρ, Vρ) be a finite dimensional rational representation of
GL(n,C). A pluriharmonic form with respect to ρ is a polynomial P from
C(m,n) to Vρ if it satisfies the following conditions :

m∑

k=1

∂2P

∂zki∂zkj
= 0 for all i, j = 1, 2, · · · , n (2.6.13)

and
P (ZA) = ρ( tA)P (Z) for all A ∈ GL(n,C). (2.6.14)
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We denote by Hm,n(ρ) the space of all pluriharmonic forms with respect to
ρ.

Freitag proved the following.

Theorem 28. Let S be a positive definite even unimodular matrix of degree
m and let (ρ, Vρ) be a finite dimensional rational representation of GL(n,C).
Let P ∈ Hm,n(ρ) be a pluriharmonic form with respect to ρ. Then the theta
series

ΘS,P (Ω) :=
∑

N∈Z(m,n)

P (S1/2N) eπ i σ( tNSNΩ) (2.6.15)

is a modular form with respect to the representation ρ∗ of GL(n,C) defined
by

ρ∗(A) = ρ(A) (det A)
m
2 , A ∈ GL(n,C)

for the the Siegel modular group Γn.

Proof. We will omit the proof. The proof can be found in [7]. ¤
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2.7 Relation between Theta Series and the Weil
Representation

Let (π, Vπ) be a unitary projective representation of Sp(n,R) on the repre-
sentation space Vπ. We assume that (π, Vπ) satisfies the following conditions
(A) and (B):
(A) There exists a vector valued map

F : Hn −→ Vπ, Ω 7→ FΩ := F (Ω)

satisfying the following covariance relation

π(M)FΩ = ψ(M)J(M,Ω)−1 FM ·Ω (2.7.1)

for all M ∈ Sp(n,R) and Ω ∈ Hn. Here ψ is a character of Sp(n,R) and
J : Sp(n,R)×Hn −→ GL(1,C) is a certain automorphic factor for Sp(n,R)
on Hn.

(B) Let Γ be an arithmetic subgroup of the Siegel modular group Γn. There
exists a linear functional θ : Vπ −→ C which is semi-invariant under the action
of Γ , in other words, for all γ ∈ Γ and Ω ∈ Hn,

〈π∗(γ)θ, FΩ 〉 = 〈 θ, π(γ)−1FΩ 〉 = χ(γ) 〈 θ, FΩ 〉, (2.7.2)

where π∗ is the contragredient of π and χ : Γ −→ C∗1 is a unitary character
of Γ .

Under the assumptions (A) and (B) on a unitary projective representation
(π, Vπ), we define the function Θ on Hn by

Θ(Ω) := 〈 θ, FΩ 〉 = θ
(
FΩ

)
, Ω ∈ Hn. (2.7.3)

We now shall see that Θ is an automorphic form on Hn with respect to Γ
for the automorphic factor J .

Lemma 43. Let (π, Vπ) be a unitary projective representation of Sp(n,R)
satisfying the above assumptions (A) and (B). Then the function Θ on Hn

defined by (17.3) satisfies the following modular transformation behavior

Θ(γ ·Ω) = ψ(γ)−1 χ(γ)−1 J(γ, Ω) Θ(Ω) (2.7.4)

for all γ ∈ Γ and Ω ∈ Hn.

Proof. For any γ ∈ Γ and Ω ∈ Hn, according to the assumptions (2.7.1) and
(2.7.2), we obtain
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Θ(γ ·Ω) =
〈
θ, Fγ·Ω

〉

=
〈
θ, ψ(γ)−1 J(γ, Ω)π(γ)FΩ

〉

= ψ(γ)−1J(γ,Ω)
〈
θ, π(γ)FΩ

〉

= ψ(γ)−1 χ(γ)−1 J(γ,Ω)
〈
θ, FΩ

〉

= ψ(γ)−1 χ(γ)−1 J(γ,Ω)Θ(Ω).

¤
Now for a positive definite real symmetric matrixM of degree m, we define

the holomorphic function ΘM : Hn −→ C by

ΘM(Ω) :=
∑

ξ∈Z(m,n)

e2 π i σ(Mξ Ω tξ ), Ω ∈ Hn. (2.7.5)

Theorem 29. Let 2M be a symmetric positive definite, unimodular even
integral matrix of degree m. Then for any γ ∈ Γn, the function ΘM satisfies
the functional equation

ΘM(γ ·Ω) = ρM(γ) Jm(γ,Ω)ΘM(Ω), Ω ∈ Hn, (2.7.6)

where ρM is a character of Γ with |ρM(γ)|8 = 1 for all γ ∈ Γn and Jm :
Sp(n,R)×Hn −→ C∗1 is the automorphic factor for Sp(n,R) on Hn defined
by the formula (2.4.2) in Section 2.4.

Proof. For an element γ =
(

A B
C D

)
∈ Γn and Ω ∈ Hn, we put

Ω∗ = γ ·Ω = (AΩ + B)(CΩ + D)−1.

We define the linear functional ϑ on L2
(
R(m,n)

)
by

ϑ(f) = 〈ϑ, f〉 :=
∑

ξ∈Z(m,n)

f(ξ), f ∈ L2
(
R(m,n)

)
.

We note that ΘM(Ω) = ϑ
(
F

(M)
Ω

)
. Since F (M) is a covariant map for the

Weil representation ωM with respect to the automorphic factor Jm by The-
orem 16, according to Lemma 43, it suffices to prove that ϑ is semi-invariant
for ωM under the action of Γn, in other words, ϑ satisfies the following semi-
invariance relation

〈
ϑ,RM(γ)F (M)

Ω

〉
= ρM(γ)−1

〈
ϑ, F

(M)
Ω

〉
(2.7.7)

for all γ ∈ Γn and Ω ∈ Hn.

We see that the following elements
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tβ =
(

In β
0 In

)
with any β = tβ ∈ Z(n,n),

dα =
(

tα 0
0 α−1

)
with any α ∈ GL(n,Z),

σn =
(

0 −In

In 0

)

generate the Siegel modular group Γn. Therefore it suffices to prove the semi-
invariance relation (2.7.7) for the above generators of Γn.

Case I. γ = tβ with β = tβ ∈ Z(n,n).

In this case, we have

Ω∗ = Ω + β and Jm(γ,Ω) = 1.

According to the covariance relation (2.4.4) in Section 2.4, we obtain

〈
ϑ,RM(γ)F (M)

Ω

〉

=
〈
ϑ, Jm(γ, Ω)−1F

(M)
γ·Ω

〉

=
〈
ϑ, F

(M)
Ω+β

〉

=
∑

ξ∈Z(m,n)

F
(M)
Ω+β(ξ)

=
∑

ξ∈Z(m,n)

e2 π i σ(M ξ (Ω+β) tξ))

=
∑

ξ∈Z(m,n)

e2 π i σ(M ξ Ω tξ) · e2 π i σ(M ξ β tξ)

=
∑

ξ∈Z(m,n)

e2 π i σ(M ξ Ω tξ)

=
〈
ϑ, F

(M)
Ω

〉
.

Here we used the fact that 2 σ(M ξ β tξ) is an even integer because 2M
is even integral. We put ρM(γ) = ρM

(
tβ

)
= 1 for all β = tβ ∈ Z(n,n).

Therefore ϑ satisfies the semi-invariance relation (2.7.7) in the case γ = tβ
with β = tβ ∈ Z(n,n).

Case II. γ = dα with α ∈ GL(n,Z).
In this case, we have

Ω∗ = tα Ω α and Jm(dα, Ω) = (det α)−
m
2 .

According to the covariance relation (2.4.4) in Section 2.4, we obtain
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〈
ϑ,RM(γ)F (M)

Ω

〉
with γ = dα

=
〈
ϑ, Jm(γ,Ω)−1F

(M)
γ·Ω

〉

= (det α)
m
2

〈
ϑ, F

(M)
tα Ω α

〉

= (det α)
m
2

∑

ξ∈Z(m,n)

F
(M)
tα Ω α(ξ)

= (det α)
m
2

∑

ξ∈Z(m,n)

e2 π i σ(M ξ tα Ω α tξ)

= (det α)
m
2

∑

ξ∈Z(m,n)

e2 πi σ{M((ξ tα) Ω t(ξ tα))}

= (det α)
m
2

〈
ϑ, F

(M)
Ω

〉
.

Here we put ρM(dα) = (detα)−
m
2 . Therefore ϑ satisfies the semi-invariance

relation (2.7.7) in the case γ = dα with α ∈ GL(n,Z).

Case III. γ = σn =
(

0 −In

In 0

)
.

In this case, we have

Ω∗ = −Ω−1 and Jm(σn, Ω) =
(
detΩ

)m
2 .

In the process of the proof of Theorem 16, using Lemma 34, we already
showed that

∫

R(m,n)
e2 π i σ(M(y Ω ty + 2 y tx))dy (2.7.8)

=
(
detM)−n

2

(
det

2 Ω

i

)−m
2

e−2 π i σ(M x Ω−1 tx).

By Formula (2.7.8), we obtain

F̂
(M)
Ω (2Mx) =

∫

R(m,n)
F

(M)
Ω (y) e−2 π i σ(y t(2M x)) dy

=
∫

R(m,n)
e2 π i σ(M y Ω ty) · e−4 π i σ(M y tx) dy

=
∫

R(m,n)
e2 π i σ{M(y Ω ty + 2 y t(−x))} dy

= (detM)−
n
2

(
det

2 Ω

i

)−m
2

e−2 π i σ(M (−x) Ω−1 t(−x))

= (detM)−
n
2

(
det

2 Ω

i

)−m
2

e−2 π i σ(M x Ω−1 tx).
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Thus we obtain

F̂
(M)
Ω (2Mx) =

(
detM)−n

2

(
det

2 Ω

i

)−m
2

e−2 π i σ(M x Ω−1 tx), (2.7.9)

where f̂ is the Fourier transform of f defined by

f̂(x) =
∫

R(m,n)
f(y) e−2 π i σ(y tx) dy, x ∈ R(m,n).

We prove the Poisson summation formula in our setting.

Lemma 44. Let f be an element in L2
(
R(m,n)

)
. Then

∑

ξ∈Z(m,n)

f̂(ξ) =
∑

ξ∈Z(m,n)

f(ξ). (2.7.10)

Proof. We define

h(x) =
∑

ξ∈Z(m,n)

f(x + ξ), x ∈ R(m,n). (2.7.11)

We see that h(x) is periodic in xij with period 1, where x = (xij) is a
coordinate in R(m,n). Thus h(x) has the following Fourier series

h(x) =
∑

ξ∈Z(m,n)

cξ e2 π i σ(x tξ), (2.7.12)

where

cξ =
∫ 1

0

· · ·
∫ 1

0

h(x) e−2 π i σ(x tξ) dx

=
∫ 1

0

· · ·
∫ 1

0

∑

ξ∈Z(m,n)

f(x + ξ) e−2 π i σ(x tξ) dx

=
∫

R(m,n)
f(x) e−2 π i σ(x tξ) dx = f̂(ξ).

Here we interchanged summation and integration, and made a change of
variables replacing x + ξ by x to obtain the above equality.
By the definition (2.7.11), we have

h(0) =
∑

ξ∈Z(m,n)

f(ξ).

On the other hand, from Formula (2.7.12), we get
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h(0) =
∑

ξ∈Z(m,n)

cξ =
∑

ξ∈Z(m,n)

f̂(ξ).

Therefore we obtain the Poisson summation formula (2.7.10). ¤
According to the covariance relation (2.4.4) in Section 2.4, Formula (2.7.9)

and Poisson summation formula, we obtain

〈
ϑ,RM(γ)F (M)

Ω

〉
with γ = σn

=
〈
ϑ, Jm(γ,Ω)−1F

(M)
γ·Ω

〉

= Jm(γ,Ω)−1
〈
ϑ,F

(M)
−Ω−1

〉

= (det Ω)−
m
2

∑

ξ∈Z(m,n)

e−2 π i σ(M ξ Ω−1 tξ)

= (det Ω)−
m
2
(
detM)n

2

(
det

2 Ω

i

)m
2 ∑

ξ∈Z(m,n)

F̂
(M)
Ω (2M ξ)

( by Formula (2.7.9))

=
(
det 2M)n

2

(
det

In

i

)m
2 ∑

ξ∈Z(m,n)

F̂
(M)
Ω (ξ)

( because 2M is unimodular))

=
(

det
In

i

)m
2 ∑

ξ∈Z(m,n)

F
(M)
Ω (ξ) ( by Poisson summation formula)

= (−i)
mn
2

〈
ϑ, F

(M)
Ω

〉

= (−i)
mn
2

〈
ϑ, F

(M)
Ω

〉
.

We put ρM(σn) = (−i)−
mn
2 . Therefore ϑ satisfies the semi-invariance relation

(2.7.7) in the case γ = σn. The proof of Case III is completed. Since Jm is
an automorphic factor for Sp(n,R) on Hn, we see that if the formula (2.7.6)
holds for two elements γ1, γ2 in Γ , then it holds for γ1γ2. Finally we complete
the proof of Theorem 29. ¤

Remark 8. For a symmetric positive definite integral matrixM such that 2M
is not unimodular even integral, we obtain a similar transformation formula
like (2.7.6). If m is odd, ΘM(Ω) is a modular form of a half-integral weight
m
2 and index M

2 with respect to a suitable arithmetic subgroup ΓΘ,M of Γn

and a suitable character ρM of ΓΘ,M.
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2.8 Spectral Theory on the Abelian Variety

We recall the Jacobi group (cf. Section 2.3)

GJ = Sp(n,R)nH
(n,m)
R

which is the semidirect product of Sp(n,R) and H
(n,m)
R endowed with the

following multiplication law
(
M, (λ, µ, κ)

)(
M ′, (λ′, µ′, κ′)

)
=

(
MM ′, (λ̃+λ′, µ̃+µ′, κ+κ′+λ̃ tµ′−µ̃ tλ′)

)

with M,M ′ ∈ Sp(n,R), (λ, µ, κ), (λ′, µ′, κ′) ∈ H
(n,m)
R and (λ̃, µ̃) = (λ, µ)M ′.

Then GJ acts on Hn × C(m,n) transitively by
(
M, (λ, µ, κ)

) · (Ω, Z) (2.8.1)

=
(
(AΩ + B)(CΩ + D)−1, (Z + λΩ + µ)(CΩ + D)−1

)
,

where M =
(

A B
C D

)
∈ Sp(n,R), (λ, µ, κ) ∈ H

(n,m)
R and (Ω,Z) ∈ Hn×C(m,n).

We note that the Jacobi group GJ is not a reductive Lie group and also that
the space Hn × C(m,n) is not a symmetric space. We refer to [50]-[56] and
[58] about automorphic forms on GJ and topics related to the content of this
book.

From now on, for brevity, we write

Hn,m := Hn × C(m,n).

Hn,m is called the Siegel-Jacobi space of degree n and index m.

We let
Γn,m := Γn nH

(n,m)
Z

be the discrete subgroup of GJ , where

H
(n,m)
Z =

{
(λ, µ, κ) ∈ H

(n,m)
R

∣∣ λ, µ ∈ Z(m,n), κ ∈ Z(m,m)
}

.

Let Ekj be the m × n matrix with entry 1 where the k-th row and the j-th
colume meet, and all other entries 0. For an element Ω ∈ Hn, we set for
brevity

Fkj(Ω) := EkjΩ, 1 ≤ k ≤ m, 1 ≤ j ≤ n. (2.8.2)

For each Ω ∈ Fn, we define a subset PΩ of C(m,n) by
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PΩ =





m∑

k=1

n∑

j=1

λkjEkj +
m∑

k=1

n∑

j=1

µkjFkj(Ω)
∣∣∣ 0 ≤ λkj , µkj ≤ 1



 .

For each Ω ∈ Fn, we define the subset DΩ of Hn,m by

DΩ := { (Ω, Z) ∈ Hn,m | Z ∈ PΩ } .

We define
Fn,m := ∪Ω∈Fn

DΩ .

Theorem 30. Fn,m is a fundamental domain for Γn,m\Hn,m.

Proof. Let (Ω̃, Z̃) be an arbitrary element of Hn,m. We must find an element
(Ω,Z) of Fn,m and an element γJ = (γ, (λ, µ; κ)) ∈ Γn,m with γ ∈ Γn such
that γJ ·(Ω, Z) = (Ω̃, Z̃). Since Fn is a fundamental domain for Γn\Hn, there
exists an element γ of Γn and an element Ω of Fn such that γ ·Ω = Ω̃. Here
Ω is unique up to the boundary of Fn.

We write

γ =
(

A B
C D

)
∈ Γn.

It is easy to see that we can find λ, µ ∈ Z(m,n) and Z ∈ PΩ satisfying the
equation

Z + λΩ + µ = Z̃(CΩ + D).

If we take γJ = (γ, (λ, µ; 0)) ∈ Γn,m, we see that γJ · (Ω,Z) = (Ω̃, Z̃).
Therefore we obtain

Hn,m = ∪γJ∈Γn,m
γJ · Fn,m.

Let (Ω,Z) and γJ · (Ω, Z) be two elements of Fn,m with γJ = (γ, (λ, µ; κ)) ∈
Γn,m. Then both Ω and γ ·Ω lie in Fn. Therefore both of them either lie in
the boundary of Fn or γ = ±I2n. In the case that both Ω and γ ·Ω lie in the
boundary of Fn, both (Ω,Z) and γJ · (Ω,Z) lie in the boundary of Fn,m. If
γ = ±I2n, we have

Z ∈ PΩ and ± (Z + λΩ + µ) ∈ PΩ , λ, µ ∈ Z(m,n). (2.8.3)

From the definition of PΩ and (2.8.3), we see that either λ = µ = 0, γ 6= −I2n

or both Z and ±(Z + λΩ + µ) lie on the boundary of the parallelepiped
PΩ . Hence either both(Ω,Z) and γJ · (Ω, Z) lie in the boundary of Fn,m or
γJ = (I2n, (0, 0; κ)) ∈ Γn,m. Consequently Fn,m is a fundamental domain for
Γn,m\Hn,m. ¤

For a coordinate (Ω, Z) ∈ Hn,m with Ω = (ωµν) ∈ Hn and Z = (zkl) ∈
C(m,n), we put



2.8 Spectral Theory on the Abelian Variety 145

Ω =X + iY, X = (xµν), Y = (yµν) real,
Z =U + iV, U = (ukl), V = (vkl) real,

dΩ =(dωµν), dX = (dxµν), dY = (dyµν),
dZ =(dzkl), dU = (dukl), dV = (dvkl),

dΩ =(dωµν), dZ = (dz̄kl),

∂

∂Ω
=

(
1 + δµν

2
∂

∂ωµν

)
,

∂

∂Ω
=

(
1 + δµν

2
∂

∂ωµν

)
,

∂

∂Z
=




∂
∂z11

. . . ∂
∂zm1

...
. . .

...
∂

∂z1n
. . . ∂

∂zmn


 ,

∂

∂Z
=




∂
∂z11

. . . ∂
∂zm1

...
. . .

...
∂

∂z1n
. . . ∂

∂zmn


 .

Remark 9. The following metric

ds2
n,m = σ

(
Y −1dΩ Y −1dΩ

)
+ σ

(
Y −1 tV V Y −1dΩ Y −1dΩ

)

+ σ
(
Y −1 t(dZ) dZ

)

− σ
(
V Y −1dΩ Y −1 t(dΩ) + V Y −1dΩ Y −1 t(dZ)

)

is a Kähler metric on Hn,m which is invariant under the action (2.8.1) of the
Jacobi group GJ . Its Laplacian is given by

∆n,m = 4 σ

(
Y

t(
Y

∂

∂Ω

)
∂

∂Ω

)
+ 4 σ

(
Y

∂

∂Z

t( ∂

∂Z

))

+ 4 σ

(
V Y −1 tV

t(
Y

∂

∂Z

)
∂

∂Z

)

+ 4 σ

(
V

t(
Y

∂

∂Ω

)
∂

∂Z

)
+ 4σ

(
tV

t(
Y

∂

∂Z

)
∂

∂Ω

)
.

The following differential form

dvn,m = ( det Y )−(n+m+1) [dX] ∧ [dY ] ∧ [dU ] ∧ [dV ]

is a GJ -invariant volume element on Hn,m, where

[dX] =
∧

µ≤ν

dxµν , [dY ] =
∧

µ≤ν

dyµν , [dU ] =
∧

k,l

dukl and [dV ] =
∧

k,l

dvkl.

The point is that the invariant metric ds2
n,m and its Laplacian are beautifully

expressed in terms of the trace form. The above facts were proved by the
author in [48]. We also refer to [49] for the action of the Jacobi group GJ on
the Siegel-Jacobi disk Dn × C(m,n).
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We fix two positive integers m and n throughout this section.
For an element Ω ∈ Hn, we set

LΩ := Z(m,n) + Z(m,n)Ω

We use the notation (2.8.2). It follows from the positivity of ImΩ that the
elements Ekj , Fkj(Ω) (1 ≤ k ≤ m, 1 ≤ j ≤ n) of LΩ are linearly independent
over R. Therefore LΩ is a lattice in C(m,n) and the set

{Ekj , Fkj(Ω) | 1 ≤ k ≤ m, 1 ≤ j ≤ n }

forms an integral basis of LΩ . We see easily that if Ω is an element of Hn,
the period matrix Ω[ := (In, Ω) satisfies the Riemann conditions (RC.1) and
(RC.2) :

(RC.1) Ω[ Jn
tΩ[ = 0 ;

(RC.2) − 1
i Ω[ Jn

tΩ[ > 0.

Thus the complex torus AΩ := C(m,n)/LΩ is an abelian variety. For more
details on AΩ , we refer to [14] and [27].

It might be interesting to investigate the spectral theory of the Laplacian
∆n,m on a fundamental domain Fn,m. But this work is very complicated and
difficult at this moment. It may be that the first step is to develop the spectral
theory of the Laplacian ∆Ω on the abelian variety AΩ . The second step will
be to study the spectral theory of the Laplacian ∆∗ (see (2.2.2) in Section
2.2) on the moduli space Γn\Hn of principally polarized abelian varieties of
dimension g. The final step would be to combine the above steps and more
works to develop the spectral theory of the Lapalcian ∆n,m on Fn,m. In this
section, we deal only with the spectral theory ∆Ω on L2(AΩ).

We fix an element Ω = X +i Y of Hn with X = Re Ω and Y = ImΩ. For a
pair (A,B) with A,B ∈ Z(m,n), we define the function EΩ;A,B : C(m,n) −→ C
by

EΩ;A,B(Z) = e2πi(σ ( tAU )+ σ ((B−AX)Y −1 tV )),

where Z = U + iV is a variable in C(m,n) with real U, V .

Lemma 45. For any A,B ∈ Z(m,n), the function EΩ;A,B satisfies the follow-
ing functional equation

EΩ;A,B(Z + λΩ + µ) = EΩ;A,B(Z), Z ∈ C(m,n)

for all λ, µ ∈ Z(m,n). Thus EΩ;A,B can be regarded as a function on AΩ .

Proof. We write Ω = X + iY with real X, Y. For any λ, µ ∈ Z(m,n), we have
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EΩ;A,B(Z + λΩ + µ) = EΩ;A,B((U + λX + µ) + i(V + λY ))

= e2πi{σ ( tA(U+λX+µ))+ σ ((B−AX)Y −1 t(V +λY ))}

= e2πi{σ ( tAU+ tAλX+ tAµ)+ σ ((B−AX)Y −1 tV +B tλ−AX tλ)}

= e2πi{σ ( tAU) + σ ((B−AX)Y −1 tV )}
= EΩ;A,B(Z).

Here we used the fact that tAµ and B tλ are integral. ¤

Lemma 46. The metric

ds2
Ω = σ

(
(Im Ω)−1 t(dZ) dZ)

)

is a Kähler metric on AΩ invariant under the action (18.1) of Γ J =
Sp(n,Z)nH

(n,m)
Z on (Ω,Z) with Ω fixed. Its Laplacian ∆Ω of ds2

Ω is given
by

∆Ω = σ

(
(Im Ω)

∂

∂Z

t( ∂

∂Z

))
.

Proof. Let γ̃ = (γ, (λ, µ; κ)) ∈ Γ J with γ =
(

A B
C D

)
∈ Sp(n,Z) and (Ω̃, Z̃) =

γ̃ · (Ω, Z) with Ω ∈ Hn fixed. Then according to [23, p. 33],

Im γ ·Ω = t(CΩ + D)−1 Im Ω (CΩ + D)−1

and
dZ̃ = dZ (CΩ + D)−1.

Therefore

(Im Ω̃)−1 t(dZ̃) dZ̃

= (CΩ + D) (Im Ω)−1 t(CΩ + D) t(CΩ + D)−1 t(dZ) dZ (CΩ + D)−1

= (CΩ + D) (Im Ω)−1 t(dZ) dZ (CΩ + D)−1.

The metric dsiIn = σ(dZ t(dZ)) at Z = 0 is positive definite. Since GJ acts
on Hn,m transitively, ds2

Ω is a Riemannian metric for any Ω ∈ Hn. We note
that the differential operator ∆Ω is invariant under the action of Γ J . In fact,

∂

∂Z̃
= (CΩ + D)

∂

∂Z
.

Hence if f is a differentiable function on AΩ , then
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Im Ω̃
∂

∂Z̃

t( ∂f

∂Z̃

)

= t(CΩ + D)−1 (Im Ω) (CΩ + D)−1(CΩ + D)
∂

∂Z

t(
(CΩ + D)

∂f

∂Z

)

= t(CΩ + D)−1 Im Ω
∂

∂Z

t( ∂f

∂Z

)
t(CΩ + D).

Therefore

σ

(
Im Ω̃

∂

∂Z̃

t( ∂

∂Z̃

))
= σ

(
Im Ω

∂

∂Z

t( ∂f

∂Z

))
.

By the induction on m, we can compute the Laplacian ∆Ω . ¤

We let L2(AΩ) be the space of all functions f : AΩ −→ C such that

||f ||Ω :=
∫

AΩ

|f(Z)|2dvΩ ,

where dvΩ is the volume element on AΩ normalized so that
∫

AΩ
dvΩ = 1.

The inner product ( , )Ω on the Hilbert space L2(AΩ) is given by

(f, g)Ω :=
∫

AΩ

f(Z) g(Z) dvΩ , f, g ∈ L2(AΩ). (2.8.4)

Theorem 31. The set
{

EΩ;A,B | A,B ∈ Z(m,n)
}

is a complete orthonormal
basis for L2(AΩ). Moreover we have the following spectral decomposition of
∆Ω:

L2(AΩ) = ⊕A,B∈Z(m,n)C · EΩ;A,B .

Proof. Let

T = C(m,n)
/(
Z(m,n) × Z(m,n)

)
=

(
R(m,n) × R(m,n)

)/(
Z(m,n) × Z(m,n)

)

be the torus of real dimension 2mn. The Hilbert space L2(T ) is isomorphic
to the 2 mn tensor product of L2(R/Z), where R/Z is the one-dimensional
real torus. Since L2(R/Z) = ⊕k∈ZC · e2πikx, the Hilbert space L2(T ) is

L2(T ) = ⊕A,B∈Z(m,n)C · EA,B(W ),

where W = P + iQ, P,Q ∈ R(m,n) and

EA,B(W ) := e2πi σ( tAP+ tBQ), A, B ∈ Z(m,n).

The inner product on L2(T ) is defined by
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(f, g) :=
∫ 1

0

· · ·
∫ 1

0

f(W ) g(W ) dp11 · · · dpmndq11 · · · dqmn, (2.8.5)

where f, g ∈ L2(T ), W = P + iQ ∈ T, P = (pkl) and Q = (qkl). Then we
see that the set {

EA,B(W ) | A,B ∈ Z(m,n)
}

is a complete orthonormal basis for L2(T ), and each EA,B(W ) is an eigen-
function of the standard Laplacian

∆T =
m∑

k=1

n∑

l=1

(
∂2

∂p2
kl

+
∂2

∂q2
kl

)
.

We define the mapping ΦΩ : T −→ AΩ by

ΦΩ(P + iQ) = (P + QX) + iQY, (2.8.6)

where P + iQ ∈ T, P,Q ∈ R(m,n). This is well defined. We can see that ΦΩ

is a diffeomorphism and that the inverse Φ−1
Ω of ΦΩ is given by

Φ−1
Ω (U + i V ) = (U − V Y −1X) + i V Y −1, (2.8.7)

where U + i V ∈ AΩ , U, V ∈ R(m,n). Using (2.8.7), we can show that for
A,B ∈ Z(m,n), the function EA,B(W ) on T is transformed to the function
EΩ;A,B on AΩ via the diffeomorphism ΦΩ . Using (2.8.5) and the diffeomor-
phism ΦΩ , we can choose a normalized volume element dvΩ on AΩ and then
we get the inner product on L2(AΩ) defined by (2.8.4). This completes the
proof. ¤
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