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Preface

A certain nilpotent Lie group plays an important role in the study of the
foundations of quantum mechanics (cf. [30] and [41]) and the study of theta
functions (see [4], [5], [14], [27], [28], [31], [39], [42], [43], [44] and [46]).

For any positive integers m and n, we consider the Heisenberg group
Hﬂ(gn’m) = { A\ k)| A e R i e ROW™) g 400 Symmetric}
endowed with the following multiplication law
Ay k) o (N sk = N+ N p+p k+ K+ X — ).
We let
Hén’m) = { (A, 1, k) € Hﬂ%n’m) | A€ Zm™ | g e Ztmm) }

be the discrete subgroup of Hﬂ({b’m). The Heisenberg group Hﬂ(gn’m)

ded in the symplectic group Sp(m + n,R) via the mapping

is embed-

I, 0 0 tu
A 5 () | o T € Sp(m +n, R).
0

A [T
0 I, —t\
0 0 I,
This Heisenberg group is a 2-step nilpotent Lie group and is important in
the study of smooth compactification of the Siegel modular variety. In fact,
Hﬂ({b’m) is obtained as the unipotent radical of the parabolic subgroup of the
rational boundary component F,, ( cf. [6] pp. 122-123, [29] p. 21 or [52] p. 36). In

the case m = 1, the study on this Heisenberg group was done by many
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mathematicians, e.g., P. Cartier [4], J. Igusa[14], D. Mumford [27], [28] and
many analysts(cf. [2]) explicitly. For the case m > 1, the multiplication law
is a little different from that of the Heisenberg group which is usually known
and needs much more complicated computation than the case m = 1.

The aim of this book is to investigate the Heisenberg group Hﬂén’m) in more
detail and understand its relation to theta functions and the Weil representa-
tion. In the previous papers [42], [43] and [44], the author decomposed the L2-

space L? (Hén’m)\Hﬂ({L’mv with respect to the right regular representation of

Hﬂ({L’m) explicitly and related the study of Hﬂ(gn’m) to that of theta functions.

We need to investigate Hﬂ({"’m) for the study of Jacobi forms ( cf. [52], [58]), the
study of harmonic analysis on the Jacobi group and degeneration of abelian
varieties ( cf. [6].

This book is organized as follows. The book consists of two chapters. In
Section 1.1, we introduce the Heisenberg group Hﬂ({{n’m) which will be inves-
tigated in the subsequent sections. And we find the Lie algebra of HD(Q”’m)

and obtain the commutation relation for Hﬂgn’m). In Section 1.2, we give an
explicit description of theta functions due to J. Igusa (cf. [14] or [27]) and

identify the theta functions with the smooth functions on HH(J"”) satisfying
some conditions. The results of this section will be used later. In Section
1.3, using the Mackey decomposition of a locally compact group (cf.[24]),
we introduce the induced representations of Hﬂg{n’m) and compute the unitary
dual of Hﬂgn’m). In Section 1.4, we realize the Schrodinger representation of
Hﬂ({wn) as the the representation of H]én’m) induced by the one-dimensional
unitary character of a certain subgroup of HH(J’"L). In Section 1.5, we con-

sider the Fock representation (U F ’M,'HR M) of Hﬂgn’m). We prove that for
a positive definite symmetric half-integral matrix M of degree m, UM is
unitarily equivalent to the Schrédinger representation UM, We also find an
orthonormal basis for the representation space Hr aq. This section is mainly
based on the papers [31, 32, 45]. In Section 1.6, we prove that for any positive
definite symmetric, half-integral matrix of degree m, the lattice representa-
tion maq of Hﬂ({l’m) is unitarily equivalent to the (det 2M )™-multiples of
the Schrodinger representation US*M. We give a relation between the lat-
tice representation ma¢ and theta functions. This section is based on the
paper [46]. In Section 1.7, we find the coadjoint orbits of Hﬂ({l’m). And we
describe explicitly the connection between the coadjoints orbits and the irre-
ducible unitary representations of H{"™ following the work of A. Kirillov ( cf.
[16],[17]) and [18] ). In Section 1.8, considering the Schrédinger representation
(US’I"", L? (R(m’"), d§) ) , we study the Hermite operators and the Hermite
functions. We prove that Hermite functions defined in this section form an
orthonormal basis for L? (R(m’"), df) and eigenfunctions for Hermite opera-
tors, the Fourier transform and the Fourier cotransform. We mention that
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Hermitian functions are used to construct non-holomorphic modular forms
of half-integral weight ( cf. [43] ). Implicitly the study of the Heisenberg group
Hﬂgn’m) implies that the confluent hypergeometric equations (in this case, the

Hermite equations) are related to the study of automorphic forms. In Section
1.9, we investigate the irreducible components of L? (Hén’m)\Hﬂ(Qn’m)). We

describe the connection among these irreducible components, the Schrédinger
representations, the Fock representations and the lattice representations ex-
plicitly. We also provide the orthonormal bases for these representation spaces
respectively. A decomposition of L?(I"\G) for a general nilpotent Lie group
G and a discrete subgroup I' of G was investigated by C. C. Moore ( cf. [26]).

In Section 2.1, we briefly review the symplectic group and its action on
the Siegel upper half plane to be needed in the subsequent sections. We con-
struct the universal covering group of the symplectic group. In Section 2.2, we
present some properties of the geometry on the Siegel upper half plane which
are used in the subsequent sections. In Section 2.3, we study the Weil repre-
sentation associated to a positive definite symmetric real matrix of degree m.
We describe the explicit actions for the Weil representation. We review the
results on the Weil representation which were obtained by Kashiwara and
Vergne [15]. In Section 2.4, we construct the covariant maps for the Weil rep-
resentation. In Section 2.5, we review various type of theta series associated
to quadratic forms. In Section 2.6, we discuss the theta series with harmonic
coefficients. Pluriharmonic polynomials play an important role in the study
of the Weil representation. We prove that the theta series with pluriharmonic
polynomials as coefficients are a modular form for a suitable congruence sub-
group of the Siegel modular group. This section is mainly based on the book
[28] which dealt with the case m = 1. In Section 2.7, we investigate the re-
lation between the Weil representation and the theta series. We construct
modular forms using the covariant maps for the Weil representation. In Sec-
tion 2.8, we discuss the spectral theory on the principally polarized abelian
variety Ag, attached to an element {2 of the Siegel upper half plane. We de-
compose the L2-space of A into irreducibles explicitly. We refer to [47] for
more detail.

I want to mention that a Heisenberg group was paid to an attention by
some differential geometers, e.g., M. L. Gromov, in the sense of a parabolic
geometry. A Heisenberg group is regarded as a principal fibre bundle over
an Euclidean space with a vector space or a circle as fibres and may be also
regarded as the boundary of a complex ball. The geometry of this group is
quite different from that of an Euclidean space. We refer to the interesting
paper [5] of P. Deligne.

Professor Dr. Friedrich Hirzebruch passed away on May 27, 2012. I would
like to send my condolences for his death. He was very kind to me during my
stay at MPIM, Bonn. I dedicate this book to him. Finally I hope that this
book will be very useful in the study of the theory of harmonic analysis on
the Siegel-Jacobi space.
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Notations: We denote by Z, R and C the ring of integers, the field of real
numbers, and the field of complex numbers respectively. C* denotes the
multiplicative group consisting of all nonzero complex numbers. C; denotes
the multiplicative group consisting of all complex numbers z with |z| = 1.
Sp(n,R) denotes the symplectic group of degree n. H,, denotes the Siegel
upper half plane of degree n. The symbol “:=” means that the expression
on the right is the definition of that on the left. We denote by ZT the set of
all positive integers. F(*!) denotes the set of all k x | matrices with entries
in a commutative ring F. For any M € F*! )M denotes the transpose of
a matrix M. For a complex matrix A, A denotes the complex conjugate of
A. The diagonal matrix with entries aq,--- ,a, on the diagonal position is
denoted by diag(ay,--- ,a,). For A € F(**)  o(A) denotes the trace of A.
For A € F(®) and B € F(*F) | we set B[A] = YABA. I, denotes the identity
matrix of degree k. For a positive integer m, Sym (m, K) denotes the vector
space consisting of all symmetric m X m matrices with entries in a commuta-
tive ring K. If H is a complex matrix or a complex bilinear form on a complex
vector space, Re H and Im H denote the real part of H and the imaginary
part of H respectively. If X is a space, S(X), C(X) and C°(X) denotes
the Schwarz space of infinitely differentiable functions on X that are rapidly
decreasing at infinity, the space of all continuous functions on X and the vec-
tor space consisting of all compactly supported and infinitely differentiable
functions on X respectively. We inroduce the following notations:

Z{m™ = { J = (Jpa) € Z™™ | Jiw >0 for all k,a} :
=" Jha for J = (Jra) € 285",
k,a B
J:l:Eka :(J117"' 7Jka:l:17"' aJmn)a
J =il Jga! o Tl
For &€ = (£4q) € R™™ or C™™) and J = (Jia) € Zgg’n), we denote

€J _¢Jinediz | edka  ¢Tmn
— 511 S12 ka mn *
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U(X), AT, A™, Chp> Akp, bip

Aq Aa
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!%), @%), Agp, Hy€), Irman, HFY {0 ] (£2]-),

R(e)
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Chapter 2 Theta Functions and the Weil Representation
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, dMg, To(H,), (V,B), L*, Sp(B), 7(L1, L, L), A,
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L., Sp(B)«, &, #(&,La), (V,¢), 8(A), gL, LT, s1(9),
6((L1,€1),(L2,€2)), 5((L1,51),(L2,52)), Sy Sp(B)x,
c«(91,92), ¥(g,n), Mp(B)
SECTION 2.2: ds?, dv,, R(2,%21), p(2,$21), D,,, ¥, T, G., SU(n,n),
Pt K,, ds?, A,, K, sp(n,R), &, p, ¢, 6, T,, Pol(T,),
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$¢(M), Sp(n,R), Mp(n,R), we, tp, da, on, Te(tp),
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Apmy From, Aq, L*(Ag), InQ, Eg.ap(Z), dsb, T/,
Hgl’m), fll2, dva, (f,9)0. L*(T), Eas(W), Ar, &g



Chapter 1
Heisenberg Groups

1.1 The Heisenberg Group Hﬂ(gn’m)

For any two positive integer m and n, we let

Hug”’m) = { (\ p, K) ’ A\ pe R g e ROW™ g4I\ symmetric }
be the Heisenberg group endowed with the following multiplication law

(A, 1y &) © (Xo, o, o) = (X + Ao, o+ o, k4 Ko+ Ao — o). (1.1.1)

We observe that Hn%n’m) is a 2-step nilpotent Lie group. It is easy to see that

the inverse of an element (A, u, k) € Hﬂ%n’m) is given by
k)™= (=X =g, =k + A — pA).
Now we put
[N, 6] = (0, 11, k) 0 (A, 0,0) = (N, i, 5 — pN). (1.1.2)

Then Hﬂ({“m) may be regarded as a group equipped with the following mul-
tiplication

[\, 11, 6] © [Ao, fo, ko] = [A + Ao, i+ po, &+ Ko + Ao 4+ o Al (1.1.3)
The inverse of [\, u, k| € HH({"’m) is given by
I\, 6] = [N, =, —k + X4 A
We set

A= { 0,1, 6] € H"™ | p e RO g = b € RO } . (1.1.4)
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Then A is a commutative normal subgroup of Hﬂ%n’m). Let A be the Pontraja-
gin dual of A, i.e., the commutative group consisting of all unitary characters
of A. Then A is isomorphic to the additive group R("™™ x Sym (m,R) via

<(l, &> — eQwio(ﬁHH—%H)? a = [O’M, H] cA, a= ([L, ,%) € ,Zl\ (1.1.5)

We put
S = { \,0,0] € H{™™ ‘ A € ROm) } ~ R(mm), (1.1.6)
Then S acts on A as follows:
ax([0, 1, 6]) = [0, i, 5 + A+ ],  ax=[)0,0] €S. (1.1.7)
)

It is easy to see that the Heisenberg group Hﬂgn’m ,0) is isomorphic to the

semidirect product Gy := § x A of A and § whose multiplication is given
by
(Aa) - (Aoya0) = (A4 Ao a+ an(ag)), A\ €S, a,a0 € A

On the other hand, S acts on A by
ai(a) == (A + 2R\ R), [A0,00€8, a=(ik) e A (1.1.8)

Then we have the relation (ax(a),a) = (a,a}(a)) for alla € A and a € A.

We have two types of S-orbits in A

o~

Type I. Let & € Sym (m,R) with & # 0. The S-orbit of a(k) := (0,%) € A
is given by

05 ={ (2ax 7)€ A4 ‘ Ae R | = RO, (1.1.9)

Type II. Let § € R The S-orbit @y of a(y) := (9,0) is given by

~

Oy ={(4,0)} ={a(®)}. (1.1.10)

We have

- U eul U o

RESym(m,R) JER(mM,n)

as a set. The stabilizer Si of S at a(%) = (0, k) is given by
Si = {0} (1.1.11)

And the stabilizer Sy of S at a(y) = (y,0) is given by

Sy ={ 10,0 A e Rm™M ] =5 = Rimm). (1.1.12)
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The following matrices

000 0
1
Xl?l = 8882(Ekl(;|_Elk) ; 1§k§l§m,
000 0
0 00 O
| Er00 0
Xka.— 0 OO*tEka 9 1§k§m)1§a§n7
0 00 O
00 0 'Ey
S 00ER O
= <[ < <b<
le 00 0 0 s 1_l_m,1_b_n
00 0 O

form a basis of the Lie algebra H]gl’m) of the real Heisenberg group Hﬂ(gl’m).
Here Ej; denotes the m x m matrix with entry 1 where the k-th row and the
I-th column meet, all other entries 0 and FEy, (resp. Ej) denotes the m x n
matrix with entry 1 where the k-th (resp. the I-th) row and the a-th (resp.
the b-th) column meet, all other entires 0. By an easy calculation, we see that
the following vector fields

0
DY i=—— 1<k<
M Ok =r=m
P k
Dyq = - E a + E Ppars— |, 1<k<m, 1<a<n,
8>\;m =1 Hp aHp ki1 P 8 Kkp
Dy = 5 )\pb +p%+l)\pb8l , 1<k<m,1<a<n

form a basis for the Lie algebra of left-invariant vector fields on the Lie group
H™,

Lemma 1. We have the following Heisenberg commutation relations

[ D}y, DY ] =[ DYy, Do ] = [ D}y, D D sa] =0,
[ Dia, Dip ] [kale] 0,
[Dka»ﬁlb] =26, DY),

where 1 < k,l,s,t < m, 1 <a,b<mn and §,, denotes the Kronecker delta
symbol.

Proof. The proof follows from a straightforward calculation. O
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Zy = —V/-1D),, 1<k<Il<m,
1 ~
Vio =5 (Dra+V=1Dra), 1<k<m, 1<a<n,

1 ~
Y};ZZE(le—\/—lle), 1<i<m, 1<b<n.

Then it is easy to see that the vector fields Zp,, kal, Y,, form a basis of the

complexification of the real Lie algebra Hg’m).

Lemma 2. We have the following commutation relations
(Z0, 23] = (20, Yoh) = (20, Yea) = 0,
Yo Y] = Y, Y 1 =0,
[YkaYz;] = ap Z]glv
where 1 < k,l,s,t <m and 1 <a,b<n.
Proof. Tt follows immediately from Lemma 1. O

We let E}, := Ey + By, for 1 <k <1 <m. We put

Ry (r) := exp (QT‘XEZ) =(0,0,7Eg), reR,
Py (x) := exp (sta) = (2Fs,0,0), z€R,
Qu(y) := exp (yXu) = (0,yEw,0), yER,

where 1 < k<l <m, 1<st<mandl < a,b < n. Then these one-
parameter subgroups generate the Heisenberg group Hﬂ(gn’m). They satisfy
the Weyl commutation relations:

Pio(7) 0 Qsa(y) = Qsa(y) © Psa() 0 Rys(zy) (all others commute ),

where ]l <s<mand1l<a<n.

J. von Neumann [30] and M. Stone [38] proved the following uniqueness
theorem simultaneously and independently.

Theorem 1. Let w1 and ms be two irreducible unitary representations of the
Heisenberg group Hﬂ({“m) such that

71((0,0,k)) = m2((0,0, %)) for all kK = 'k € R™™),
Then w1 is unitarily equivalent to mo.

We omit the proof of the above theorem. We refer to [21] for the proof of
Theorem 1 in the case m = 1 and also to [4] and [28] for more detail.
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1.2 Theta Functions

We fix an element {2 € H,, once and for all. From now on, we put i = y/—1.
Let M be a positive definite, symmetric even integral matrix of degree m. A
holomorphic function f : C(™™) — C satisfying the following equation

FOW 4602+ ) = e ™ oAMERE2EM} pyy 7 e cmm) (1.2.1)

for all £, n € Z™™ is called a theta function of level M with respect to £2.
The set Rj\z,l of all theta functions of level M with respect to {2 is a complex
vector space of dimension (det M)™ with a basis consisting of theta functions

pov) [61] (2,W) = Y emietMOEAZINEA F2WINEAD} - (1.9.9)
Nez(m,n)

where A runs over a complete system of the cosets M—1Z(mm) /7,(m:mn),

Definition 1. Let S be a positive definite, symmetric real matrix of degree
m and let A, B € R("™") We define the theta function

19(5’) |:g:| (Q,W) — Z eTrio{S((N—&-A).Qt(N-l-A)+2(W+B) (N+A))} (123)

NeZ('nL,n)
with characteristic (A, B) converging normally on H,, x C(™™)

We have a general definition of theta functions.

Definition 2. Let V' be a complex vector space and let L C V be a lattice
of V. A theta function on V relative to L is a nonzero holomorphic function
¥ on V satisfying the following condition

YW + §) = QeI y(y),

where Q¢ is a C-linear form on V and c¢ is an element of C, for every W € V/
and & € L.

If ¥ is a theta function on V relative to L, then the mapping Jy : LxXV —
C* defined by

Jg(E, W) = 2mi@cWhtee) e WeV

is easily seen to be an automorphic factor. This means that Jy satisfies the
following condition

Jo(&1 + &, W) = (&, W + &) Jy(&2, W)

for all £1,&; € L and W € V. We observe that for all £1,&; € L and W €V,
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Q§1+§2 (W) T et = Qfl (W + 62) + Q§2 (W) +cey T+ Cey mod Z.

Jy is called the automorphic factor of the theta function ¥ on V relative to L.

Theorem 2. (Igusa[14],p.67). Let J : L x V. — C* be the automorphic
factor of a theta function ¥ on V relative to L. Then there exists a unique

triple (Q,¢,) such that
J(EW) = eﬂ{Q(W7£)+%Q(£7£)+2il(i)}w(g)7 Eel, Wev, (1.2.4)

where

1. Q is a quasi-hermitian form on V x V|
2. the hermitian form H := Her (Q) defined by

H(Wl,Wg) = % {Q(ZWl,WQ) — Q(Wl,iWQ)}, Wi, Wo eV
is a Riemann form with respect to L, that is, H = *H > 0 and (Im H)(L x
L)cCZ,

3. :V — C is a C-linear form on V,

4. 1 is a second degree character of L which is associated with A := Im H,

5. is strongly associated with A.

Remark 1. (4) means that ¢ : L — C7 is a semi-character of L satisfying
the functional equation

(& + &) = M ALY (e (&), &,& € L. ()

Definition 3. A theta function with the automorphic factor of the form
(1.2.4) is called a theta function of type (Q,¢,v). We denote by L(Q,¥,1)
the union of theta functions of type (Q,¢,v) and the constant 0. A theta
function of type (Q,¥¢,1) is said to be normalized if Sym@ = 0 and ¢ = 0.
Here Sym@ : V x V. — C is a symmetric C-linear form on V x V defined
by
1
(SymQ)(z,w) = % {Q(iz,w) + Q(z,iw)}, zweV.

We observe that @@ = Her @ + Sym Q). We note that Sym @ = 0 if and only
if @ = Her@Q = H. We denote by Th(H,1,L) the union of the set of all

normalized theta functions of type (H,0,) and the constant 0. It is easily
seen that if ¢ € Th(H,y, L), for all W € V, £ € L, we have

I(W +¢) = e HWVHE0y () 9(). (1.2.5)

Theorem 3. Let S be a positive definite, symmetric integral matriz of degree
m and let A, B be two mxn real matrices. Then for 2 € H,, and W € C(m™n),
we have
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A

01) 9O [g} (2,-W) =) {_ B

| .w).

0.2) 9 [g} (2, W + A2+ p1)

A4+ A
B+pu

— oo {SQARN+2(WHp) N)} g—2mi0(SB™) | 9(5) [

| @.m)

for all X\, p € R™™),

A

6.3) 9 { B

] (12, W) = emio{S(A2) +2(WHE) M)} () m (2, W+AQ+B).

Moreover, if S is a positive definite, symmetric integral matriz of degree
m, we have

[A + f . t A
(S) — ,2mio(SAM) 9(S)
(04) 9 _B-i-n} (2, W) =e m {B} (2, ).
for all &,n € Z™m),
6.5 9© g} (2,W +£2+1)

_ mio{SEQ12W)} | 2mic{S(A—B'6)}  y(S) [g] (2, W)

for all £&,n € Z™™),

Proof. (6.1) follows immediately from the definition (1.2.3). (6.2) follows im-
mediately from the relation

(N+A)QYN +A) +2(W + A2+ p+ B){(N + A)
=(N+A+NQ(N+A+N)+2W +pu+B)(N+A+N)
—(N+A)Q2N + A2 (N + A) = A2\ = 2(W + p + B) "\

If we put A = B =0 and replace A\, u by A, B in (0.2), then we obtain (6.3).
For &,n € Z(™™ | we have

909 {g i ﬂ (97 W)

_ Z o™i T {S((A+N+E) 2 (A+N+E) + 2 (W+B) (A+N+8)}

NeZ(m,n)
. t . t,
> e27rz¢7{Sn (N+8)} . 627”(7(3 nA)

— (2mio(SA™)  9(S) {g] (2, W).
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Here in the last equality we used the fact that o(Sn(N+¢)) € Z because S is
integral. (6.5) follows from (6.2), (6.4) and the fact that o(Sn%) is integral.
U

For a positve definite, symmetric real matrix S of degree m, {2 € H,, and
A, B € R™™) e put

Xs.2,4,B(§2+n) = xs,0.4,8(1n) = e2rio{S(ATn=BO} (1.2.6)
where &1 € Z™™),
We define
1 _
as.o(W) =50 (SW(2-02)~''w), wectmm (1.2.7)

and also define

Hso(Wi,Wa) = 2i0 (SWi(2 - 2)" 'W,), Wi, WoeCm™M. (1.2.8)

It is easy to check that Hg ¢ is a positive hermitian form on Cclmn)

Lemma 3. For W € C™™) qnd [ € Z(™™) Q 4+ 7201 | we have
as,0(W +1) = gs,0(W) + gs,0(l) + o (SU(2 = 2)"'W) (1.2.9)

and

Hs g (W + él) =0 (S(W+1L)(Ime)~14) (1.2.10)
—2i0 (S(W+1) %),
where | = 02 +n, &n € 7™,
Proof. Tt follows immediately from a straightforward computation. (I

Lemma 4. Let S be a positive definite, symmetric integral matriz of degree
m. For 2 € H,,, we let Lo := 2™ Q + Z(™™) pe the lattice in C™™) . We
define the mapping Vs o : Lo — C7 by

Vo€ +n) =™ ¢ pezimm), (1.2.11)

Then
(a) V3.0 is a second-degree character of Ly associated with Im Hg g.

(b) V5.0 X8,02,A,B 5 a second-degree character of Ly associated with
Im HS7_Q.

Proof. (a) We fix | = €02 +n € Lg with £,1 € Z("™™) . We define f; : Lo —
Cy by
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Ys,o(ly +1)
l) = ——~———~>— |
i) = e o) ¥s0®

It is easy to see that f; is a character of L and hence to see that the map
from Lo x L to C} defined by

l1 € Lg.

sl + 12)
Ys.0(l1) ¥s,o(l2)
is a bicharacter of Ly, i.e., a character of L in I, and /. Hence g is a

second degree character of L. In order to show that g ¢ is associated with
Hs o, it is enough to prove that

(I1,13) —

Vs,o(li +1z) = e sl yg o (1) g o (ls) (1.2.12)

for all I1,lo € L. Here Agp denotes the imaginary part of the positive
hermitian form Hg . By an easy computation, we have

Asa(l,l2) = o{S(& 2 —m €2)}, (1.2.13)

where I; = 241, € Lo (1 <i < 2). Hence (1.2.12) follows immediately
from (1.2.13).

(b) We fix | = €2+ n € Lg with £,1 € Z™™. We put ¥s,.0.4.8 = ¥s.a -
Xs.02,4,8- Then the map f; : Lo — Cj defined by

Ailly) = = Vs,0,4,8(01 +1)

=~ s ll € Lgp
Vs,0,4,8(11) Vs,0,4,8(l2)

is a character of L. So J& 2,4,B 1s a second degree character of Lg,. In order
to show that 15 is associated with Ag o, it suffices to prove that

Vs,0.a5(1 +1p) = em 452l yg o 4 5 (1) Ps.0.a,5(12) (1.2.14)
for all I3,y € Lg. An easy calculation yields (1.2.14). O

Theorem 4. We assume that S is a positive definite, symmetric integral
matriz of degree m. Let 2 € H,. We denote by Rg the wvector space of
all holomorphic functions f : C™™) — C satisfying the transformation
behaviour

FOV + €0 +n) = e o{SE2E2EW p(yr) W e clmm)
for all &,n € Z"™) . Then the mapping
0 : R§ — Th(Hs,q,¥s,0, Lo)

defined by
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(B(F)) (W) = *maseWIp(W),  FeRY, WecCmm

is an isomorphism of vector spaces, where Lg and s, are the same as in
Lemma 4.

Proof. First we will show the image O(R%) is contained in Th(Hg o, ¥s.0, L)
If Fe RE, W e Cm™ and I = £Q2 +1n € Lg, then we have
OF)(W +1) = 2™ as.eW+D) p(jy )
— 2rifas,o(W) +as.0(l) + o(SU(2-2"" W)}
x e~ mio{SERC+2W )} F(W)  (by Lemma 3)
_ eQm’a{S(W-ﬁ-%)(Q—ﬁ)’“l}
% e—‘n’ia{S(&.Qtﬁ—i- 2WriE+2W )} @(F)(W)
— emHso(W+35,1) | o—mio(Sn"E) O(F) (W)
= ™52 WH3.0 g (1) O(F)(W).

Thus O(F) is contained in the set Th(Hg o, Vs .0, Lo). It is easy to see that
the mapping @ is an isomorphism. (Il

Proposition 1. Let S be as above in Theorem 4 and A,B € R™™)  We
denote by Rg,A,B the union of the set of all theta functions with character-
istic (A, B) with respect to S and 2 and the constant 0. Then we have an
isomorphism

Rg’A’B = Th(Hs,0,vs,0 - Xs,02,4,8,La).

Proof. First we observe that ¥ o - Xs5,02,4,8 is a second degree character of
L, associated with Ag  (cf. Lemma 4 (B)). In a similar way in the proof of
Theorem 4, using (6.5), we can show that the mapping

Oa(f)(W) =™ 9s2W) f(W), fe RS, 5, WeCm™
has its image in Th(Hs,0,%s .0 Xs,2,4,8: La). 0

Proposition 2. Let S be as above in Theorem 4 and let A, B € RU"™"™) Then
we have an isomorphism

Th(Hs,q,v%s,0,La) 2 TH(Hs 0,Vs,.0 - Xs,2,4,8,La).

Proof. The proof follows from the fact that the dimension of the com-
plex vector space Th(Hg o,%s.q,Lo) is equal to that of Th(Hg o,¥s.q -
XS,2,A,B, L_Q). It is well known that the dimension of Th(H&Q, d)S’Q, L_Q) is
equal to the Pfaffian of Ag q relative to L (cf. [14],p.72). O

Remark 2. From Theorem 4, Proposition 1 and Proposition 2, R is isomor-
phic to RgAB for any A, B € R(m.n)
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Now as before, we fix an element {2 € H,, and let S be a positive symmetric
integral matrix of degree m. Then the lattice L := Z("™™ x Z(™") acts on
Cm7) freely by

(57 77) W =W +£&02+n, 577762(”%")’ W e C(m,n).

Lemma 5. Let A, B € R™™. Let Jsoap : L x C™" — C* be the
mapping defined by

Jsaap(l,W):= emio{S(ER E+2W IO} 6*27”U{S(f‘ltﬂ*Btﬁ)}7 (1.2.15)
where | = (&,m) € L and W € Cmn) - Thenp Js,.0.4.B 15 an automorphic
factor for the lattice L.

Proof. For brevity, we write J := Jg g a,p. For any two elements [; =
(&, mi) (i =1,2) of L and W € C"™™) we must show that

J(ll + o, W) = J(ll, lo + W) J(l27W) (1216)

Using the fact that o(25n, &;) is an even integer, an easy computation yields
(1.2.16). O

The Heisenberg group Hﬂ({”’m) with multiplication ¢ acts on C(™™) by
Mo, o, ko] + (AR + 1) := (Mo + A2+ (po + 1), A, € ROW™,

Since the center Z = { [0,0,x] | & = tx € RO™™ } of Hﬂén’m) is the stabilizer

of Hﬂgn’m) at 0, the homogeneous space Hﬂ(J’m)/Z is identified with C(™m)
via

A i, 5] - 2 — [\ K] -0 = A2+ p.
Thus the automorphic factor Js o 4,5 for the lattice L may be lifted to the

automorphic factor Jg o 4.5 : Hﬂ({L’m) x Clmn) — C* defined by

Js oA 5(g0, W) = T o{SOARIA+2W A+ k)} .e—wia{S(Atu—BtA)}7 (1.2.17)

where go = [\, u, k] € H]é"’m).

We denote by Ag  be the complex vector space consisting of C-valued
smooth functions ¢ on Hng{”’m) satisfying the following conditions

(a) @([677770] <>gO) - SD(gO) for all 57’[’] c Z(m’n) and 90 c Hﬂ({n7M)7
(b) ©(g0210,0,k]) = ™) (gq) for all k= ‘s € RO™™) and

Here if X is an element of the Lie algebra of Hé"’"”,
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(n,m)

(Lx¢)(g0) = o(gooexptX), go € Hy

dt|,_,

Theorem 5. Let S and {2 be as before. Then the vector space Rg 1s isomor-
phic to the vector space Ag o via the mapping

£ — ©5(g0) == Js,2,00(g0: 0) f(g0 - 0),
(n,m) o
where go € Hy and f € Rg.
The inverse of the above isomorphism is given by
o — fo(W):=Jsa00(g0, 0) " 0(g0), ¢ € As,

where W = gg - 0. This definition does not depend on the choice of gy with
W = go - 0.

Proof. For brevity, we write J := Js.go0. If v = [£,7,0] € Hﬂgn”") with
&,m € 2™ we have for all gy € Hﬂ({“m)

er(yog0) = (’7090, 0) f((v<go0)-0)
=J(7, 90+ 0) J(g0, 0) f(g0 - 0+ £ 4 1)
= (%go 0) J(g0,0) J((£,m), go - 0)~" f(go - 0)
=J(7,0) f(g0 - 0)
=¢5(90)

And if k = 'k € R™™) we have

@f(go < [Oa 0, ’i]) = j(go < [07 0, H]v 0) f((go < [Oa 0, K]) ’ 0)
= j(g()a [07 Oa ﬁ] : 0) j([o, 0, H]’ 0) f(go . 0)
= ™75 J(90,0) f(g0 - 0)

_ eﬂ'o(Sm) of (90)~

We introduce a system of complex coordinates on C"™) with respect to 2:

W=X24+u, W=X2+pu, M\ pureal

We set
AWy, dWiy ... dWh, avzu 6%21 wg
I — dW21 dW22 ‘e dWQn i _ OWia OWaz " 0Wma
: T oW oo
AWo1 AWio ... AW 9 9 9

OWipn OWap "7 OWin
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Then an easy computation yields

0 o =0
a Yaw T
90 0
op  OW oW’
Thus we obtain the following
g i 4 (0 0

Since f is holomorphic, according to (1.2.18), f satisfies the conditions

0 i o
- a3 = <k< <a<n. 9.
(8)‘ka ;Qaba’ukb>f(W) 0, I<k<m,1<a<n (1219)

Conversely, if a smooth function on C(™™) satisfies the condition (1.2.19), it
is holomorphic.

In order to prove that ¢ satisfies the condition (c), we first compute
Lx,, o5 and E)A(lbgof for 1 <kl<mandl<ab<nIf g=[\uk]e€
Hﬂ({hm) and S = (Skl)a

(Lxppr) = or(goexp tXiq)

t=0

@f([)‘v Hy ’i] < [tEkaa Oa 0])

J([A+ tEka, 1, 6], 0) f((A + tEka) 2 + 1)
t=0

d
dt
d
dt |1y
d
at
d
at

em‘cr{S(A—i—tEka)Q‘()\+tEka)} emi(SK) f(()\ + tEka)Q + M)

t=0

0

= ema{S<n+m‘A>}{2m (ZZ Sleab/\ab> o }f W)
ka

b=1 l=1

On the other hand,
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d

(Lx,07)(9)=2| @slgoexp tXu)

t=0

C1 (oo il o [0, B, 0])

],
d
= er( et tEy, o tA By + 1By ')
t=0
) t d . :
:eﬂ'zcr{S(nJr)\Q )} a 627mtcr(S)\tElb) f()\Q + (M 4 tElb))
t=0
, ¢ i 0
:eﬂ'za{S(nJr)\Q A)} { 27i <Z Slp)\pb> + % } f(W)
p=1
Thus .
(['Xka - Z Qabﬁ)?kb )‘pf(g)
b=1
‘ ¢ 0 - 0
— wio{S(k+A2°N)} o 2, — W)=0
e a .
{ Oka ; ba,ukb } J)

This completes the proof.
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1.3 Induced Representations

Let G be a locally compact, separable topological group and K be a closed
subgroup of G. Let ¢ be an irreducible unitary representation of K in a sep-
arable Hilbert space H. Let pu be a G-invariant measure in the homogeneous
space X := K\G = {Kg| g € G} of the right K-cosets in G. We denote the
induced representation of G from o by

U, .= Ind% o

Let H? be the Hilbert space consisting of all functions ¢ : G — H which
satisfy the following conditions:

(1) (¢(g),v)n is measurable with respect to dg for all v € H.

(2) ¢(kg) = o(k)(p(g)) for all k € K and g € G.

B) 1o 17= [x I 6(9) II” du(g) < 00, § =Ky,

where dg is a G-invariant measure on G and ( , ) is an inner product in H
and || ¢(g) || is the norm in H. The inner product (, ) in H is given by

(61, 0) = /X (61(9), b2(9) dud), 12 € M.

Then U, = Ind$ o is realized in the Hilbert space H® as follows:

(Us(90)9) (9) = ¢(990); 9,90 € G, ¢ € H”. (1.3.1)

It is easy to see that HC is isomorphic to the Hilbert space H, := L?(X, u, H)
of square integrable functions f : X — H with values in H via the formula

¢r(9) = olky) (f(9)), feHs g€@, (1.3.2)

where g = Kg and k is the K-component of g in the Mackey decomposition
g = kgsg.

We can show easily that U, is realized in H, by

(Uo(go)f) (g) = G(ksggo) (f(gg()))v 9o € G, f € HJ; g = Kg € Xv (133)

where ks g4, denotes the K-component of s;go in the Mackey decomposition
of 5440.

If o is a one-dimensional representation of K, U, is called a monomial
representation.

Remark 3. It is interesting to find out irreducible closed subspaces of H? or
‘H, invariant under G.
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We recall A, S, Gy, Sz etc in Section 1.1. Mackey’s method teaches us
that an irreducible unitary representation of Gy = H{"™™ is of the following
form

Ty = Indg", , x& - (&) = IndG" a(#)
or
Ti g = Indgr, 4 xa-a(9) = Ind§¥ 4 xa - a(d),

where y; is the character of S defined by x;(I) := €2™7@D for | € 8.
Therefore the unitary dual Gy of Gy or HD(J”) is determined completely by
Type I. &€ Sym (m,R), & #D0.
Type I1.  (&,9) € RO x R with 3,9 € RO™™),
The representation p € G u of type 1 acts nontrivially on the center Z =

Sym (m,R) of Gg. On the other hand, the representation p € Gy of type I1
acts trivially on the center Z of Gp.
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1.4 The Schrodinger Representation

For two fixed positive integers m and n, we put G := Hﬂ%n’m) and
K = {(O,u,m) € G| peRMM, k=t c RUW™ } . (1.4.1)

We note that K = A (cf. Section 1.1, (1.1.4)) and that K is a closed, commu-
tative normal subgroup of G. Since (A, pu, k) = (0, u, & + ) o (X,0,0) for
(\, i1, &) € G, the homogeneous space X := K\G is identified with R("™™) via

Kg=Ko(X\0,0)— A g=(\pu,k)€G.
We observe that G acts on X by
(K9) - g0 = K (A + X0,0,0), (1.4.2)

where g = (A, i, k) € G and go = (Ao, fo, ko) € G.
If g = (\, p, k) € G, we have

kg = (0,54 pu"n), s,=()0,0) (1.4.3)

in the Mackey decomposition of g = kg o s,. Thus if go = (Ao, fto, ko) € G,
then we have

s¢0 90 = (X,0,0) 0 (Ao, ko, 50) = (A + Ao, o, Ko + A ‘tio) (1.4.4)

and so
ksyo90 = (0, 110, Ko + po Mo + Ao + 10 “N). (1.4.5)

For a real symmetric matrix ¢ = ‘¢ € RO™™) with ¢ # 0, we consider the
one-dimensional unitary representation o, of K defined by

0e ((0, 1, k) := 2™ T (0, pu, k) € K, (1.4.6)

where I denotes the identity mapping. Then the induced representation
Us, = Ind?( o, of G induced from o, is realized in the Hilbert space
Ho,, = L*(X,dg,C) = L? (R(™™ dE) as follows. If go = (Ao, po, ko) € G
and z = Kg € X with g = (A, u, k) € G, then according to (1.3.3), we have

(Us.(90)f) () = 0c (Ksyog0) (f(2g0)) s | € Mo, (1.4.7)

It follows from (1.4.5) that

(Uac (go)f) (}\) _ e2m’o{c(mo+uo Ao+2A tuo)} f()\ + )\0). (1.4.8)
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Here we identified = Kg (resp.xgo = Kggo) with A(resp. A+ Ag). The
induced representation U, is called the Schrodinger representation of G asso-
ciated with o.. U, is a monomial representation.

In the previous section, we denoted by H7< the Hilbert space consisting of
all functions ¢ : G — C which satisfy the following conditions:

(1) ¢(g) is measurable with respect to dg.
(2) 6((0, 1, 5) 0 9)) = 27X 3(g) for all g € G.
B) 16 1= Jx lo(9)?dg < o0, §=Kg,

where dg (resp.dg) is a G-invariant measure on G (resp. X = K\G). The
inner product (, ) on H7¢ is given by

(61, 60) = /G 01(9) 929 dg, 61, bs € Hw.

We observe that H,, = L?(R("™™) d¢) and that the mapping &, : Hy, —
H7e defined by

(@e(f)) (g) = by (g) 1= emiotelti™ p(y) (1.4.9)

(f € Ho,, 9= (N u, k) € G) is an isomorphism of Hilbert spaces. The inverse
VU, : H® — H,, of . is given by

(Ze(9)) (A) == fo(N) := ¢((A,0,0)), ¢ €H ™, AeR™M. (1.4.10)
From now on, for brevity we put
U.=U,,, H.=MH, and H=H.
The Schrodinger representation U, of G on H€ is given by
(Ue(go)®) (g) = e¥miotelrotno QotATuo—20 "} ¢ ((X,0,0) 0 g),  (1.4.11)

where go = (Ao, fos k0), ¢ = (A, k) € G and ¢ € HC (1.4.11) can be
expressed as follows.

(Udgo)d) (g) = e2miotelrotntuo Nt M2X o)k ((\g + A, 0,0)).  (1.4.12)

Theorem 6. Let ¢ be a positive symmetric half-integral matriz of degree m.
Then the Schridinger representation U, of G is irreducible.

Proof. The proof can be found in [42], Theorem 3. O

We let dU. be the infinitesimal representation associated to the Schrodinger
representation U.. If X is an element of the Lie algebra of GG, then
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d

Uclexp tX)f, f € H. or HE.
t=0

We fix an element (2 € H,, once and for all. We let ¢ be a positive symmetric
real matrix of degree m. For each J € Z(m n) , we put

fc J(f) . 27n<7(C§.Qi§) gJ 5 c R(m,n). (1413)

Then the set { feg | JE€ Zgg’n) } forms a basis of L? (R(mm), d¢§) =H

Proposition 3. Let ¢ = (¢g;) be a positive symmetric real matriz of degree
m. For each J € Z(m ") we have

dUc(Dlgl)fc,J(f) = 2mi cpy fc,J(£)7 1<Ek<I< m, (1414)

m n

AUe(Dra) fe.r(§) = 4mi Y > criQapfe,sse (6) (1.4.15)
=1 b=1
+ Jka fc,J—ska (5)7
AU(Dip) fe,7(€) = 470> C1p foortey0 (€. (1.4.16)
p=1

Here 1 <k, l<m and1 < a,b<n.
Proof. We put Egl = %(Ekl + Ej), where 1 <k, 1 <m.

d
Ue(Di) fe,0(6) = 7| Ue(exp tX3) fe.s ()
t=0
d
= % UC((O’ O’tElgl))fC,J(f)
t=0
) eZTrio’(tcE,?l) T
= lim S f(©)
) e27'ritckl -1
—lim ()
= 2mi ¢y fe,7(8).
d
dUc(Dk:a)fc,J(g) = a UC(eXp tha)fc,J(f)
t=0
d
= dt UC((tEkavovO))fc,J(g)
t=0
d p2mi o {e(§+tEra) 2 (§+tBra)} J
_ wio{c ka ka tE "
i, (£ + tEyaq)

3

n

= Z Z crif2abfe, e (&) + Jka fe,r—ea ()

=1 b=1
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Finally,

dUo(Dip) fe,s(€) = 4

Ue(exp tX3p) fo.s(€)
t=0

Uc((0,tEw,0)) fe,s(§)
t=0

edmio(teg Ep)
= lim

L ()

= 4m Z Clpfc,J+€pb (5)

p=1

For each J € Z(;S’n) we put

e.s(g) = e2mioleltn Nl £ () (1.4.17)
where g = (A, i, k) € G. Then the set { ¢ s | JEZ(m" } is a basis of H¢

Proposition 4. For each J € Z3

mn) and g = (A, i, k) € G, we have

dU.(DY}) ¢e.s(g ):Qm‘ckl ¢CJ( ), 1<k<Il<m,

(1.4.18)
dU(Da)be,s (g ,4mzz ekt Qab Pegven(9)  (14.19)
-0 0,
Ue(Uin) e, (g

= QmZ ClpBe, T+eps (9)- (1.4.20)
p=1

Herel<kl<mand1<a,b<n

Proof. We put Egl = %(Ekl + Ej), where 1 < k,1 < m. Then we have

d
AU(DY)be(9) = 5

Uec(exp tX})de,s(9)

t=0
d
% UC((OaOatElgl))¢c,J(g)
t=0
) eQTria(tcEgl) .
= lim . be,7(9)
=27l ¢y D, 5(9)-

And we have



1.4 The Schrédinger Representation 31

d
dUc(Dka)¢c,J(g) = % Uc(eXp tha)(ch(g)
t=0
d
=~ Uel(tBra;0,0))¢c,1(9)
t=0
d . t
= S| e R ) g (tF10,0,0) 0 )
t t=0
= 4 e 2mito(cBra 'n) | p2mio{c(kttEpa 't Aty Era)}
dt]—o
x e2mio{cO+tBk) 2 AttEra)} () 4 ¢Ey, )T
_ 62771' o{c(k+p A+A2 tk)}
" i pAmit (AR tEra)+2mit? 0(cEra 2t Erg) ()\ + tElca)J
dt t=0
= 4mi Z Z ckl ab ¢C,J+6u, (g) + Jka ¢C7~]—5ka (g)
=1 b=1
Finally,
d ~
de)Lb (Uc) d)c,J(g) = % UC(eXp tle)¢c’J(g)
t=0
d
== Uc((0,tEp, 0))9ec,s(9)
t=0
o d 2mit o(cAtEpp)
= 7 Y e ¢c,J(g)
2mit(Y iy cpApy) _
. e P
=27 <Z Clp/\pb> Pe,1(9)
p=1
=270 Y ClpPe, s tep (9)-
p=1
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1.5 Fock Representations

We consider the vector space V(™) := R(™n) » R(™7)  We put

Pro = (Era,0), Qu = (0, Ep), (1.5.1)

where 1 < kI <m and 1 < a,b < n. Then the set {Prq, Qrq} forms a basis
for V("™ We define the alternating bilinear form A : V(") x y(mn) R
by

A (Ao 0), A ) = (o' — 1o ™), (Mo, o), (A, ) € V™. (1.5.2)

Then we have

A(Pra, Pp) = A(Qras Q) =0, A(Pra, Qup) = dap Oxi, (1.5.3)

where 1 < k.l <mand 1< a,b<n. Any element v € V(1) can be written
uniquely as

v= Z ZTraPra + Z Y@, Tkas Y € R. (1.5.4)
ka b

From now on, for brevity, we write V := V") and v = 2P + yQ instead of
(1.5.4). Then it is easy to see that the endomorphism J : V' — V defined by

J(@P+yQ):=—yP+zQ, z2P+yQeV (1.5.5)

is a complex structure on V which is compatible with the alternating bilinear
form A. This means that J is an endomorphism of V' satisfying the following
conditions:

(J1) J2=—1 onV.
(J2) A(Jvg, Jv) = A(vg,v) for all vg,v € V.
(J3) A(v,Jv) > 0 for all v € V with v # 0.

Now we let Vo = V 4+ iV be the complexification of V', where ¢ = +/—1.
For an element w = v + vy € V¢ with vi,v9 € V', we put

W= v, — 1 vg. (1.5.6)

Let Ac be the complex bilinear form on V¢ extending A and let J¢ be the
complex linear map of V¢ extending J. Since Jé = —I, Jc has the only eigen-
values +14. We denote by VT (resp. V™) the eigenspace of V¢ corresponding
to the eigenvalues i (resp. —i). Thus Ve = V' + V. Since

Jc(Pra £1Qra) = Fi (Pra £ Qra)s

we have
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VE=>"C(Pra—iQra)s V™= C(Pia+iQka) (1.5.7)

k,a k,a

Let
V*::Z(CP,W, 1<k<m, 1<a<n (1.5.8)
k,a

be the subspace of V¢ as a C-vector space. It is easy to see that Vi is iso-
morphic to V' as R-vector spaces via the isomorphism 7T : V — V, defined
by

T(Pia) = Pra, T(Qu) =i Py. (1.5.9)

We define the complex linear map J, : Vi — Vi by Ju(Pry) = @ Pg, for
1<k<m, 1<a<n. Then J, is compatible with J, that is, ToJ = J,oT.
It is easily seen that there exists a unique hermitian form H on V, with
ImH = A. Indeed, H is given by

H(v,w) = A(v, Jyw) +i A(v,w), v,w € V. (1.5.10)
For v = Zk,a ZkaPra € Vi With zxe = Tra + 1Wka (Tkas Yra € R), for brevity

we write v = zP. For two elements v = zP and v' = 2'P in Vi, H(v,v') =
Y k.o Zka 21 We observe that

Ve :ZCPka+ZCle =Vt4+v-oV=E
ka b

For w = 2°P + 21Q € V¢, we put
w=wt+w, whi=N(P-iQ), w =2 (P+iQ).
The relations among 2°, 2%, 21, 2~ are given by
z:jt:%(zoiizl)7 L=t 427, Z=i(z7 —2h). (1.5.11)
Precisely, (1.5.11) implies that
=g o) A=t o e = (e — ),

where 1 <k <m and 1 <a < n. It is easy to see that
_ ) _ 7
Ac(w™,wh) = =20z, = —2 S {ER)?+ (2)). (15.12)
k,a k,a

Let

Ge = { (2%, 2",a) | 2% 2 €C, ac€ Cmm) g4 21450 Symmetric}
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be the complexification of the real Heisenberg group G := Hﬂg{n’m). Anal-
ogously in the real case, the multiplication on G¢ is given by (1.1.1). If
w = 2P+ 21Q = Zk@ 20 Pra + Zl,b 2, Quy, we identify 2%, 2! with the
m X n matrices respectively :

0 0 0 1 1 1

Z%Jl 262 e Rp Z%l Z%z e Rn

0 291 R99 --- Rop 1 291 R -.- Rop
z0 = . . . , R = . . .
0 0 0 1 1 1

Zml #m2 -+ “mn Zml #m2 -+ Pmn

That is, we identify w = 2°P + 2'Q € V¢ with (2°,2') € Cmm) x Ctmm), If
w=20P+21Q, w=2"P+2'Q € V¢, then

(w,a) o (,a) = (w+w,a+a+ 2"t — 21129, a,a e C™™), (1.5.13)
From now on, for brevity we put
Rt :=P-iQ, R =P+iQ. (1.5.14)

fw=2tRT+2 "R, w=2"R" + 2 R~ € Vg, by an easy computation,
we have

(w,a)o (,a) = (W,a+a+2i(zT 27 — 2z~ 121)) (1.5.15)

with
W= (2" +2RT + (27 + 2R
Here we identified z*, 2~ with m x n matrices

+ +

211 R1g - .- Z}i_n 211 R12 -+ Rin

n 291 Rog --- Rop _ 291 R -+ Zop
z = . . . , 2= . . .
+ + + - - -

Zml #m2 * - Pmn Zml #m2 ** Pmn

It is easy to see that
Pe = { (w™,a) € Ge|w™ e V™, aeCm™ } (1.5.16)
is a commutative subgroup of G¢ and
GNP:=Z2, G¢c=Golr,
where Z := {(0,0,r) € G|k = 'k € RU™™ } = Sym(m,R) is the center of

G. Moreover,
Pe\Ge = VT =R 5 RMP >~ 2\@, (1.5.17)
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For ¢ = ¢ € Sym(m,R) with ¢ > 0, we let §. : Pr — C* be a quasi-
character of P¢ defined by

bc((w™,a)) = €™ (v~ a) € Pe. (1.5.18)

Let
UF =Indfe .

be the representation of G¢ induced from a quasi-character §. of Pc. Then
U*¢ is realized in the Hilbert space H*¢ consisting of all holomorphic func-
tions ¥ : G¢ — C satisfying the following conditions:

(F1) ((w™,a)og) = 6.((w™,a))(g) = > 7 y(g) forall (w™,a) € P
and g € Gc.

(F2) fo W9 di < oc.

The inner product { , )g. on HF* is given by

(1, o) Fe i= V1(9) V2(9) dg, 1,02 € HEC, g = Zg.

Z\G
UF¢ is realized by the right regular representation of G¢ on H¢ :

(U"(go)) (9) = ¥(g90), ¥ € H™, go,g € Ge. (1.5.19)

Now we will show that U*¢ is realized as a representation of G in the Fock
space. The Fock space Hr is the Hilbert space consisting of all holomorphic
functions f : C"™™) =V, — C satisfying the condition

17 = [ SR T < o,

The inner product ( , )p. on Hp, is given by

(hodre= [ HONEI > D AW, fif € M

Lemma 6. The mapping A : Hp. — H", Ay := A(f) (f € Hr,) defined
by
Ap((2°P + 2'Q, a)) = e2miolelet2i=7 1) p9,) (1.5.20)

is an isometry of Hr. onto HI* where 2% = 20 + iz (cf (6.11)). The
inverse A : HIY — Hp ., Ay = A@) (¢ € HP®) is given by

1
Ay(W) =1 <2WR+) , Wecmn, (1.5.21)
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where RT = PFiQ (cf. (1.5.14)).
Proof. First we observe that for w = 2P + 2'Q = 2T Rt + 2R~ € V¢,
(w,a) = (2 R ,a+2iz" "2T) o (2T RT,0).
Thus if ¢ € HF¢ and w = 2P + 21Q = 2t Rt + 2~ R~, by (F1),
¥((w,a)) = e2mio{e(a+2iz""z1)} (2 R,0)). (1.5.22)
Let W =z +iy e CO™" with 2,y € R™")_ Then
tP4+yQ=2"RT+2"R™, 22" =z+iy.

So z7 Lzt = LW'W. According to (1.5.22), if ¢ € H¢, we have

G((xP +yQ,0) = e T Wy <(;WR+70)> :

Thus we get

2

(P +1Q0)F = ey ((Gwrt o)

Therefore

Low@ldi= [ e ia,mfan < .
Z\G Clm.m)

It is easy to see that A is the inverse of A. Hence we obtain the desired
results. (]

Lemma 7. The representation U is realized as a representation of G in
the Fock space Hp. as follows. If g = (AP + uQ,x) = (A, k) € G and
[ € HF., then

(UF’c(g)f) (W) _ eQTI’iO'(CKZ) e a{c(CC+2W %)} f(W + C)’ (1523)
where W € C™™) and ¢ = X\ + i p.

Proof.
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(UT(9)f) (W) = (AUT(9)(Ay))) (W)

— (")) (3R

(o) o)
(o) )

1 ) 1 )

= Af ((A+ 2W> P+ (u— ;W) Q,n+2Wtu+;Wt)\>

::gwuqdn+gwﬂ6+%5%v+%5%ﬂj(mz+<) ()

_ p2mia(er) | o—ma{M(¢C+W )} F(W +¢),
where ¢ = X\ +ip. In (**), we used (1.5.20) and the facts that 2iz~ *2 =
LW+ W) and 227 =W + (. O
Definition 4. The induced representation U of G in the Fock space Hr.e
is called the Fock representation of G.

Let W = U +iV € C" with U,V € R T U = (up,), V = (vpp) are
coordinates in C""™) | we put

dU = duj1duqg - - - dumna dV = dv1dvis - - - dvogy,
and dW = dUdV. And we set
dp(W) = e~ ™ W W) gy, (1.5.24)

Let f be a holomorphic function on C™™. Then f(W) has the Taylor ex-
pansion

f)y= > a;W', W= (wp)eCt™,

(mn)
Jenly

where J = (Jia) € J € Zg’é’") and W = wl w3z - wlme.

We set |[Wls := maxy, (Jwkae|). Then by an easy computation, we have

[ O du() = P

ree [Wloo<r

= lim Zajﬁ/ WIWE du(W)
7—00 TR |W\oof7"

> lagPa L,
J

where J runs over J € Z(;g’n).
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Let H,,,n be the Hilbert space consisting of all holomorphic functions
f:Clmn) s C satisfying the condition

1= [ )R du(w) < o, (1.5.25)

The inner product ( , ) on H,,,, is given by

(et = [ BB (V). fifo € P

Thus we have

Lemma 8. Let f € Hy,n and let f(W) =3, a;W* be the Taylor expansion

of f. Then
£ =Y lasPx Ml

(m,n)
Jezgg"

For each J € Z(;g’"), we define the holomorphic function @ (W) on C"™)
by B

1 1 J
By (W) = (J1)~3 (7T§W) , W eCmm), (1.5.26)
Then
1 ifJ=K

] (1.5.27)
0 otherwise.

(s, PK) = {

It is easy to see that the set § @ | J e Z(;g’") } forms a complete orthonormal

system in H,, ,,. By the Schwarz inequality, for any f € H,, ,, we have
[FW)] < 27|, W e clmm), (1.5.28)

Consequently, the norm convergence in H,, ,, implies the uniform convergence
on any bounded subset of C™™) We observe that for a fixed W’ e C(™n),
the holomorphic function W — e (W' W) admits the following Taylor
expansion

e WIWD = N By (W) (W), (1.5.29)

(mn)
VIS

From (1.5.29), we obtain
T —1 W) (177
&, (W) = (JI)~3 el (7T2W) du(W). (1.5.30)
C(m,n)

Thus if f € Hp n, we get
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(f(W)7 em(WW)) — (ﬂ ngJ(W) gsj(.)>
J

Hence ™ W W) i the reproducing kernel for H,, ,, in the sense that for any
f e Hm,ny

fov) = /C(m eI ) (W), (15.31)

We set ti
(W, W) =™ W W) W w’ e clmm), (1.5.32)

Obviously k(W, W’) = (W', W). (1.5.31) may be written as

V)= [ ROV SOV W), f € e (1539

Let M be a positive definite, symmetric half-integral matrix of degree m.
We define the measure

dpipg (W) = e~ 2m oMW W) gy (1.5.34)

We recall the Fock space Hp aq¢ consisting of all holomorphic functions f :
C(mn) — C that satisfy the condition

£ = 1120 = / POV dping (W) < oo, (1.5.35)
Clm.n)

The inner product ( , )a:=( , )rm on Hp g is given by

(s fo)at = / F OV Fo W) dyipa(W), f, fo € Hipa.

Clm.n)

Lemma 9. Let f € Hpam and let g(W) = f ((QM)_%W) be the holomor-
phic function on CU™™) . We let

g(W) = Z apm, W’

(m,mn)
JeL,

be the Taylor expansion of g(W). Then we have

1130 = (f e =27 (det M) S Japga?m VI,

(mm)
Jerly
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Proof. Let Mz be the unique positive definite symmetric matrix of de-
2 —

gree m such that (M%) = M. We put W = VoMzW. Obviously

AW =2n (det M)™dW. Thus for f € Hp ., we have

(. Fom = / FOW) P dpa (W)
Clm,n)
= 27"(det M)—"/ lg(W) |2 du(W)
C(m.n)

=2""(det M)™" Z |GM,J|27T_|J|J! (by Lemma 8)
Jezgg*")

For each J € Z(;g’"), we put

n

n 1 1 J
D g (W) =28 (det M) ¥ (J1)~3 ((sz)aw) , WeCm™m. (15.36)

Lemma 10. The set { D,y ’ J e Z(m m) } is a complete orthonormal system
m HF,M-

Proof. For J, K € ZU3™), we have
(Prt,gs Pt i) g = 2" (det M)™(J1) 75 (K1) 73
y /«: . () ) (2rrm) ) dppi (W)
=Ry [ W) @R dun)
= (P, PK). |

By (1.5.27), we have

1 ifJ=K
(Prm,s s Prmk)IM = , (1.5.37)
0 otherwise.
We leave the proof of the completeness to the reader. ([

We observe that for a fixed W’ € C™") the holomorphic function W —

™MW W) 4 dmits the following Taylor expansion

T MWV — N g (W) D g, 5 (W), (1.5.38)
Jezgg )

If f € HF am, we have
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(W), eme WD) = ST (fPans) i Paa s (W)

(m.n)
Jerly

= f).

M

Hence ™MW W) ig the reproducing kernel for Hp o in the sense that
FOV) = [ e T g ) (1.5.39)
Clm,n)

For U € R™™) and W € C"™™) | we put
k(U,W) — 62770’(7U1'U+%W1'W+2iUtW)' (1540)
Then we have the following lemma.

Lemma 11.
/ k(U,W)k(U,W')dU = G2mo(W W)
R(m,n)

Proof. We put

TOW, W' = / K (U, W) (T, 7 dU.
R(m,n)

Then we have

(W, W’) _ e7ro’(WtW+WtW) / e—47ro(UtU) e4m‘a{Uf(W—W)} dU
R(m.n)

— m o (WIWHW W) H / e~ dm{uta—tura(Wra=wi)} gy,
k,a R

where W = (wpq), W = (w},) € C™ and U = (up,) € RO™™. Tt is easy
to show that

2 . — ——\2
/ e 4 {uRa—iuka (wka W)} gy = o~ (wka—wl,)?
R

Thus we get
I(W W/) — eﬂd(WtW-FWtW) . e_”zk,a(wka_TM)Z
— EQWZk,a wka?}m

tYA 7
_ eQﬂ'o’(W w )

For U € R(™™) and W e C"™™) | we put
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kpg (U, W) 1= 27 oMU U= 3 WIW 20 W)} (1.5.41)

Lemma 12. Let M be a positive definite, symmetric half-integral matriz of
degree m. Then we have

k(U W) = k(M2U, —i M2W) (1.5.42)
and

/ ket (U, W) T (U, W) dU = (det M)~ % - 2m@MW W) (1 5 43)
R(m.n)

Proof. The formula (1.5.42) follows immediately from a straightforward com-
putation. We put

TuWW') = [ k() R (077 U
R(m,n)

Using (1.5.42), we have

T (W, W) :/( ) k(M%U, —z'M%W) k (M%U, —iM%W/) aU
R(m,n
= (det M)~ ¥ / k(UMW) k (U, —imiw) au
R(m,n)

= (det M)~ % 2T o (MW W) (by Lemma 11)

O

We recall that the Fock representation U™ of the real Heisenberg group
G in Hp pm(cf. (1.5.23)) is given by

(UPM(g)f) (W) = @71 oMm) L emm et MECH WO} F(1 4 (), (1.5.44)
where g = (\, i, k) € G, f € Hppq and ¢ = A +ip € Cm,
Lemma 13. The Fock representation UM of G in Hy am is unitary.

Proof. For brevity, we put Uy (W) := (UM (g)f) (W) for g = (\, u, k) € G
and f € Hr . Then we have



1.5 Fock Representations 43
(Ug7fv Ug,f)M = ||Ug,fH3vl

- /m Uyt (W) Ug. s (W) dpipa (W)

:/C( ) efﬂ'o’{./\/l(ﬁ CHoW i CHCC+2WIW +2W W)}|f(W+<-)|2dW

= [ V)P dsa(9)
= (. D = IF 3
]

We recall that the Schrodinger representation USM := U, of the real
Heisenberg group G in the Hilbert space Hg aq & L2 (R(m’”), df) (cf. (1.4.8))
is given by

(USM(g)f) (€) = 2miotMUs+rA+20O} (e 4 ), (1.5.45)

where g = (\,it,5) € G, f € Hspm and € € R™™ . USM g called the
Schrodinger representation of G of index M. The inner product ( , )gm on
Hs m is given by

(f1, fo)s,m = e fU) f2(U)dU,  fi, f2 € Hs,m-

And we define the norm || ||s am on Hg aq by

1fIE = - FU)?dU,  f € Hsm.

Theorem 7. The Fock representation (UF’M7 HF,M) of G is untarily equiv-
alent to the Schrddinger representation (US’M7 'H57M) of G of index M.
Therefore the Fock representation UM is irreducible. The intertwining uni-
tary isometry Ing : Hgpm — HEM s given by

(Taf) W) = [ baale.W) £, (1.5.46)

where [ € Hg pm = L? (R(m’”), df) , W e C™™ and kay (€, W) is a function
on RU™™) 5 C™1) defined by (1.5.41).

Proof. For any f € Hg p = L? (R(™™, d€) , we define

(Ipf) (W) = /Rm,n) (€, W) F(£)dE, W e Clmm),
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Now we will show the following (I1), (I2) and (I3): (I1) The image of Hg m
under I, is contained in Hp g.

(I12) Irq preserves the norms, i.e., ||fllsm = [[Imfllm-

(I3) I is a bijective operator of Hg g onto Hp ag.
Before we prove (I1), (I2) and (I3), we prove the following lemma.

Lemma 14. For a fized U € R™™)  we consider the Taylor expansion

km(UW)= Y hy(U) S (W), Wectmm (1.5.47)

(m,n)
NS

of the holomorphic function ka (U, -) on C™™), Then the set { hy | J e Z " n) }

forms a complete orthonormal system in L> (R(m" , df) . Moreover, for a
fized W € C"™™) | (1.5.47) is the Fourier expansion of kn(-, W) with re-
spect to this orthonormal system { hy| Je Z(m n) } )

Proof. Following Igusa [14], pp. 33-34, we can prove it. The detail will be left
to the reader. (I

If f € Hs m, then by the Schwarz inequality and Lemma 12, (1.5.43), we
have

([ kwwrar) ([ wpar)

= (det M)~ T - e T MWW ) g .

Thus the above integral (Iaqf)(W) converges uniformly on any compact sub-
set of C™™) and hence (Inf)(W) is holomorphic in C™™. And according
to Lemma 14, we get

(I/\/lf Z / U)@M,J(W)dU
Jez(‘m ") R(m,n)
= > (b F)sm P (W).
Jezly™

Therefore we get
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I f3pg = / Taaf (W)[2 djapa (W)

S o DT ) [ s ) B diesa (W)
i i (Cm,n
J,KGZ(Z"(;’”>

= > (ks Psml>  (by (6.37))

(m,n)
Jezyn

Hf||2S,M < 0.

This proves (I1) and (I2). It is easy to see that Inthy = @pq 5 for all J €
Z(zwol»n), Since the set {@MJ | J € Z(z’folx") } forms a complete orthonormal
system of Hp a1, Iam is surjective. Obviously the injectivity of I follows

immediately from the fact that Iyihy = @ pq 5 for all J € Z(;g’"). This proves
(I3). -

On the other hand, we let f € Hgam and g = (A, pu, k) € G. We put
¢ =A+1ip. Then we get

(UFM(g)(Tne ) (V)
— 2rio(Mk) | —mo{M(CT+2W ()} (Imf)Y(W +¢) (by (6.44))

= 2TioMn) | o= {MCIC+2W IO} / kam(U,W +¢) f(U) dU.
R(m,n)

We define the function Ay, : R(™™) x R™7) s C by
Apm (U, W) ::a{/\/l( U U—W;W+2Ufw)} (1.5.48)

Obviously k(U W) = 2™ AmUW) for 7 € R(™™) and W € Cmm),

By an easy computation, we get
tr
Ap(U, W4 = Ap (U =X W) :a{M ( ¢ ¢ + W —iXty + 2iUtu>}.

Therefore we get

— 2T AMU-AW) | eQwo{M(%Ct§+Wtf—i)\‘/L+2iU‘u)}

MU =\, W) 2mo{M(E AW N 20U )}

Hence we have
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(UM (g)Imf)) (W)
= /R(mm e2ma{M(n+2Um—,\m)} kM(U _ )\,W)f(U) dU

:/ i AMOE 2N Uk 2U N} (U W) F(U + V) dU

R(WL,n)

:/ i AMUH2U AN} (U, W) F(U + 2) dU
R(m,n)

- /R(m,m km(U, W) (USM(g)f ) (U) AU (by (6.45))
= (Im (UM(g)f) ) (W).

So far we proved that UF"M o Iy = I 0 U%M(g) for all g € G. That is, the
unitary isometry I of Hg a4 onto Hy aq is the intertwining operator. This
completes the proof.

O
The infinitesimal representation dU*™ associated to the Fock represen-
tation UMM is given as follows.

Proposition 5. Let M be as before. We put
M= (M), (2aM)? = (1),

where T € R and 1 < k,1 < m. For each J = (Jg,) € Z(;S’n) and W =
(Wia) € C™™) | we have

AUF MDY Ppg g (W) =20 i My Dpp g (W), 1<k<I<m. (1.5.49)

dUTM(Dyo) Opp g (W) = =27 (Z MpkWpa> Dpg (W)

N (1.5.50)
1
+ ) Tk Pat e (W),
p=1

AU M (Dyy O, s (W) = 27 <Z Mpleb) Pt (W)
p=1 (1.5.51)

m

1
Y T T2 Pt e, (W),
p=1

Proof. We put Ef} = 3 (E + Ey), where 1 <k <1< m.
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d
dU™M(DYy) @a,s (W) = = UM (exp tX7) P, (W)
t=0
d
== UPM((0,0,tER)) @aq,0 (W)
t=0
2mi o (tbMEY,) _ I
= lim ° T g (W)
2mit My, I
= lim & B pq (W)
t—0
=2mi My @M)J(W).

And we have

dAUTM(Dya) D pa,0 (W)

d
dt
d
dt
d
dt

UFM(exp tXpa) Pra,s (W)
t=0

UF’M ((tEkzm 07 O)) ¢M,J(W)

t=0

- d
P (Z M,,kWpa> B pq (W) i,
27 (Z Mpkwpa> D (W)

efwﬁ 0(MEy, "Ea)—27t o (MW *Erq) @M,J(W +tEk,)
t=0

DPpg, g (W + tEkq)
-0

p=1

p=1 p=1

Finally we obtain

dUTM(Dyy) D a5 (W)

d ~
= — UF’M(EXp tle)isz J(W)
dt|,_q '
d
=—|  UPM((0,tEw,0)) Dpg, s (W)
dt|,_, ’
_ d —thU(MElthlb)-'rQ‘n'zto'(MW Elb)@ (W+ZtElb)
dt =0
m
= 2mi (Z ple;)) D, (W) i), Dy (W +itEy)
p=1 =0
m m 1
= 27 (Z pleb> P, g(W)+ i Z Tpl J;b @M’erpb (W).
p=1 =

n 1
+ D ok Jpa Patg—e, (W),

47
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1.6 Lattice Representations

Let L := 7™ x 7(mn) be the lattice in the vector space V = C™") Let B
be an alternating bilinear form on V' such that B(L, L) C Z, that is, Z-valued
on L x L. The dual L} of L with respect to B is defined by

Ly :={veV|B(v,L)€Z forallle L}.

Then L C L%. If B is nondegenerate, L} is also a lattice in V, called
the dual lattice of L. In case B is nondegenerate, there exist a Z-basis

{&1,812,  &mns 1, M2, 3 Mmn } of L and a set {e11,e12,- -+, €mn } of
positive integers with e11|e1z, e12]e13, -+ , €m,n—1|€mn such that

(B(&m,&b) B(&m,mb)) _ ( 0 e) 7

B(Mka» &) B(Mka> v —e 0
where 1 <k, Il <m,1<a,b<nande:=diag(ej1,€e12, - ,€mn) is the diag-
onal matrix of degree mn with entries e11, €12, , €mp- It is well known that

[L 2 L] = (det €)? = (e11€12 - - €mpn)? (cf. [14] p. 72). The number det e is
called the Pfaffian of B.
Now we consider the following subgroups of G:

I = { M\, 8) € G| (\p) € L, k € R™™) } (1.6.1)

and
Iy, = { (A, 5) € G| (A p) € Ly, r € R™m } (1.6.2)

Then both I';, and I+ are the normal subgroups of G.
We put
Zo= { (0,0,k) € Z| & = 'k € Z™™) integral } : (1.6.3)
It is easy to show that
Iy ={ge€Glgyg v €ZforallyelyL}.

We define
Yy, ={¢ € Hom (IL,C{)| ¢ is trivial on Z } (1.6.4)

and
Yy s = {(;S eYy| o(r) = ™75 for all k = tk € R™™) } (1.6.5)

for each symmetric real matrix S of degree m. We observe that if S is not
half-integral, then Y7, = 0 and so Y7, ¢ = 0. It is clear that if S is symmetric
half-integral, then Y7, s is not empty. Thus we have
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Yo =Um Yo m, (1.6.6)

where M runs through the set of all symmetric half-integral matrices of
degree m.

Lemma 15. Let M be a symmetric half-integral matriz of degree m with
M #0. Then any element ¢ of Y am is of the form ¢pa,q. Here paq,q is the
character of I't, defined by

dm o, K)) = e2mio(Me) emig(l) (I,k) € I, (1.6.7)

where ¢ : L — R/2Z = [0,2) is a function on L satisfying the following
condition:

q(lo —+ ll) = q(lo) + q(ll) — QU{M(AQ t,ul — Mo t)\l)} mod 2 (168)
for all lo = (Mo, po) € L and ly = (A, 1) € L.

Proof. (1.6.8) follows immediately from the fact that ¢4 is a character of
I'r,. It is obvious that any element of Y7, a4 is of the form ¢ 4. O

Lemma 16. An element of Y1, is of the form ¢ (k,1 € R(m’”)). Here ¢y,
is the character of I'y, defined by

Gra(y) = T TENTI oy — (X k) € T (1.6.9)
Proof. 1t is easy to prove it and so we omit the proof. (Il

Lemma 17. Let M be a nonsingular symmetric half-integral matrixz of degree
m. Let dp,q, and Gaq, be the characters of I'y, defined by (1.6.7). The
character ¢ of I't, defined by ¢ := dp,q ~¢X/}7q2 is an element of Y7 .

Proof. It follows from the fact that there exists an element g = (M~1X\, M~1p,0) €
G with (A, p) € V such that

dr,g (V) = O (gyg™") forall y € I

O

We note that the alternating bilinear form A on V defined by (1.5.2) is

nondegenerate and Z-valued on L x L. According to (1.5.3), the elementary

divisors ej1, €12, ,emn of A are all one and L is self-dual, i.e., L = L}.
The set

{P117P127"' 7PmnaQ117Q127"' 7an}

forms a symplectic basis of V' with respect to A. We fix a coordinate

Pllv"' aPm'rHQllv"' 7an on V.
For a unitary character ¢aq,q of I', defined by (1.6.7), we let

Tag = dS o (1.6.10)
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be the representation of G induced from ¢y, 4. Let H g, be the Hilbert space
consisting of all measurable functions ¢ : G — C satisfying

(L1) ¢(vg) = paq(7) ¢(g) for all v € I'p and g € G.
(L2) [19l31,g = Jry\q 19(9)| dgloo, §=TILg.

The induced representation may 4 is realized in H a4, as follows:

(wMﬂ@w¢)@y—wmm,gmgeG,¢eHM# (L.6.11)

TM,q is called the lattice representation of G associated with the lattice L.

Theorem 8. Let M be a positive definite, symmetric half integral matriz
of degree m. Let oaq be the character of I'r, defined by (A, u,k)) =
e2m o (M=) for gll (M, k) € I'y,. Then the representation

T = Indqu OM (1.6.12)

induced from the character paq is unitarily equivalent to the representation

@ Upm = @ md$ oae  ((det 2M )"-copies),

where K (resp. o) is defined by (1.4.1) (resp. (1.4.6)).

Proof. We first recall that the induced representation ma is realized in the
Hilbert space H 4 consisting of all measurable functions ¢ : G — C satisfy-
ing the conditions

&((No, po, ko) 0 g) = €2 TME) () (Xo, pto, ko) € I, g€ G (1.6.13)

and
wﬁM:/’ 16(3)2 dgloo, § =Ty og. (1.6.14)
I'\G

Now we write
g0 = [Mo, o, ko] € I' and g = [\ p, k] € G.
For ¢ € Haq, we have
B(go© g) = d([Mo + A, po + s ko + £ + Ao '+ 1)) (1.6.15)
On the other hand, we get

#(g0 © 9) = d((Xo, pos Ko — 110 Ao) © g)
— e2mia{M(ko—po o)} #(g)

— 270 (Mro) ?(g) (because o(Mpug t)\O) €Z)
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Thus putting &’ := kg + Ao I + 1o, we get

G([No + A, o + p, s+ 1']) = 2T TMED) L omAmie (M) ([N, k]). (1.6.16)
Putting A9 = k9 = 0 in (1.6.16), we have

([N, 1+ po, &) = O([A, 1, &]) for all o € Z™™ and [\, p, k] € G. (1.6.17)

Therefore if we fix A and k, ¢ is periodic in p with respect to the lattice
Z(mm) in R(™™)  We note that

O\ 11, 6]) = ¢([0,0, 6] [\, 11, 0]) = ™ TME) ([N, 4, 0])

for [A, pu, K] € G. Hence ¢ admits a Fourier expansion in fx :

([N i, K]) = TN Ny (n) eV, (1.6.18)
NezZ(m,n)

If Ao € Z(™"™) then we have

¢([>\ + >‘07M= Ii]) — eQTrio(Mm) Z CN()\+ )\O) eQﬂ'io’(NtM)
Nez(m,n)

_ e—47ria(/\/l>\0 ) (ZS([)\’ W, [{]) (by (1616))

AT (MA ) 2mia(MR)  § (3 (2mio(N '),
Nezlm:n)

_ 2mio(Mn) Z en(N) 2T lN=2M0) i} (hy (1.6.18) )

NeZ(m;n)

So we get

Z CN(>\+>\0) 62m0(Ntu)
NeZ(m,n)

_ Z CN()\)GQM’J{(N72M)\0)",LL}
NeZ(m,n)
2mio(N*
= Z CNparrg (A) €27 TN )
Nez(m:n)

Hence we get
en(N+ o) = enponmang(A) for all \g € Z™™ and X € R(™™. (1.6.19)

Consequently, it is enough to know only the coefficients ¢, (M) for the repre-
sentatives a in Z(™™ modulo 2M. It is obvious that the number of all such
representatives a’s is (det 2M)™. We denote by J a complete system of such
representatives a’s in Z(™™ modulo 2M. Then we have
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O([A s K])
:e27ria(./\/ln) { Z Ca+2MN(>\)e27ria{(a+2MN)tu}
Nez(m,n)
+ Z caramn (X) 2Tl (BH2MN) i}
NezZ(m,n)

+ Z CA/+2MN()\) e2ﬂi0{(V+2MN)tu} }’
Nez(mm)

where { @, 3, -+ ,7} denotes the complete system 7.

For each o € J, we denote by H a1, the Hilbert space consisting of Fourier
expansions

p2mi o (Mr) Z CQHMN()\)ezma{(szN)tu}’ A\, k) € G,
Nez(m,n)

where cy(\) denotes the coefficients of the Fourier expansion (1.6.18) of
¢ € Ha and ¢ runs over the set {¢ € maq}. It is easy to see that Haq
is invariant under ma¢. We denote the restriction of maq to Hag,a by Tat,a-
Then we have

M= M- (1.6.20)
acJ

Let ¢po € Tat,o- Then for [N, u, k] € G, we get

QSQ([)\,LL,K]) — 62771’0(/\/1&) Z Ca+2MN()\) 627ria{(a+2MN)tu}. (1621)

NezZmm)
We put
(mxmn)-times
L=1017x 0,1 x - x 0,1] < {[(A,0,0[ xe RO }
and

(mXxn)-times

I,=10,1 x[0,1] x --- x [0,1] C {[O,M,O}IuéR(m’”)},

Then we obtain
/ bo ([N, k]) e 2mio@ ) gy = 2mioMR) (A} a e . (1.6.22)
IH

Since I't \G = I\ x I, we get
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60l st = I0alim = [ loa() dg
FL\G

:/A /I 60 (9)[2 dAdp
fi

2
S caramn (V) EiTlet ML gy,

ul Nezimm)
/ |Ca+2MN(/\)\2 dA
IN Nez(mm)
/ lca(A+N)2dX  (by (1.6.19))
Iz NeZ(m,n)

_ / lea (V)2 d).
R(m,n)

Since ¢o € Tata, ||fallrma < 00 and so co(A) € L2 (R(™™, dE) for all
acJ.

For each o € J, we define the mapping Yo on L2(R™™) d¢) b

(O a0 f) ([N s 1)) = oM (1.6.23)
x> fA Ny e2miotlat2MN)
NGZ(7YL,7L)

where f € L2(R(™™), d¢) and [\, p, k] € G.

Lemma 18. For each a € J, the image of L? (R(m’"),df) under Oaq,q 18
contained in Haq,q. Moreover, the mapping Yaq,o S a one-to-one unitary
operator of L? (R(m’"), d§) onto Hm,q preserving the norms. In other words,
the mapping

Ipta L2 (RW”), dg) — Hpta
18 an isometry.

Proof. We already showed that ¥ o, preserves the norms. First we observe
that if (Ao, o, ko) € I'r and g = [\, i, K] € G,

(Ao, Ho, Ko0) © g = [Ao, fo, Ko + Ho Do) © [A, 1, K]
=[Xo+ A po + 1, &+ Ko + po Ao + Ao L+ o).

Thus we get
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(IMm.af)((Aos ko, ko) © g)
_ 6271'1' oc{ M (k+ko+po No+Xo 4 t)\o)}

% Z FON+ Ao+ N) e2mio{(a+2MN) *(po+m)}
Nez(m:n)
_ (MR | 2rio(Me) | 2riolan) 3 () 4 N) 2o l(k2MN) )
Nezlm,n)
= ) (9, £)(a).

Here in the above equalities we used the facts that 20(MN tug) € Z and
alpy € Z. It is easy to show that

/ 9p0f (@) dg = / FOV2dA = [I]12 < oo.
I \G )

R(m,n
This completes the proof of Lemma 18.

Finally it is easy to show that for each o € J, the mapping Y4 inter-
twines the Schriodinger representation (U SM L2 (R(m’”),df)) and the rep-
resentation (maq,q, Hat,a). Therefore, by Lemma 18, for each oo € J, Taq,a
is unitarily equivalent to U(oaq) and so mag,q is an irreducible unitary rep-
resentation of G. According to (1.6.20), the induced representation ma is
unitarily equivalent to

@ Upm  ((det 2M)™-copies ).

This completes the proof of Theorem 8. (]

Now we state the connection between the lattice representation and theta
functions. As before, we write V = R(™™) 5 R07n) o2 ¢lmn) - 1, — 7(mn)
Zm") and M is a positive symmetric half-integral matrix of degree m. The
function gaq : L — R/2Z = [0,2) defined by

am((&m) = 20(ME™), (&n) €L (1.6.24)

satisfies the condition (1.6.8). We let waq,q4,, : I — C7 be the character of
I'y, defined by

QDM,QM((Z’ H)) = eQWiU(MR) eﬂ—iq'M(l) ’ (lv K) € FL.

We denote by Hag,q,, the Hilbert space consisting of measurable functions
¢ : G — C which satisfy the conditions (1.6.24) and (1.6.25):

o((l,k)0g) = amqu (L k) P(g) forall (I,k) € ['tand g € G.  (1.6.25)
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| le@lrdsioe, g=rio (1.6.20)
FL\G
Then the representation
_ G
TMam = A, OM g0
of G induced from the character pa,q,, is realized in Haq,q,, as

(TMan(90) @) (9) = 0(990), 90,9 € G, ¢ € Hat,gus-

Let Haq,q,, be the vector space consisting of measurable functions F': V —
C satisfying the conditions (1.6.26) and (1.6.27).

FOA+ & p+n) = 2miotME A =10} p(y 1)) (1.6.27)

for all (A, ) € V and (&,n) € L.

/ NG = / S LCRIROYATES (1.6.28)
Given ¢ € Haq,q,, and a fixed element (2 € H,,, we put
Es(A\p) = (A p,0)), A, pe R, (1.6.29)
Fy(\ ) = ¢([A,1,00), A€ RO™™, (1.6.30)
Fog(\p) = e 2moMA2N ooy 1) A e ROV, (1.6.31)

In addition, we put for W = A2 + p € Cm™),
Vo,e(W) = das(A2+p) = Fou(\ p). (1.6.32)

We observe that FEg, Fy, Fio4 are functions defined on V and ¥go 4 is a
function defined on C(™"),

Proposition 6. If ¢ € Haq,q,, (§,n) € L and (A, p) € V, then we have the
formulas

Ey(A+ & p+n) = 2iotMEn+2n—u'Or g\ 1)), (1.6.33)
Fy(A+&pu+m) = e tmoMEW (3 p). (1.6.34)

Foo(A\+& p+n) = ¢ 2motMERTEH2202+20°0) py (X 1), (1.6.35)
If W =A2+necCm™m™ then we have

19_(37¢(W +EQ+1) = ef2rriU{M(§Qt§+2Wt€)} 1997¢(W). (1.6.36)

Moreover, Fy is an element of Hpq g, -
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Proof. We note that

()‘+€7M+7730) - (53777

€'+ o (A p,0).
Thus we have

EsA+&pn+n)=o(A+&pn+n,0))

= ¢((€7na _gt,u + 77t/\) © (/\a:uao))

— 2rioc{M(E n+A"n—p'e)} B((\, 1, 0))

= 2mio{M(E n+ A "n—p"E) }Ed)(/\ 1).

This proves the formula (1.6.33).
We observe that

A+&p+n,0] = (&,

& —ptE—=n'€) o[\ p,0].
Thus we have

FoA+&pn+n) = o(A+& 1 +n,0])
— e 2mio{M(E ntptE+n'E)}
x 2o (ME (A, 1, 0])
— et MEN) ([, 0)
= TN () ).
This proves the formula (1.6.34).
According to (1.6.34), we have

— Tl O ¢
FooA+&p+n) = e 2moiMOTOLT OO By 4 ¢ i+ 1)
— e 2mio{ MO+ 2 (A +8)}

~ 6747ria(M£t,u) F¢()\,LL)
_ 6727ria{M(£Qt§+2)\Qtf+2;¢t§)}

: t
% 6727”, o(MAR2N)

Fy(A p)
672m'a{/vl(§(2t§+2)\Q’f+2;ﬂ§)} Fo ¢()\ M)

This proves the formula (1.6.34). The formula (1.6.35) follows immediately
from the formula (1.6.34).

Indeed, if W = A2 + p with A, x € R(™™) | we have
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oW + Q2 +1) = Fos(A+& p+n)
— e 2mio{M(EQTE+2(A2+p) ')} Fos(\ p)
= e 2mioIMER  H2W IO} ) (1),

O

Remark 4. The function ¥ (W) is a theta function of level 2M with re-
spect to §2 if ¥ ¢ is holomorphic. For any ¢ € Ha,q,,, the function Jg 4
satisfies the transformation law (1.2.1) of a theta function. In this sense, the
lattice representation (Tag,q.,, HM,qn ) 1S closely related to
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1.7 Coadjoint Orbits

In this section, we find the coadjoint orbits of the Heisenberg group Hﬂg{mm)
and describe the connection between the coadjoint orbits and the unitary
dual of Hﬂ({“m) explicitly.

For brevity, we let G := Hﬂ(gn’m) as before. Let g be the Lie algebra of G
and let g* be the dual space of g. We observe that g can be regarded as the
subalgebra consisting of all (m + n) x (m + n) real matrices of the form

000 3

()CO m.,n m,m
X(a, B,7) = Oog_la , a, B € ROMM |y =ty ¢ RO

000 0

of the Lie algebra sp(m + n,R) of the symplectic group Sp(m + n,R). An
easy computation yields

[X(a, B3,7), X(5,¢,6)] = X(0,0,a’e+ea— 35— 50).

The dual space g* of g can be identified with the vector space consisting of
all (m +n) x (m + n) real matrices of the form

0% 00
F(a,b,c) = 8 % 8 8 a,be R =t c RMmM)
bec—-a0
so that
(F(a,b,¢), X(a, 3,7)) : = o(F(a,b,c) X (o, 3,7)) (1.7.1)

=20(taa+DB)+o(cy).

The adjoint representation Ad of G is given by Adg(g)X = gXg~! forge G
and X € g. For g € G and F € g*, gFg~! is not of the form F(a,b,c). We
denote by (gFg~1), the
0%00
0000
0%00

PEEA

— part

of the matrix gFg~!. Then it is easy to see that the coadjoint representation
Ady, : G — GL(g*) is given by Ad%(g)F = (gFg')., where g € G and
F € g*. More precisely,

Adg(9)F (a,b,¢) = F(a+ cu,b— e ), (1.7.2)
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where g = (A, i, ) € G. Thus the coadjoint orbit 2, of G at F(a,b,0) € g*
is given by

Qb = AdL(G) F(a,b,0) = {F(a,b,0)}, a single point (1.7.3)

and the coadjoint orbit 2, of G at F(0,0,c¢) € g* with ¢ # 0 is given by
0. = Ad%(G) F(0,0,¢) = {F(a,a ¢)| a,b e RO™™ } . (1.7.4)

Therefore the coadjoint orbits of G in g* fall into two classes:

(I) The single point { 244 | a,b e Rmm) } located in the plane ¢ = 0.
(II) The affine planes { . | c="'ce RM™M) ¢4 0} parallel to the ho-
mogeneous plane ¢ = 0.

In other words, the orbit space O(G) of coadjoint orbits is parametrized
by
c—axis, ¢ #0, ¢ = fc € RImm);
(a,b)—plane = R(™7) x RO™7),

The single point coadjoint orbits of the type (2,5 are said to be the degenerate
orbits of G in g*. On the other hand, the flat coadjoint orbits of the type (2.
are said to be the non-degenerate orbits of G in g*.

Since G is connected and simply connected 2-step nilpotent Lie group,
according to A. Kirillov (cf. [16] or [17] p.249, Theorem 1), the unitary dual
G of G is given by

G = (R(m"”) X R(m’”)) H {z eRMM | 2=t 24 O} , (1.7.5)

where ][ denotes the disjoint union. The topology of G may be described as
follows. The topology on {c-axis— (0)} is the usual topology of the Euclidean
space and the topology on {F(a,b,0)|a,b € R(™™} is the usual Euclidean
topology. But a sequence on the c-axis which converges to 0 in the usual topol-
ogy converges to the whole Euclidean space R(™7) x R(™") in the topology
of G. This is just the quotient topology on g*/G so that algebraically and
topologically G = g°/G.

It is well known that each coadjoint orbit is a symplectic manifold. We
will state this fact in detail. For the present time being, we fix an element F
of g* once and for all. We consider the alternating R-bilinear form Br on g
defined by

Br(X,Y):= (F[X,Y]) = (adj(Y)F,X), XY eg, (1.7.6)

where ady : g — End(g*) denotes the differential of the coadjoint rep-
resentation Adg : G — GL(g*). More precisely, if F' = F(a,b,c), X =
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X(a, B,7), and Y = X (d,¢,&), then
Br(X,Y)=oc{c(a‘e+ela—p'6—05'3)}). (1.7.7)
For F' € g*, we let
Gr={ge€G|Adg(9)F = F'}

be the stabilizer of the coadjoint action Ad* of G on g* at F. Since G is a
closed subgroup of G, G is a Lie subgroup of G. We denote by gr the Lie
subalgebra of g corresponding to G. Then it is easy to show that

gr =radBp = {X € g| ad;(X)F=0}. (1.7.8)

Here rad Br denotes the radical of Br in g. We let B F be the non-degenerate
alternating R-bilinear form on the quotient vector space g/rad B induced
from Bp. Since we may identify the tangent space of the coadjoint orbit
Nr =2 G/Gr with g/gr = g/rad Bp, we see that the tangent space of 2 at
F' is a symplectic vector space with respect to the symplectic form Br.

Now we are ready to prove that the coadjoint orbit 2 = Adf(G)F is a

symplectic manifold. We denote by X the smooth vector field on g* associated
to X € g. That means that for each ¢ € g*, we have

X(0) = ad}(X) L. (1.7.9)
We define the differential 2-form Bg, on 2 by
B, (X,Y) = Ba,(ad}(X)F,adj(Y)F) := Bp(X,Y), (1.7.10)
where X, Y € g.

Lemma 19. By, is non-degenerate.

Proof. Let X be the smooth vector field on g* associated to X € g such that
Bg,(X,Y) =0 for all Y with Y € g. Since B, (X,Y) =Bp(X,Y) =0 for
allY € g, X € gr. Thus X = 0. Hence By, is non-degenerate. O

Lemma 20. Bg, is closed.
Proof. If )?1, E, and 3(; are three smooth vector fields on g* associated to
X1, X9, X3 € g, then
dBQF (Ev)?;;:)—(\;))

= X1(Bap (X2, X3)) = Xa(Bap (X1, X5)) + X3(Ba, (X1, X2))

~ B, ([X1, Xa], X5) + Bap (X1, Xs], X2) — Ba, (X2, X3], X1)

= —(F, [ X1, Xa], X3] + [ X2, X3], X1] + [X3, X1], X2])

=0 (by the Jacobi identity).
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Therefore Bg,. is closed. 0

In summary, (2F, Bg,) is a symplectic manifold of dimension 2mn or 0.

In order to describe the irreducible unitary representations of G corre-
sponding to the coadjoint orbits under the Kirillov correspondence, we have
to determine the polarizations of g for the linear forms F' € g*.

Case I. F' = F(a,b,0); the degenerate case.

According to (1.7.3), 2r = 2, = {F(a,b,0)} is a single point. It follows
from (1.7.7) that Bp(X,Y) = 0 for all X,Y € g. Thus g is the unique
polarization of g for F. The Kirillov correspondence says that the irreducible
unitary representation m,; of G corresponding to the coadjoint orbit (2, is
given by

Tan(exp X(a, 8,7)) = 2™ EX(@Bm) — gdmio(fac+b0) (1.7.11)

That is, 7,4 is a one-dimensional degenerate representation of G.

Case II. F = F(0,0,¢), 0 # ¢ = tc € R0™™) : the non-degenerate case.

According to (1.7.4), 2p = 2. = {F(a,b,c)| a,b € R(mm) }. By (1.7.7),
we see that

t={X(0,8,7)| BeR™M, y="yecRm™ ] (1.7.12)

is a polarization of g for F' i.e.,t is a Lie subalgebra of g subordinate to F' € g*
which is maximal among the totally isotropic vector subspaces of g relative
to the alternating R-bilinear form Bg. Let K be the simply connected Lie
subgroup of G corresponding to the Lie subalgebra € of g. We let

Xe,t - K — (Ci<
be the unitary character of K defined by
Xe.e(exp X (0, B,7)) = 2™ (X 08:7)) — 2mio(en), (1.7.13)

The Kirillov correspondence says that the irreducible unitary representation
m,e of G corresponding to the coadjoint orbit {2r = (2, is given by

er = Ind§ xee- (1.7.14)

According to Kirillov’s Theorem (cf. [16]), we know that the induced repre-
sentation 7. ¢ is, up to equivalence, independent of the choice of a polarization
of g for F. Thus we denote the equivalence class of 7. by m.. 7. is realized
on the representation space L*(R(™™) d¢) as follows:

(e(9)f)(€) = ezm‘a{c(m+ut>\+2£tu)}f(§ + ), (1.7.15)

where g = (\, 1, k) € G and ¢ € R(™™), Using the fact that
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1
eXpX(a76a’Y): (aa6a7+2(atﬁ_6ta)>v

we see that 7. is nothing but the Schrodinger representation U. = U(o,.) of
G induced from the one-dimensional unitary representation o. of K given
by 0c((0, g, k) = €2 7R [ (cf. (1.4.6) and (1.4.8)). We note that . is the
non-degenerate representation of G with central character x. : Z — Cf
given by x.((0,0,k)) = e2™ 7). Here Z = {(0,0,k)| k = 'k € RI™m™) }
denotes the center of G.

It is well known that the monomial representation (770, L? (R(m’”), d§)) of
G extends to an operator of trace class

Te(¢) : L2(R™™ dg) — L2 (RU™™), dg) (1.7.16)

for all ¢ € C°(G). Here C°(G) is the vector space of all smooth functions
on G with compact support. We let C°(g) and C(g*) the vector space of
all smooth functions on g with compact support and the vector space of all
continuous functions on g* respectively. If f € C2°(g), we define the Fourier
cotransform

CFy:C2(9) — C(g")
by

(CF(f)) (F') = / (X)X X g, (1.7.17)
g

where F’ € g* and dX denotes the usual Lebesgue measure on g. According
to A. Kirillov (cf. [16]), there exists a measure § on the coadjoint orbit 2, ~
RO™1) x RO™7) which is invariant under the coadjoint action of G such that

trml(¢) = / CFy(¢ o exp)(F')dB(F') (1.7.18)
2.

holds for all test functions ¢ € C2°(G), where exp denotes the exponentional
mapping of g onto G. We recall that

T (O)(f) = /G 6(2) (me() f) do,

where ¢ € C°(G) and f € L*(R(™™ d¢). By the Plancherel theorem, the
mapping
S(G/Z) 3 ¢ — mi(p) € TO(LA(R™™, d§))

extends to a unitary isometry

w2 LX(G)Z, x.) — HS(L*(R™™ dg)) (1.7.19)

of the representation space L2(G/Z, x.) of Ind§ x. onto the complex Hilbert
space HS(L2 (R(mvn), d{)) consisting of all Hilbert-Schmidt operators on
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L2 (R d€), where S(G/Z) is the Schwartz space of all infinitely differen-
tiable complex-valued functions on G/Z = R(™7) x R(™") that are rapidly
decreasing at infinity and T'C (L2 (R(m’”),df)) denotes the complex vector

space of all continuous C-linear mappings of L2 (R(m’”), df) into itself which
are of trace class.

In summary, we have the following result.

Theorem 9. For F = F(a,b,0) € g*, the irreducible unitary representation
Tab Of G corresponding to the coadjoint orbit 2 = (2. under the Kirillov
correspondence is degenerate representation of G given by

Tap(exp X(a, B,7)) = e*mioCaa=td),

On the other hand, for F = F(0,0,¢) € g* with 0 # ¢ = tc € R"™™)_ the irre-
ducible unitary representation (7rc7 L2 (R(m’"), df)) of G corresponding to the
coadjoint orbit 2. under the Kirillov correspondence is unitary equivalent to
the Schridinger representation (UC,L2 (R(m’”),df)) and this non-degenerate
representation m. is square integrable modulo its center Z. For all test func-
tions ¢ € C°(Q), the character formula

trm2(¢) = C(¢,c) / (0,0, k) €27 7() g

R(m,n)

holds for some constant C(¢, c) depending on ¢ and c, where dxk is the Lebesgue
measure on the Euclidean space R™™).

Now we consider the subgroup K of G (cf. (1.4.1)) given by
K= { (07075) € G‘ ne R(m’n)7 k="K e R(m,m) }

The Lie algebra ¢ of K is given by (1.7.12). The dual space £* of ¢ may be
identified with the space

{F(Oab7 C) | b S R(m,n)’ c = tC c R(m,m)}

We let Ad}, : K — GL(*) be the coadjoint representation of K on £*. The
coadjoint orbit wy, . of K at F(0,b,c) € €* is given by

wpe = Adj (K) F(0,b,¢) = {F(0,b,c)}, a single point. (1.7.20)

Since K is a commutative group, [¢, €] = 0 and so the alternating R-bilinear
form By on £ associated to F' := F(0,b,c) identically vanishes on € x &(cf.
(1.7.6)). € is the unique polarization of ¢ for F' = F(0,b,c). The Kirillov
correspondence says that the irreducible unitary representation x;. of K
corresponding to the coadjoint orbit wy . is given by

Xb.c(eXpX(O,ﬂ,’Y)) — e271'2' (F(0,b,c),X(0,8,7)) — 627ri0'(2tbﬂ+c'y) (1721)
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or
Xb,c((0, , K)) = 62””(2%‘”””), (0,p, k) € K. (1.7.22)

For 0 # ¢ = tc € R(™™) we let 7. be the Schrédinger representation of G
given by (1.7.15). We know that the irreducible unitary representation of G
corresponding to the coadjoint orbit

20 = AG(G) F(0,0,¢) = { F(a,b,¢)[a,b ¢ RO |

Let p : g* — £* be the natural projection defined by p(F(a,b,c)) = F(0,b,¢).
Obviously we have

p(2) = {FO.b,c) [ beR™ L= ] w,.

beR(nL,n}

According to Kirillov Theorem (cf. [17] p.249, Theorem 1), the restriction
7e|k of m. to K is the direct integral of all one-dimensional representations
Xb,c of K (b € R(m’”)). Conversely, we let x . be the element of K correspond-
ing to the coadjoint orbit wy . of K. The induced representation IndIG( Xb,c 18
nothing but the Schrédinger representation m.. The coadjoint orbit {2, of G
is the only coadjoint orbit such that 2. N p~!(wp ) is nonempty.
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1.8 Hermite Operators

We recall the Schrédinger representation U, of G induced from o, (cf. (5.8)).
We consider the special case when ¢ = I,,, is the identity matrix of degree m.
Then it is easy to see that

AUy, (DY) f(§) = 2mi b f(£),

W, (D) 16) = T,

dUr,, (D) f(€) = 4mi &y £(6),

where f € S(R™™) or C*(R), the Schwartz space and &11, - - - , &y are the
coordinates of £. In section two, we put

Zp i =—iDy, 1<k<l<m,
1 ~
thzzi(kaLkaa), 1<k<m,1<a<n,
1 ~
YE;Z:i(le_ile), 1§l§m,1§b§n
We set
+ +y_ L : A
Ao = dUr, (Yy,) = 5 dUr, (Dra) + 5 dUr,, (Dia), (1.8.1)
_ _ 1 7 ~
Alb = dU[m (Y—lb ) = 5 dU[m (le) - 5 dU]m (le)) (182)
and
Cr 1= dUy, (Z) = —idU;, (DY)). (1.8.3)

By Lemma 2, we have
(A5, Ap] = dab Ch,
[A;LHAZH = [Al;a’A;b} = 07
[Cris Crnn] = [Chts Al = (O Arna) = 0.
In particular, we have
Al A ]=2r-1d, 1<k<m, 1<a<n. (1.8.4)

We note that Af and Aj acts on the Schwartz space C*(R(™™) or
S(R™™)Y as the following linear differential operators

+_1(9o _
Aka - 9 (8&“1 47r£ka) (185)
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and

_ 1[0
Alb = 5 (8&17 - 47T§lb> 5 (186)

where 1 < k,l <m and 1 < a,b < n. The differential operators Aﬁa and A,
are called the creating operator of energy quantum and the annihilation operator

of energy quantum respectively. It is easy to see that the adjoint of A, is
—Af.

We start with the ground state fo(§) given by
fo€) = (V2)mme TR R 6. (18.7)
By an easy computation, we have
(Fo, fo) =1, A (fo)=0 (1.8.8)

forall 1 < k < m and 1 < a < n. This means that fy is a unit vecter
in L2(RU™™) d¢) which is annihilated by the annihilation operator A
SR™™)) — S(R™™), For any J € Zgg’"), we define

F1&) = (AT fo(&) == (Af) T - (Af) e - (AL,) ™ fo(§). (1.8.9)

We give a lexicographic orderring on Z(rg’n). That is, for J, K € Z(;S"n), J <
K if and only if J1y = K11, , Ji; = Kij, Jijo1 < Kijpr, - .

Lemma 21. For each k,a with 1 <k <m and 1 < a <n, we have

A];a<fJ) = 727‘(;]]{(1 fJ_Eka. (1810)

Proof. We prove this by induction on J. If J = (0,---,0), (1.8.10) holds.
Suppose (1.8.10) holds for J. For J = J + €kq,

Ao (Frtena) = Apg 0 A;f,a(f,])
= (A, 0 Ay, — (AL, AR ()
= Al (=27 Jra freen) =27 f4
=27Jpa fr—27f;
=27 (Jka + 1) f-

This completes the proof. ([

Lemma 22.
(27r)'] J' ifJ=K

0 otherwise.

(f1,fr) = {

Proof. If J > K, we have
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(fr.fre) = (A7) fo, (AN fo)
(=1)7{fo, (A7)7 o (A7) fo)
0 (by Lemma 21).

In case J < K, (f;,fx) = (fx,f7) = 0. In case when J = K, we prove
the above identity by induction on J. If J = (0,0,---,0), then { fo, fo) =
Assume that (fy, f7) = (27)” J!. Then according to (1 8.4) and Lemma 21
we have,

(fJ+eka»fJ+eka > = <Aza(fJ>7A:a(fJ)>
(£, Aa 0 ALL(£2))
= —(fr. (A, 0 Ay, — [Al A fr)
=—(f1, 27 Jpa f5r =27 f7)
=27 (Jpa+1)(fr. f7)
= (27m)7 % (J + €ra).

]

We define the normalized function h; € S(R(™™) by
hy = (1>J IN"V2f, Jezlmm, (1.8.11)

Vo e

Lemma 23. For each J € Z(m ") and all k,a € Z with 1 < k < m and
1 <a < n, we have

Af(hy) =127 (Jra + D} hyger, (1.8.12)

and
Ap(hy) = =27 Jya)? hy—ey,- (1.8.13)

Proof. According to (1.8.9), we have

1

J
AL (b)) = ——=) (U2 [
k:a( J) (\/ﬂ) ( ) fJ"r ka
=22 (Jra + DV hyte,,

= {27T(Jkra + 1)}1/2 hJ+5ka‘

According to Lemma 21, we have
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J
M) = (=) Y200

_ (\/12?) ’ (I V2 (=2m) Jeafr—ena
1

J—€ka
——rn) (=) e
= (27 Jra)Y?hy e,
O

Lemma 24. For each J € Z(;g’n) and k,a € ZT with 1 < k < m and
1 <a <n, we have -

Al 0 A, (hy) = =27 Jyahy, (1.8.14)
Ay o A, (hy) = =27 (Jpo + 1) By (1.8.15)
Proof. It follows immediately from (1.8.12) and (1.8.13).
Ao 0 Ay (hy) = =27 Jya) 12 Ay (B —r)
= —(27‘(‘ Jka)l/Q (27T'Jka)1/2 hJ
= —(27TJ;m) hj,
A oAb (hy) = {27 (Jra + 1)} AL (hise,)

=27 (Jpa + D} (1) {20(Jpa + 1)} % by
= —27T(J]m + 1) hy.

The linear differential operators

2

_ 1/ 0
Az_a OAka = 1 (8513& - 1671-2513@ +47T>
and

2
A= oAt =1 87—167352 — 47
ka ka 4 8513 ka

are called the number operators for the family {h;|J € Z(;g’")}. Now we
consider the so-called Hermite differential operator -

82
- o¢,

Hy, is also called the Schrodinger Hamiltonian for the harmonic oscillator
system in quantum mechanics. Obviously we have

Hka 1= =2 (A;:a ° Al;a + AI:a ° Aza) = + 16 7T2 é-l%a'
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1
Hia(hy) =87 (J;m + 2) hy,  Jez{m. (1.8.16)

Thus the { hy|J € Zg’é’n) } is the set of normalized eigenforms of all Hermite
operators Hy, with eigenvalues {877 (Jia + %) | J € Z(m’")}. In other words,
each hy (J € Z™™) is the harmonic oscillator wave function with equidis-
tant energies {87r (Jka + %) [1<k<m,1<a< n} in natural units. The
Hermite operator Hy, acts on the Schwartz space S(R(m’”)) c L? (R(m’"), d§)
and is self-adjoint.

Lemma 25. For each J € Z(;g’") and k,a €Z with1 <k<mand1l<a<

| hy(=€) = (=1)” hs(8), (1.8.17)
(agm - 47T§ka) ha(€) =2 {27 (Ja + D}? hysen, (), (1.8.18)

hy = (i)’ hy, (1.8.19)

CF(hy) =i . (1.8.20)

Thus hy and CF(hy) satisfy the differential equation (1.8.18). Here f(n)
denotes the Fourier transform of f(§) on R™") defined by

) ;:/ F€)e2m e g, e RO
R(m,n)
and CF(f) denotes the Fourier cotransform of f on RU™™ defined by
CF(f)(€) :z/ fn)e2™imn& gy ¢ e R,

R(m,n)

Proof. (1.8.17) is obvious. (1.8.18) follows immediately from (1.8.5) and
(1.8.12). (1.8.19) and (1.8.20) follow from a simple computation. O

For &€ = (£0) € RO™™ | we briefly put [¢2 := 3731, > €2 . We define
the functions Py (J € Z(;g’n)) by

hi(€) 1= Py(€) e I g e R, (1.8.21)

Indeed, P;(&) are the Hermite polynomials of degree J = (Ji1, -+, Jmn)
normalized in suclzl a way that they form an orthonormal family in
L? (R(m’”), e~ 4mlel dE) (it will proved later).

Lemma 26. For each J € Z(ng’n) and k,a € Z1t with 1 < k < m, and
1 <a<n, we have -
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ifgk(g) — 87 &ka Pr(€) = 2027 (Jha + D}? Prie, () =0 (18.22)
and 5
PJaEEM(S) + 2{277(Jka + 1)}1/2 PJ(&) —0. (1823)
ka

Proof. (1.8.22) follows from (1.8.18). (1.8.23) follows from (1.8.6) and (1.8.13).
O

Differentiating (1.8.22) with respect to q, and then using (1.8.23), we see
that P;(€) satisfies the so-called Hermite equation.

9*Py(§) oP;(§)
65130, afka

where J € Z(Zmo’n), 1<k<mandl <a<mn Weset Org := ag%' Then
(1.8.24) becomes

— 87 &ka + 87 Jpa Py(§) = 0, (1.8.24)

6£QPJ(£) - 8776]6(1 8ka PJ(&) + SWJkaPJ(f) =0.

Differentiating (1.8.18) with respect to £, we obtain

Of b (€) — 4T o Okahs (§) — AT hy(€) (1.8.25)
—2{27 (Jpa + D)}/? Okahse,, (€) = 0.

By the way, according to (1.8.23), we have

6kahJ+€ka (f) = 8kaPJ+6ka (5) 6_277‘5‘2 - 47T§ka PJJrElm (f) 6_27"‘5‘2
=—2{27 (Joa + D}/2 0y (&) — 47 Eka hysep, ().

If we substitute this relation into (1.8.25), we obtain
1
B2y (€) — 1672 €2, hy(€) = —87 (Jka N 2) ). (1.8.26)

Theorem 10. The set {h] | J € Z(;S’n) } of normalized Hermitian function

in S(RU™™) forms an orthonormal basis of L? (R(m’”),df). These hy are
eigenfunctions of the Fourier transform and the Fourier cotransform with
eigenvalues (—i)? and i’ respectively.

Proof. If X is a left-invariant vector field on G, we set, for brevity
U(X):=dUp,, (X).

We will prove that the set
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Ul expg | Y @raDra+ > ynDu | | (f0) | Thasy € R

k,a Lb

(1 <kl<m,1<ab<n)is contained to the closed vector subspace of
L2(R(™™) d¢) spanned by the set {h;|J € Z(an’") } and the subspace gener-
ated by the above set is invariant under the action of U. Since the Schrédinger
representation (U 7., L? (R(m’"), df)) is irreducible, we conclude that the set

{hJ | J € Z(m ™) } is a complete orthonormal basis for L? (R(m’”), d{).

Accordlng to the commutation relation among DY, Dy, Blb (cf. Lemma
2.1) and the fact that U(DY,)f = 27i 8 f for all f € S(R™™), it suffices
to prove the case m = 1 and n = 1. We put D° := DY,, D := D;; and
D:= ﬁu. In other words, it remains to prove that the set

{U(expc(fBD +yD))(fo) | z,y € R}
is contained in the closed vector subspace of L?(R,d¢) spanned by the set
First we note that by (1.8.1) and (1.8.2)

At = % (U(D) +iU(f>)) and A~ = % (U(D) —iU(ﬁ)) .

For the present time being, we fix real numbers z,y € R. We put z = x+iy €
C. Tt is obvious that U(xzD+yD) = ZAT +zA~. For all integers k > 0, £ >0
with 0 < k < ¢, We define the complex numbers cgy by

U(zD +yD)( ch efk-

By the fact that A~ (fo) = 0 and by (1.8.10), we have

4
U(zD + yD)* (fo) = (AT + 247) (Z Cht fk>

k=0

¢
Z (Zfes1 — 27k z fr_1).

k=0
Thus we get the recurrence formula
Cho41 = 2Ch—10 — 27T (k+1) Z Cl41,05 1<k</¢-1.

Let z = |z]e2™ %% with ¢ € [0,1) for z # 0. We put
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N\ {l+E . L\ =k
A= (J2172em9) 7 (@rla)2em D) g
Then we have the recurrence formula

dio41 = dp—10+ (k+ 1) diy1 0, 1<k<i-1.

For 1<k </{¢-—1, weput
b= do—pe.

Then we get the recurrence formula
bi ¢ Zbk’efl-i-(g—k-f—l) br—2.6-1, 2<k</i-1.

If the starting value is by ¢ and we define by o = 0 for £ > 1, then we get

1
bopt+1,0 =0 for 0<p< 5(6 —-1)

and
bope = 671 for 0<p< 15
WET i —opy O T =P =%
So we obtain
~ ¢
U(zD +yD) (fo) = > ckefr
k=0
- 1/2 A 12 mi(e—3) "
=S (1aM2emie) T (@mla) e e D)
k=0

¢ \20—k , k
=Y (12 eme) T (@ le 2 e D) b fon
k=

i 20—2p . 2p
:Z (|Z‘1/2 e—wzga) ((27T|Z|)1/2 em(w—%)) bop.e fr—2p
p:

2!
— FH=p(_9 P
pz:;)Z 2 i T

0
p! (£ —2p)! fe-p:

Thus we get
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U@D+yD) gy — i % U(xD +yD)*(fo)
£=0
- oo [5] 1, » 2!
=33 R g e
B oo 13] 1 2\p 5£—2p
=20 gy Y e

8

o0 sk
- ; Z —|2P*) } T
:677T|z| 62A+(f0)

_ ey (V2r2)

Wk,
G

Therefore U(eXpG(xD+yﬁ))(f0) belongs to the closed subspace of L2(RR, d¢)
spanned by the set {h;| j = 0,1,2,---}. The latter part of the theorem
follows immediately from (1.8.19) and (1.8.20). This completes the proof. O

Corollary 1. The set {PJ |J € Z(;S’") } of Hermite polynomials forms an
orthonormal basis for the L?-space L? (R(m’"), 6_4”‘5‘2d§).

Proof. The proof follows immediately from Theorem 10 and (1.8.21). O



74 1 Heisenberg Groups

1.9 Harmonic Analysis on the Quotient Space of Hﬂén’m)

We fix an element (2 € H,, once and for all. Let M be a positive symmetric
half-integral matrix of degree m. Let L?(R(™™ d€; r¢) be the L2-space of

R(™™) with respect to the measure

déo m = eﬂiU{Mf(Q—ﬁ)tﬁ}dg.

It is easy to show that the transformation f(&) —— e™ioIMERTE} f(¢) of
L2(R™™) dég aq) into L?(RU™™ d€) is an isomorphism. Since the set

{71 T€ Z(ZWS’") } is a basis of L2(R(™™) dég (), the set
{eﬂiU{MEQtf} §J| Je Z(ZW(;,TL) }

is a basis of L? (R(m’”), dﬁ). We observe that there exists a canonical bijection
A from the cosets 7 : = Z™™ /(2M)Z(™™) . We denote by A, the image of
a € 7 under the bijection A.

For brevity, we put G = HH(Q”’m). For each A, € £ and each J € Zg’é’n),

we define a function QSF]M) {%a] (£2]-) on G by

M [fﬂ (2|(\ 1)) -

— lerio‘{M(n—)xt,u)} Z (/\—FN—FA(X)J (].9].)
NeZ(m,n)

« 2T o {M((A+N+A44)02 FOMNHAL) +2(0+N+AL) )}
)

where (A, pu,k) € G. We let I'¢ = Hgb’m) be the discrete subgroup of G
consisting of integral elements. That is,

I'c ={(\u,k) € G| A\ u,~ integral } .

According to [42], Proposition 1.3, the function Q(JM) {%a] (2|/(\, 1, k) sat-

isfies the transformation behaviour
M Aa M Aa
o0 [5] (@hog) =820 [ ] @l (19:2)
holds for all v € I'¢ and g € G. Thus the functions

Aa m,n
o || @ounmy (7 257)



1.9 Harmonic Analysis on the Quotient Space of H]I(;L’m> 75

are real analytic functions on the quotient space I'¢\G. Let H EM) {%’1] be

the completion of the vector space spanned by
M Aa m,n
P {o} (@A r) (7 €28™)

A

and let HSY [ 0’)‘} be the complex conjugate of HS [AO‘} .

0

Let L?(I'c\G) be the L2-space of the quotient space I'z\G with respect
to the invariant measure

d/\ll e d>\m,n—1d)\mnd/f511 o dﬂm,n—ldﬂmndﬁlldHIQ o dﬁ:mm-

Let p be he right regular representation of G' on the Hilbert space L?(I'c\G)
given by
(P(go)¢)(g) = ¢(ggo)7 90,9 € G7 ¢ € LQ(FG\G)

In [42], the author proved that the subspaces H §2M) [%‘“} and H EM) [1%&}

are irreducible invariant subspaces of L?(I'c\G) with respect to p and the
decomposition of the right regular representation p is given by

L*(I'c\G) = @H(M ﬁa} B A@ G ﬁf‘]
’ <® R(C)> & @ Cezﬂig(kt}\+2t#) )

k,ez(m.m)

where M (respectively ¢) runs over the set of all positive symmetric half
integral matrices of degree m (respectively the set of all half integral nonzero
matrices of degree m which are neither positive nor negative definite), R(c) is
the sum of irreducible representations 7. which occur in p and A, runs over
a complete system of representatives of the cosets (2M)~1Z(mm) /7,(mn),

Lemma 27. The transform of L? (R(m’"), df()yM) onto H}ZM) {%’x] given by

¢ —s (M [iﬂ (2|(\, 1, %)) (1.9.3)
is an isomorphism of Hilbert spaces.
Proof. For the proof, we refer to [42], Lemma 3.2. O

We write ‘ .
!%) (€) 1= 2rioMEL T g ¢ Z<m 12 (1.9.4)
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We let 45((;\2 be the transform of L? (R(mvn), d¢) onto H?ZM)

/(1)0‘} defined by
M M Aa
240 (759) =25 ] (@100 ). (195

Then (P({ﬁ) is an isometry of L? (R(m’"), df) onto H§2M) [f(l)a} such that

US,M (()‘7 Hs ’%)) o é_((zj\;;) = Q%) o US,M ((Aa —Hs _H))v
where UM is the Schrodinger representation of G defined by (6.45).

Let Ap aq be the isometry of L? (R(m*”),dﬁgM) onto L? (R(m’”),df) de-
fined by
(Apmf) () i = em otMELTE r(g). (1.9.6)

We define the unitary representation U™ of G on L2(R(™™) dég aq) by

(UsM@1) © = 255 (Ua™ @@amh) ©) . (19.7)
where f € L2(R(™™) dég o) and € € RO™™.

Now we write down the image of fg:fl]) € L2(R™™ d¢) under Yaqq (cf.
(1.6.22)) explicitly.

(9rad55) (pom))

M
= (D53 ) (gt 1)
_ eZwia{M(n+pt)\)} Z €2ﬂio{M(()\+N)Qt(>\+N)+2N”;¢)} ()\+N)J
NeZ(m,n)
_ eQWZ’O’{M(Ii*)\t,U.)JrOct,U.}
« Z ezmo{/\/t((A+N)Q‘(A+N)+2(,\+N)*u)} (/\+N)J.

Nez(m,n)

In particular, if « =0, x =0 and J = 0, then we have
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M
(9a10755") (0,1, 0))
:e’Q’Ti"(M’\t’*) Z ezwia{M((AJrN)m(,\JrN)+2(>\+N)m)}
Nez(m.n)

:ezma{M(,\(z‘AJr,\m)} Z 627ria{M(N(Z”N+2()\Q+,u)tN)}

NGZ(m”")

— 2mia{MA Q2N+ A W)} g(2M) {8] (2,02 + p).

Therefore we obtain

Proposition 7. Let M be a positive symmetric half-integral matrixz of degree
m. Let « € T and J € Z(ng’n). Then we have

M
(Patad 57 ) (O, 1))
_ eQﬂ'iO’{(H*)\tp,)JratM} Z eQﬂio’{M((A+N)Qt()\+N)+2()\+N) t,u,)}()\_’_N)J

Nez(m,n)

In particular,

Tio t ? 0
(930055) (o) = 0ot g2 [0 (93 2+ ),

It is easy to see that the following diagrams are commutative.

L2 (R0, dg) L0, (RO, de)

ﬁM,aJ/ lﬁm,a

HM o HM a
’ TM,a(9) ’
Il —_— I
TM,« TM,«
diagram 10.1
Us™M(g)

L2(RO™M, dég,m) ——— L*(RU™™, déa,m)

AQ,Ml lAQ,M

S,M(

L2 (R(m»n)) d§) L ON I2 (}R(mm)7 d§)
diagram 10.2
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LQ(R(mm) dé-) USMg) L2(R(m’n) df)

le lIM

UF,M
Hrm T, Hrm

diagram 10.3

US,M(

L2(Rmm de) L9 p2(Roma) ge)
o0 | [#620

HEM |:1%o¢:| pai(9) HEM ﬁ)a]

diagram 10.4

Here g € G and p4 denotes the restriction of the right regular representation

M) [Aa
ptoH§2 ) 0

are all the isomorphisms preserving the norms. Hence we have

. We know that the mapping o, Ao m, Im and @%)

Theorem 11. For each o € T, {2 € H,, and M positive symmetric half-

integral matrix of degree m, the following five representations are unitarily
(M)

equivalent to each other via the intertwining operators Y aq.o, Im, Dy o and
AQ7./\/[ :

(1) the Schridinger representation (US’M, L? (]R(m’”),df))7

(2) the lattice representation (Ta,as HM,a),

(3) the Fock representation (UF*M,HRM),

. M Ay,
(4) the representation (pM,Hﬁl ) [ 0 })

and

(5) the representation (Ug’M,L2 (RU™™) d€g pm))-

Remark 5. The multiplicity of the Schrédinger representation UM of G in
(p, LA(I'G\@)) is (det 2M)™.

We refer to [42] for detail. Theorem 11 may be pictured as follows.
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ME M

s

T Im
AM,a 19./\/1,o¢
L2(RO™™) dég ag) ——— L2(RO™™ d€) ——— Haqa

figure 10.5
Finally we describe explicitly the orthonormal bases of

L2 (R, dg), L2 (R, d€g.m), Hatas Hraa and HEY [ﬂ
respectively.

In the previous section, we proved that the family of the functions

m© = (=) O0Rae. Tenl”

forms an orthonormal basis of L? (R(m’”), df). Therefore the set

[emminen o ()| g e 7™ )

forms an orthonormal basis for L? (R(m’”), dfgwl). For each J € Z(ng’n), the
set of functions B

19/\4704,]()" ;U/v K) :
= (ﬁM,ahJ)()‘a 1y ’{)
_ e27ria{./\/l(/<c+ut)\+o¢t,u)} Z hJ(/\-FN) e47ria(,/\/th,u)’ Je Z(Z’ﬂé,n)
Nez(m.n)
(m,n)

forms an orthonormal basis for H .. For each J € Zy;, we define the
function -
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Hy m (Q100 1)) 2= 2775 (1) 712 (det 2M)"/ (det Tm 2)/4

x emioME=A L) N g (\/%(2/\/1)1/2 (A+ N+ Aq)(Im 9)1/2)
Nez(m:n)
« T o{M(A+N+44)0 FAFN+AL) +2(AM-N+AL) fu)}

where H;(€) is the Hermite polynomial on R("™™) in several variables defined
by

H;(&) := Hyy, (§11)Hy, (612) - Hy,, (§n)-

It was proved in [43] that the functions H(M) {A ] (2|(X\, 1, K)) (J € Z(;S’n))

form an orthonormal basis for H, (M) {% ] .

Theorem 12. We have an orthonormal basis for each of the above five rep-
resentation:

(1) The set { hy ’ J e Z(m " } forms an orthonormal basis for L? (R(m’"), dg).

(2) The set {e‘”io(Mth@ hyl Je Zgg’") } forms an orthonormal basis for
L2(RO™™ dég ump).

3) The set { Vafag| J € z{mm forms an orthonormal basis for Ha .
., >0 ;

(4) The set {@M g J € Z(m n) } (cf. (1.5.36)) forms an orthonormal basis
for HF,M-

(5) The set HSM) [Aa} (2|(\, 1, k) (J € Z(Z"é’n)) forms an orthonormal

basis for H(M) [% } .



Chapter 2

Theta Functions and the Weil
Representation

2.1 The Symplectic Group

We recall that
Sp(n,R) = {M e R®™2™) | ‘A J, M = J, }

is the symplectic group of degree n, where

0 I,
(58

If M = (A B> € Sp(n,R) with A, B,C, D € R(™™ then

CD
'AD-'CB =1,  'AC='CA, 'BD='DB. (2.1.1)
. A B
We note that Sp(1,R) = SL(2,R). The inverse of M = cp) € Sp(n,R)
is . .
_ _ D —'B
Mt =J "M, = (—tc tA)'

Since J, ! = —J, and ‘M~1J, M~ = J, with M € Sp(n,R), we see that
IMTYIAMTY =gt thatis, MJ, M = J,.

AB

Thus if M € Sp(n,R), then *M € Sp(n,R). If M = (C’ D

> € Sp(n,R), then

A'D-B'C=1,  A'B=B'A, (C'D=D'C. (2.1.2)
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AB
C D
(a) C2+ D is nonsingular.

(b) (A2 + B)(C2+ D)~! is an element of H,.

Lemma 28. Let M = ( ) € Sp(n,R) and 2 € H,,. Then

Proof. Let 2 = X +iY € H,, with X,Y € R and Y > 0. Then

(2) 0 (2) =0 o1

t(g) JnGi) =2iY > 0. (2.1.4)

S=A02+B and T=CN+D.
By (2.1.3), we have

() 6)-{

and

We set

By (2.1.4), we have
1t5JS_1fQJQ_Y0
2 \r)"\r) = %\s,) "\1,) = 20

1
24

Thus we have

‘ST —'TS=0  and ('ST-'TS)=Y >0. (2.1.5)

Assume Tv = (C2 + D)v = 0 for some v € C". Then Tv = 0, *v!T =0 and
hence

1 — =\ —
Q—itv(tST— 75TS)U =0.

By (2.1.5), v = 0 and so T = C{2 + D is nonsingular. This proves the
statement (a).
We set
2., =(AQ+ B)(CR+ D)~ =577

By (2.1.5), we have 2, = ‘2, and
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1 — 1 —
ImQ2, = — (2. - 2,) = — ("2 - 0.
m 2 = 53l )= 33 )
L1 temm _ tigy it
= =T T-'"TS)T
17— )
— iy T s .
Therefore {2, € H,,. This completes the proof of the statement (b). O

Lemma 29. The symplectic group Sp(n,R) acts on the Siegel upper half
plane H,, transitively by

M-Q2= (A2 +B)(CR+ D)™, (2.1.6)

AB

where M = (C’D

> € Sp(n,R) and 2 € H,,.

Proof. Let 2 = X +iY € H,, with X,Y € Sym(n,R) and Y > 0. It suffices
to show that there exists an element M € Sp(n,R) such that M-(il,) = (2.
We choose @ € GL(n,R) such that Q* =Y. We take

(L, X\ [tQ 0
w=(57) (5 "):

According to (2.1.2), M € Sp(n,R). Clearly M-(il,) = X +iY = (2. O
It is known (cf.[7], p.322-328, [15], p. 10) that Sp(n,R) is generated by

the following elements

ty = (Ig ;’) with b= b € R(™™),

ta 0 :
dy = 0 a1 with a € GL(n,R),

(0 -1,
Op = I, 0)°
Thus if M € Sp(n,R), det M = 1.

A subgroup I' is said to be discrete if I' N K is finite for any compact
subset K of Sp(n,R).

Theorem 13. A discrete subgroup I' of Sp(n,R) acts properly discontinu-
ously on H.,,, that is, for any two compact subsets Cy, Cy of H,,, the set

{7€F|’Y'Olﬁ027é@}
1s finite.

Proof. We can show that the mapping
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p: Sp(n,R) — H,, M — M -(il,), M € Sp(n,R)

is proper, i.e., for any compact subset X C H,, p~!(X) is compact in Sp(n, R)
(cf. [7], pp- 28-29). Suppose X; and X5 are two compact subsets of H,,. Then
Zy = p~1(X;) and Z; = p~1(X3) are compact in Sp(n,R). Since the image
of Zy x Z; under the continuous mapping (M, M) — MoM; ! is compact,
the set

ZoZit = {MoyM{| My € Zy, My € Zy}

is compact. It remains to show that {y € I'| v- X1 N Xy # 0} is finite. If
~ € I' such that v- X; N X5 # ), then

v = My - (il,) € Xy for some 27 € X; and My € Zs.

Since (y"1Msy) - (il,) = §21 € X1, we have v 1My € Z, that is, M2_17 S
Z ' Therefore v € MyZ; ' C ZyZ'. Since I' N ZoZ; ! is finite, the set
{vel'|ly-XiNXy#0} is finite. O

By Theorem 13, the Siegel modular group I, = Sp(n,Z) acts properly
discontinuously on H,,. Therefore the stabilizer (I7,) of 2 € H,, given by

(Mh)a={vel|y 2= 02}

is a finite subgroup of I,.

Let ¢ be a positive integer. The set
I(g)={Mel,| M=1I modq}

is a normal subgroup of I, because it is the kernel of the homomorphism
I, — Sp(n,Z/qZ) defined by v — ymod g. Tt is called the principal con-
gruence subgroup of level . We have I',(1) = I',. A subgroup I" of Sp(n,R)
which contains I, (£) for some positive integer £ as a subgroup of finite index
is called a modular group. A subgroup I" of I, which contains I, (¢) for some
positive integer £ as a subgroup of finite index is called a congruence subgroup

B
D) € I, such
that the diagonal elements of A’ B and C'*D are even integers is a subgroup
of I, called the theta group. For a positive integer ¢, we let

Inolg) = { <é g) er,

Then I, 0(q) is a congruence subgroup of I, containing the principal con-
gruence subgroup I, (q) of level q.

of I',. The subset Iy, of I3, consisting of elements v = (é

CEOmodq}.

Let £2; and {25 be two points of H,, and M = <é g) € Sp(n,R). We

write 2 = M-{2; (i = 1,2). Then by the symplectic conditions (2.1.1) and
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(2.1.2), we have
Q5 — 027 = YCy+ D) 12y — 21)(C2, + D)1 (2.1.7)

and
25— 02f = {(C2 + D)1 (25 — 21)(C2y + D)~ (2.1.8)

Let 2 =X +iY € H, with X,Y € R _If 2* = M -2, then we write
2* = X* +iY* with X*, Y* € RO, Then by (2.1.8),

- =1CN+ D) NN -2)(CR+D)? (2.1.9)
and hence
Y*=YCN+ D) 'Y (CR2+ D)L (2.1.10)
Therefore we obtain
detY* = detY - |det(Cf2 4+ D)| 72 (2.1.11)
And
A" = d(M-2) = d{(A2 + B)(CR+ D)™}

= AdQ(CN+ D)~ — (A2 + B)(CR + D)"'Cdn (CN + D)™ !
HCR+ D)"Y R('CA-"AC) + ("DA- 'BC)}d2 (CR+ D)™
= YCR+ D) lar(CN+ D)L

Thus we have
d* = '(CR+ D) 1d(CR+ D). (2.1.12)

By Formulas (2.1.10) and (2.1.12),
ds* = o(Y 1Y ~1d02)

is invariant under the action (2.1.6) of Sp(n,R). For §2 = il,,

ds® = Z (dz; + dy3;) + 2 Z (dz3; + dy3;).

i=1 1<i<j<n
Since Sp(n,R) acts on H,, transitively, ds? is an Sp(n, R)-invariant Rieman-
nian metric on H,.

The tangent space T (H,,) of H,, at {2 is identified with the vector space
Sym(n, C) consisting of all n x n symmetric complex matrices (cf. (2.2.20) in
Section 2.2). By (2.1.12), the differential

dMy, : T_(Z(Hn) — TM.Q(Hn)
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of the symplectic transformation M at {2 is given by
dMo(W) = "(CR2+D)* W (CR+D)~', W € Sym(n,C). (2.1.13)
We can see that the Jacobian of the symplectic transformation M € Sp(n, C)
is given by
o(£2%)
9(12)

= det(C2 + D)~ ("+D)

where 2 = M - {2 with M = (é g) € Sp(n,R).

Finally we describe the universal covering group of Sp(n,R) using the
so-called Maslov index. Let (V, B) be a symplectic (real) vector space of di-
mension 27 with a non-degenerate alternating form B on V. A subspace of
(V, B) such that B(z,y) = 0 for all 2,y € L is said to be totally isotropic. For
a subspace L of (V, B), we will denote by L+ the orthogonal complement of
L in V relative to B, i.e.,

L= {zeV|B(xy) =0 forallyeV}.

If L is a subspace of (V, B) such that L = L+, then L is called a Lagrangian
subspace of (V,B). If L is a totally isotropic subspace of V such that
B(xz, L) = 0implies € L, then L is said to be maximally totally isotropic. We
note that if L is a Lagrangian subspace of (V| B), then dim L = n because
dim L + dim L+ = 2n.

Let Sp(B) be the symplectic group defined by

Sp(B) = {g € GL(V) ’ B(gz,gy) = B(z,y) forallz,y eV }.

Definition 5. Let Ly, Lo, L3 be three Lagrangian subspaces of V. The integer
7(L1, L, L3) is defined to be the signature of the quadratic form Q(x1 + o+
x3) on the 3 n-dimensional vector space Ly @ Lo @ L3 defined by

Q(l’l +£C2 +£C3) = B(iEl,ZL'Q) + B(!I?Q,(Eg) =+ B($3,£B1)7

where 1 € L1, 9 € Ly and x3 € L3. The integer 7(L1, Lo, L3) is called the
Maslov index of (V, B).

Lemma 30. Let Ly, Lo, Lg be three Lagrangian subspaces of (V, B). Then we
have the following properties :

(1) The Maslov index is Sp(n,R)-invariant, i.e., for any g € Sp(n,R), we
have T(gL1,gL2, gL3) = 7(L1, Lo, L3).

(2) (L1, Lo, L3) = —7(La, Ly, Lg) = —7(Ly, L3, Lo).

Proof. Tt follows immediately from the definition. ([l
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For a sequence (L, Lo, -+, L) with & > 4 of Lagrangian subspaces of
(V, B), we define the generalized Maslov index 7(Ly, La,- -+ , Li) by

T(L17L27 T 7Lk‘) = T(L17L27L3) +T(L17L37L4) + - +T(L17Lk‘717Lk)'

Proposition 8. (1) The Maslov index 7(Ly, Lo, -+ , Ly) is invariant under
the action of the symplectic group Sp(B), and its value is unchanged under
circular permutation.

(2) For any Lagrangian subspace Ly, Lo, L3, L}, L}, L, we have

T(Lll, LIQ, Lg): T(Ll, LQ, L3) + T(Lll, LI2,L2, Ll) + T(LIQ, Lg, L37L2)
+7(Ls, Ly, L1, L3).

Proof. See [21, pp. 45-46]. O

Let A be the space of all Lagrangian subspaces of (V, B). Then A may
be regarded as a closed submanifold of the Grassmannian manifold of all
n-dimensional subspaces in R??. We define

A= AxZ={(Lu)|LeA uel}.

We fix a Lagrangian subspace Lo of (V, B). Let (Lq,u1) € A and let % be a
neighborhood of L. Let Ly be a Lagrangian subspace of V' transverse to L.
We define

U(L1,u1; %, L) == { (L,u) | L€ %, w=wuy + 7(L, Lo, L1, Ly) }.

It is proved in Proposition 1.9.5 in [21] that the set of all such U(Ly, u1; %, L2)’s
form a neighborhood for a topology on A. Let 7: A —> A be the projection
defined by 7(L,u) = L. Clearly 7 is a continuous map and hence A is a
covering of A.

Let L, be a fixed element of A. We define the group
Sp(B), = Sp(B) X Z (2.1.14)
equipped with the multiplication law

(91.m1) - (92,m2) = (9192,m1 + n2 + 7(L, g1 L+, g192L4)),

where g1, g2 € Sp(B) and ny,ny € Z. Then it is easy to see that S/ng)* acts
on A by
(gvn) : (L,’LL) = (gL,’I’L +u+ T(L*ng*ng))a

where g € Sp(B), n,u € Z and L € A.
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Let Ly be a Lagrangian subspace of (V, B) transverse to L, and & be a
neighborhood of e in Sp(B), where e is the identity element of Sp(B). We
define

W (&, L) = { (g, 7T(gL*,L2,L*)) | g€ co‘"}
Then the set of all such #/(&, Ly)’s form a fundamental system of neighbor-

—_~ —_~

hoods of (e, 0) on Sp(B),. Therefore Sp(B), has the structure of a topological

group. It is easily seen that Sp(B), acts on A continuously.

Definition 6. An oriented vector space of dimension n is a pair (W, €), where
W is a real vector space of dimension n and ¢ is an orientation of W, i.e., a
connected component of A"L —{0}. If (W1,e1) and (Wa,e2) are two oriented
vector spaces of dimension n and A is a linear invertible map from Wj to
Wa, we define the sign of the determinant of A denoted by §(A4) = +£1, by
the condition

(A"A)ey = cd(A)ey  with ¢ > 0.

L and M be two Lagrangian subspaces of a symplectic vector space (V, B).
We define gy, : L — M* by (gm,n(x),y) = B(z,y) for all x € L and
y € M. Here M* denotes the dual vector space of M. Let (L1,e1) and (Lo, €2)
be two oriented Lagrangian subspaces of (V, B) which are transverse. Then
9Lo,Ly - <L1781) i (L27€2). We define

5((L1a51)7 (LQ,EQ)) = 5(9L2,L1)~

This depends only on the relative orientation of (L;,e1) and (Le,e2). More
generally if L; and Lo are not transverse, we define (Lq,e1) and (Lo,e3) as
follows: Let € be an orientation of H = L1 N Ly. Then € defines an orientation
g (i=1,2)on L;/H by &;\e = ¢;. Since L1 /H and Lo/ H are two transverse
subspaces of (L + Ly)/H = H*/H, we can define

§((Ly,€1), (Lo, e2)) := £((L1/H,&1), (L2/H,&2)).

We observe that this is independent of the choice of the orientation ¢ of H
because €1 and €5 change simultaneously if we change € to —e.

If L1 = Lo, we define

1 if £1 = €9,

§((L1,E1), (L2752)) = {_1 if €1 # eo.

Definition 7. Let (L1,e1) and (Lg, €2) be two oriented Lagrangian subspaces
of a symplectic vector space (V, B). We define

S((Ll, 81), (Lg, 82)) = (\/j)n_dim(leIQ) g((Ll, 81), (Lg, 62)).



2.1 The Symplectic Group 89

Definition 8. Let L be a Lagrangian subspace of a symplectic vector space
(V, B). We choose an orientation LT on L. We define the map sy, : Sp(B) —
C by

sp(g) == s(LT,gL"), g€ Sp(B).

This is well-defined because sz,(g) is independent of the choice of the orien-
tation on L.

We define the map s, : Sp(B), — C by

Tni

§*(Q7n) =e 2 SL*(g)7 g < Sp(B), n € 7.

—_~—

Lemma 31. 5.(g,n) is a character of Sp(B), with values in Z/4Z.

Proof. The proof can be found in [21, p. 72]. O
We see that the kernel of 3, is the universal covering group of Sp(B) and
the fundamental group m(Sp(B)) of Sp(B) is isomorphic to Z. Therefore

Sp(B), is the union of four connected components such that each of them is
simply connected.

We now consider the group
Sp(B, L) := Sp(B) x Cj
equipped with the multiplication law
(g91,t1) - (92, t2) = (9192, trtz c< (g1, 92) ),
where g1, g2 € Sp(B), t1,t2 € C} and

=% 7 (L.,g1Lx, L.
Ce(g1,g2) 1= 1 T olegigale),

—_~—

It is easily checked that the ¢ : Sp(B), — Sp(B, L) defined by

o(g,n) == (g7e% ), g€ Sp(B), neZ
is a group homomorphism. We define

Mp(B)* = { (gat) € Sp(B,L*)

t?=s..(9)7"). (2.1.15)



90 2 Theta Functions and the Weil Representation

2.2 Some Geometry on Siegel Space

For 2 = (w;;) € H,, we write 2 = X +4Y with X = (z;;), Y = (y;) real
and df2 = (dw;j). We put

i_ 1+5ij 0 and i_ 1+5ij 0
o0 2 Owy o 2 0wy )

C. L. Siegel [35] introduced the symplectic metric ds?> on H,, invariant under
the action (2.1.5) of Sp(n,R) given by

ds* = o(Y 1Y 1d0) (2.2.1)

and H. Maass [22] proved that its Laplacian is given by

¢ 0 0
And
dvn(2) = (detY)" "0 TT dayy ] dui (2.2.3)
1<i<j<n 1<i<j<n

is a Sp(n, R)-invariant volume element on H,, (cf. [37], p. 130).

Theorem 14. (Siegel [35]). (1) There exists exactly one geodesic joining
two arbitrary points (2o, 21 in H,,. Let R(£2y,21) be the cross-ratio defined
by

R($20,521) = (20 — 21) (20 — 21) " (R0 — 21)(20 — 1) 7. (2.2.4)
For brevity, we put R, = R(£20,21). Then the symplectic length p(£20,$21) of
the geodesic joining {29 and (21 is given by

2

1+ R?
p($20, 1) =0 <log X R§> ) (2.2.5)

where
2

1 2
1+ R? . Rk
log = 4R, x .
< 1—R$> (22’““)

(2) For M € Sp(n,R), we set

f}O:M'QQ and ﬁle'Ql.

Then R(21,$2) and R(21, £20) have the same eigenvalues.
(8) All geodesics are symplectic images of the special geodesics
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Oé(t) = zdlag(aﬁ, (Lé, Ty a;); (226)

where ay,as, -+ ,an, are arbitrary positive real numbers satisfying the condi-

tion .
Z log ak =
k=1
The proof of the above theorem can be found in [35], pp. 289-293.

Let
Dn:{WeC(”’"HW:tW, IR—WW>O}

be the generalized unit disk of degree n. The Cayley transform ¥ : D,, — H,
defined by

(W) =i(l, +W)(I,-W)™', Web, (2.2.7)
is a biholomorphic mapping of I,, onto H,, which gives the bounded realiza-
tion of H,, by D, (cf.[35]). A. Kordnyi and J. Wolf [20] gave a realization of
a bounded symmetric domain as a Siegel domain of the third kind investi-
gating a generalized Cayley transform of a bounded symmetric domain that
generalizes the Cayley transform ¥ of D,,.

Let )
I, I,
T = ﬁ (z’In —iIn> (2.2.8)

be the 2n x 2n matrix represented by ¥. Then

T 'Sp(n,R)T = { (g g) PP - 'QQ =1,, 'PQ = tQP} . (2.2)9)

Indeed, if M = (é IB)> € Sp(n,R), then
T'MT = (g g) , (2.2.10)
where :
p= 5{(A+D)+ i(B— C)} (2.2.11)
and X
Q= 5{(A D) — Z(B+0)}. (2.2.12)

For brevity, we set
G.=T"'Sp(n,R)T.

Then G, is a subgroup of SU(n,n), where
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SU(n,n) = {h e C™ | 'Kl ko= Iy } Inn = ( {)" _? ) :

In the case n = 1, we observe that
T7'Sp(1,R)T = T'SLy(R)T = SU(1,1).

If n > 1, then G, is a proper subgroup of SU(n,n). In fact, since 'TJ,,T =
—1Jy, we get

G, = {h € SU(n,n) | thinh = J, } — SU(n,n) N Sp(n,C),  (2.2.13)

where
Sp(n,C) = {a e c@n2n) | o Jpa=J, }

P*:{(%Iz) ’Z:tZe(C(”’”)}

be the PT-part of the complexification of G C SU(n,n). We note that the

Let

Harish-Chandra decomposition of an element (g iQD) in G, is

<PQ><IHQP‘1) P-QP 'Q0 <In 0>
QP) \o 1, 0 P)\P'01,)"

For more detail, we refer to [19, p.155]. Thus the Pt-component of the

following element
PQ I, W
@7) (55). wen

of the complexification of G is given by

<I(7 (PW + Q)(EW + P)‘1> . (2.2.14)

We note that Qﬁfl € D,,. We get the Harish-Chandra embedding of D,, into
Pt (cf. [19, p.155] or [33, pp. 58-59]). Therefore we see that G, acts on D,
transitively by

PQ —= Sy— PQ
(QP) W = (PW +Q)(QW +P), (QP> € G,, WeD,. (2.2.15)

The isotropy subgroup K, of G, at the origin o is given by

K;{(ﬁﬁ) ‘PeU(n)}.
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Thus G./K, is biholomorphic to D,. It is known that the action (2.1.6) is
compatible with the action (2.2.15) via the Cayley transform ¥ (cf. (2.2.7)).
In other words, if M € Sp(n,R) and W € D,,, then

M -0 (W) = W(M, - W), (2.2.16)
where M, = T~'MT € G..
For W = (w;;) € Dy, we write dW = (dw;;) and dW = (dw;;). We put

ii 1+4; 0 and ii 1+46; 0
8W o 2 awij 8W o 2 8@]- ’

Using the Cayley transform ¥ : D,, — H,,, Siegel showed (cf. [35]) that
ds? = 4a<(In —WW) "W (I, — WW)*ldW) (2.2.17)

is a G.-invariant Riemannian metric on D,, and Maass [22] showed that its
Laplacian is given by

A, =0 ((In - WW) t((ln - WW)8€V> aiv) . (2.2.18)

Now we discuss the differential operators on H,, invariant under the action
(2.1.6). The isotropy subgroup K at il, for the action (2.1.6) is a maximal
compact subgroup given by

K= {(g ‘AB) ‘ A'A+B'B=1,, A'B=B'A, A,BeR"™" }

Let ¢ be the Lie algebra of K. Then the Lie algebra sp(n, R) of Sp(n,R) has
a Cartan decomposition sp(n,R) = ¢ @ p, where

p{(‘;{_);()’XtX, Y =1, X,YGR(”’”)}.

The subspace p of sp(n, R) may be regarded as the tangent space of H,, at
iI,,. The adjoint representation of Sp(n,R) on sp(n,R) induces the action of
K on p given by

k-Z=kZ%, keK, Zcp. (2.2.19)

Let T,, be the vector space of n x n symmetric complex matrices. We let
¥ :p — T, be the map defined by

(0 ((ii _};(>) =X 4+ 1Y, @( _1;(> €yp. (2.2.20)
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We let § : K — U(n) be the isomorphism defined by

5 ((g _AB)> — A+iB, (g f) €K, (2.2.21)

where U(n) denotes the unitary group of degree n. We identify p (resp. K)
with T, (resp. U(n)) through the map ¥ (resp. §). We consider the action of
U(n) on T,, defined by

h-Z=hZ'%h, heU(n), ZeT,. (2.2.22)

Then the adjoint action (2.2.19) of K on p is compatible with the action
(2.2.22) of U(n) on T,, through the map . Precisely for any £ € K and
w € p, we get

Ykw'k) =6(k)Y(w) o(k). (2.2.23)
The action (2.2.22) induces the action of U(n) on the polynomial alge-
bra Pol(T,) and the symmetric algebra S(T,,) respectively. We denote by
Pol(T,,)V (™ (resp. S’(']I‘n)U(")) the subalgebra of Pol(T,) (resp. S(Tn))

consisting of U(n)-invariants. The following inner product ( , ) on T, de-
fined by o
(ZW)=t(ZW), ZWET,

gives an isomorphism as vector spaces
T, =T, Zw fz, ZeT,, (2.2.24)

where T} denotes the dual space of T,, and fz is the linear functional on T,
defined by
fz(W)y=(W,Z), W eT,.

It is known that there is a canonical linear bijection of S(T, )™ onto the
algebra D(H,,) of differential operators on H,, invariant under the action
(2.1.6) of Sp(n,R). Identifying T,, with T} by the above isomorphism (2.2.24),
we get a canonical linear bijection

@ : Pol(T,,)V™ — D(H,) (2.2.25)

of Pol(T,, )Y onto D(H.,,). The map & is described explicitly as follows. Sim-
ilarly the action (2.2.19) induces the action of K on the polynomial algebra
Pol(p) and S(p) respectively. Through the map 1, the subalgebra Pol(p)*
of Pol(p) consisting of K-invariants is isomorphic to Pol(T, )Y (™. We put
N =n(n+1). Let {{£, | 1 < a < N} be a basis of p. If P € Pol(p)X, then

N
P (5;) f (g exp <az_:1 ta§a> K>] . ):0, (2.2.26)

(2(P)) (9K) =
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where f € C*(H,) and g € Sp(n,R). We refer to [11, 12] for more detail. In
general, it is hard to express ®(P) explicitly for a polynomial P € Pol(p)¥.

According to the work of Harish-Chandra [9, 10], the algebra D(H,,) is
generated by n algebraically independent generators and is isomorphic to the
commutative ring Clxy, - - - , ,] with n indeterminates. We note that n is the
real rank of Sp(n,R). Let sp(n,C) be the complexification of sp(n,R). It is
known that D(H,,) is isomorphic to the center of the universal enveloping
algebra of sp(n, C) (cf. [34]).

Using a classical invariant theory (cf. [13, 40]), we can show that Pol(T,, )V (™)

is generated by the following algebraically independent polynomials
4;(2) = a((z7)j), i=1,2,--,n. (2.2.27)

For each j with 1 < j < n, the image $(qg;) of ¢, is an invariant differential op-
erator on H,, of degree 2j. The algebra D(H,,) is generated by n algebraically
independent generators @(q;), (qz), -+ ,P(g,). In particular,

t
S(q1)=c10 (Y <Y;Q> 8(?2) for some constant c;. (2.2.28)
We observe that if we take Z = X + ¢Y with real X,Y, then ¢,(Z) =
@(X,Y) = o(X?+Y?) and

0(Z) = e(X.Y) = o((X2 472"+ 2X (XY - YX)Y ).

We propose the following problem.
Problem. Express the images ®(g;) explicitly for j =2,3,--- ,n.

We hope that the images @(g;) for j = 2,3,--- ,n are expressed in the
form of the trace as $(q1).

Example 2.2.1. We consider the case n = 1. The algebra Pol(T;)V™) is
generated by the polynomial

Therefore D(H;) = C[9(q)].
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Example 2.2.2. We consider the case n = 2. The algebra Pol(T5)Y®) is
generated by the polynomial

0(2) = o(27), qQ(Z):a<(27)2), Z e

Using Formula (2.2.26), we may express ®(q1) and &(q2) explicitly. &(q1)
is expressed by Formula (2.2.28). The computation of ®(g2) might be quite
tedious. We leave the detail to the reader. In this case, ¢(g2) was essen-
tially computed in [3], Proposition 6. Therefore D(Hy) = C[®(q1), P(q2)].
The authors of [3] computed the center of the universal enveloping algebra

U(sp(2,C)) of sp(2,C).

Now we describe the Siegel’s fundamental domain for I, \H,,. We let
Po={YeR" |y ="y >0}

be an open cone in R? with d = n(n+1)/2. The general linear group GL(n,R)
acts on P,, transitively by

goY :=gY'lg, g€ GL(n,R), Y € P,. (2.2.29)

Thus P, is a symmetric space diffeomorphic to GL(n,R)/O(n).

The fundamental domain R, for GL(n,Z)\P, which was found by H.
Minkowski [25] is defined as a subset of P,, consisting of ¥ = (y;;) € Py
satisfying the following conditions (M.1)—(M.2) (cf. [14] p. 191 or [23] p. 123):

(M.1) aY'ta > yg for every a = (a;) € Z"™ in which ag,--- ,a, are

relatively prime for £k =1,2,---  n.

(M.2)  yrg+1 >0 fork=1,---,n—1

We say that a point of R,, is Minkowski reduced or simply M-reduced. R,, has
the following properties (R1)—(R4):

(R1) For any Y € P, there exist a matrix A € GL(n,Z) and R € R,
such that Y = R[A] (cf. [14] p. 191 or [23] p.139). That is,

GL(n,Z) o Ry, = Ph.

(R2) R, is a convex cone through the origin bounded by a finite number
of hyperplanes. R, is closed in P, (cf.[23] p. 139).

(R3) If Y and Y[A] lie in R,, for A € GL(n,Z) with A # £I,,, then Y lies
on the boundary OR,, of R,,. Moreover R,, N (R,[A]) # ( for only
finitely many A € GL(n,Z) (cf.[23] p.139).

(R4) IfY = (y;;) is an element of R,,, then
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1 . .
yi1 Sy <o < Ypp  and |y2J|<§yu for1<i<j<n.

We refer to [14] p. 192 or [23] pp. 123-124 for more detail.

Remark 6. Grenier [8] found another fundamental domain for GL(n, Z)\P,,.

For Y = (y;;) € Pn, we put

o 0 (1445 0
dY = (dyi;) and 5w < > Oy > .

Then we can see easily that
ds®> = o((Y1dY)?) (2.2.30)

is a GL(n,R)-invariant Riemannian metric on P, and its Laplacian is given
by
o \2
A= Y — .

dpin (V) = (det Y) ™% T dyy;

1<j

We also can see that

is a GL(n,R)-invariant volume element on P,,. The metric ds? on P,, induces
the metric ds% on R,. Minkowski [25] calculated the volume of R,, for the
volume element [dY] := [[,; dy;; explicitly. Later Siegel computed the vol-
ume of R,, for the volume element [dY] by a simple analytic method and
generalized this case to the case of any algebraic number field.

Siegel [35] determined a fundamental domain F,, for I,\H,. We say that
2 =X+1iY € H,, with X, Y real is Siegel reduced or S-reduced if it has the
following three properties:

(S.1) det(Im (- £2)) < det(Im (£2)) for all v € I';
(S.2) Y =1Im {2 is M-reduced, that is, Y € R, ;
(S3) |wij| <5 for1<i,j<n, where X = (z;;).

F is defined as the set of all Siegel reduced points in Hl,,. Using the highest
point method, Siegel proved the following (F1)—(F3) (cf. [14] pp. 194-197 or
[23] p. 169):

(F1) I, -F,=H,, ie, H, =Uer,v-Fn.

(F2) F, is closed in H,.

(F3) F, is connected and the boundary of F,, consists of a finite number

of hyperplanes.
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The metric ds? given by (2.2.1) induces a metric ds% on F,,. Siegel [35] com-
puted the volume of F,,

vol (F, f[ (k) ¢(2k), (2.2.31)

where I'(s) denotes the Gamma function and ((s) denotes the Riemann zeta
function. For instance,
3 6 710

T ™
vol (F1) = 3 vol (Fz) = 270° vol (F3) = 197575 ol (Fy) = 200930625
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2.3 The Weil Representation

We recall that for a real symmetric positive definite matrix ¢ € R("™) the
Schrodinger representation U, of H]é”’m) is defined by Formula (1.4.8). We
refer to Formula (1.5.45). For convenience, we rewrite Formula (1.4.8)

(148) (Uc(go)f) (.TJ) — e?ﬂicy(c(no-i-#g No+2z tﬂo))f(l‘-i-/\o)
for go = (Mo, 1o, ko) € Hﬂ(gn"m% r e R™™ and f € L2 (R(m’")).
We let

G’ = Sp(n,R) x Hﬂ%n’m) (semi-direct product)
be the Jacobi group endowed with the following multiplication law
(M i) ) (M1 Vi 1)) = (MM, AN it i ot 64X = EN))
with M, M’ € Sp(n,R), (A, u, k), (N, ', k") € HH({L’m) and (X, ) = A\ )M’
Then Sp(n,R) acts on Hnén’m) by conjugation inside G

M s (N py k) = MO oy 6)M ™Y = (s, i, K), (2.3.1)

where M € Sp(n,R), (A, k) € H{"™ and (A, pe) = (A, )M ~1.

We fix an element M € Sp(n,R). We consider the mapping UM of Hﬂ({l’m)
into Aut (L2 (R(m’"))) defined by
UM(g) = Ue(M xg) = Us(MgM ™), g€ HZ™™. (2.3.2)

c

Lemma 32. UM is an irreducible representation of Hﬂ%n’m) on L2(R(™™)
such that

UCM((O,O7 Kk)) = U.((0,0,k)) for all kK = ‘s € R(™™),

Thus UM is unitarily equivalent to U..

Proof. If g1, g2 € Hﬂ({“m)7 then

UM(g192) = (M*(g1gz)) = U.(M(g1g2)M ")
= U((MgiM~")(MgsM 1))
=U.(MgM ™) Ue(MgaM ™)

:Uc (9 1)UCM(92)~



100 2 Theta Functions and the Weil Representation

Thus UM is a representation of Hﬂg{n’m). The irreducibility of UM follows
immediately from that of U.. It is easily seen that

UM ((0,0,k)) = Ue(M % (0,0,5)) = U.((0,0,)) for all k € Sym(n,R).

Therefore it follows from Stone-von Neumann Theorem that UM is unitarily
equivalent to U.. (]

Since UM is unitarily equivalent to U,, there exists an unitary operator
R.(M): L*(RU™™)) — L2(R(™™) such that UM (g) R.(M) = R.(M) U.(g)
forallg € H(n ™) For convenience, we take R.(I2,) = I, where I is the iden-
tity operator on L? (R ™ ”)) We observe that R.(M) is determined uniquely
up to a scalar of modulus one. For any two elements M;, My of Sp(n,R), the
unitary operator R.(My) ' R.(M;)~'R.(M;Ms) commutes with U,. Indeed,

for any element g € Hﬂ%n’m), we have

UC(!]) RC( ) 1R (]\/[1)_1 RC(M1M2)
= Ro(M2) U (9) Re(M1) ™" Re(M; Mo)
= Ro(Ms)""Ue(Ms * g) Re(My) ™" Ro(M;yM>)
= Re(My) ™" Re(My) ™" UM (M3 % g) Re(My M)
= Ro(M) ™" Re(My) ™" U. (M1 Ms) * g) Re(M;Ms)
= Ro(My) "' Ro(My) " UMMz () R.(M, M)
= Re(My) ™' Re(My) ™" Re(MyMy) Uc(g).

According to Schur’s lemma, we obtain a map a, : Sp(n,R)x Sp(n,R) — C3
satisfying the condition

RC(MlMQ) = O[C(M17M2) RC(Ml)RC(MQ) (233)

for all My, My € Sp(n,R). Thus R. is a projective representation of Sp(n,R)
with its multiplier ..

Lemma 33. The map a. satisfies the cocycle condition
ac(MlMg, Mg) CYC(Ml, MQ) = ac(Ml, M2M3) CMC(MQ, Mg) (234)

for all My, My, M5 € Sp(n,R).
Proof. Let My, My, M3 € Sp(n,R). Then according to Formula (2.3.3),

Re((MyMa)M3) = ove(My M, Ms) Re(My My) R.(Ms)
= (M My, M3) ae(My, Ma) Re(My) Re(Mz) R.(Ms3)

and
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R (M1 (MaMs)) = ove(My, MaMs) Re(My) Ro(MaMs)
= Oéc(Mh M2M3) ac(M27 Mg) Rc(Ml) RC(MQ) Rc(MS)

Hence we obtain the cocycle condition (2.3.4). O
A B
For M = € Sp(n,R) and 2 € H,,, we put
CD
J(M,2) = det(C2+ D) (2.3.5)
and s
J(M, £2)
(M, D) = ——T—F——. 2.3.

In fact, if My, Ms € Sp(n,R), the cocycle a.(My, M) is given by

J*(My,il,) J*(Ma,il,,)
J*(My My, il,,)

ac(My, Ma) = (2.3.7)

The cocycle a, yields the central extension Sp(n,R). of Sp(n,R) by C;. The
group Sp(n,R). is the set Sp(n,R) x C7 with the following group multipli-
cation

(Ml,tl) . (Mz,tz) = (M1M27t1t2 ac(Ml,Mg)_l) (238)

for all My, My € Sp(n,R) and t¢;,t2 € Cj. We see that the map EC :
Sp(n,R), — Aut(L*(R(™™))) defined by

R(M,t)=tR.(M), M€ Spn,R), tcCr (2.3.9)
is a true representation of Sp(n, R).. We define the function s. : Sp(n,R) —
Ci by

se(M) = |J(M,il,)| J(M,il,)"*, M € Sp(n,R). (2.3.10)
The following subset

Mp(n,R) = {(M,t) € Sp(n,R), | t? = s.(M)~! }

is a subgroup of Sp(n,R), that is called the metaplectic group. We can show
that Mp(n,R) is a two-fold covering group of Sp(n,R). The restriction w.
of R, to Mp(n,R) is a true representation of Mp(n,R) which is called the
Weil representation of Sp(n,R)

Now we describe the action of w,. explicitly. It is known that Sp(n,R) is
generated by the following elements
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ty = (Ig ;’) with b = 'b € R(™),
a

a()l) with a € GL(n,R),

Theorem 15. The actions of R. on the generators ty, d, and o, of Sp(n,R)
are given by

(Re(t)) (x) = 271720 f(z), (23.11)
(Re(da)f) () = (deta) ¥ f(z"a), (2.312)
(Re(on) ) (&) = (2> " (dete)? (2.3.13)
X/ —47mio(cy’x) dy
R(m,n)

where f € L2(R(™™) and x € R™™).

Proof. Let g = (\, i, k) € Hﬂg{n’m), z € R™™ and f € L*(R(™™). For for
each t, € Sp(n,R) with b = ‘b € R(™™) | we put

(Ta(ts) f) () = €27 17C=b"0) f(z)  for all f € L*(R(™™).
Then

(To(ty)Uel9) f) () = 27172 (U (g) f) ()

2mio(cxblx) .€2ﬂi0(0(5+ut)\+2a:tu))f(m + )\)

€
_ 627riU(C(n+ut)\+2a:tu+wbtz))f(x+ )\)

Since tp % (A, p, &) = to(A\, p, k) t, - = (X, =Ab+ p, k), we obtain

(U (g f) (z)
(Uc tb*g )f)(x)
(

U0 b+ g #) Te(t) ) ()
2mio(c(rt(=Xb+p) tA+2z b (— )\b+u)))(Tc(tb)f)(x+)\)

— 627r1'o(c(5+(—)\b+u)t)\+2mt(—)\b+,u))) . eQwia(c(z—i—)\)bt(z—i-)\))f(x + A)

_ 6271'1'a(c(m+ut)\+2wtu+wbta:))f(m+ )\)

Therefore
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Te(ty) Ue(9) f = Uﬁb (9) T.(ty)f

for all b=t € R™™ | g ¢ H{™™ and f € L*(R0™™).
Since T.(to) = Te(I2,) = I. = Rc(I2,), we see that

Re(ty) = T.(ty)  for all b="1b e R(™™),
We recall that I, is the identity operator on L? (R(m’”)).
On the other hand, for each f € GL(n,R) and f € L? (R(m’")), we put

(Ac(da) f) () = (deta)

m
2

f(z'ta).

Then we have

(Uc(9)f)(z"a)

ot a)% 6277ia(c(n+ut)\+2ztatu))f($ta+ )\).

(Ud(g) Ac(da) f) ()
= (UC(da *g) AC(da)f) (z)
= (UC()‘ta_17 ra, K) AC(da)f) (CL‘)
_ eQﬂia(c(n—i—(ua)t(Ata’1)+21t(ya))) (Ac(da),f) (Z‘ + )\ta—l)
_ (deta)% eQﬂia(c(n+ut>\+2xtatu)) f(acta—i-)\).
Thus
Ac(da)Uc(g)f = Ucda (g) Ac(da)f

for all a € GL(n,R), g € HY"™ and f € L*(R(™™).
Since A.(d;,) = I. = R¢(ds,), we obtain R.(d,) = A.(d,) for all a €
GL(n,R).

Finally we put

(Bt = (2) " et [ pertrioen iy

for all f € L?(R(™m)).
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(Be(on)Ue(9)f) (x)

2 m7
1

) (det ) % (Ualg)f) () 471 v gy

R(m n)

nz n

SN

detc 27rio(c(m+utk+2ytp,)) . 67471'2’ o(cytx) f(y + )\) dy
R(‘nl n)

1n n

2 ¢ . ¢
(Z detc 27TZO’(C(K+M A)) /( )6471'1 o(cy*(pu—z)) f(y+ )\) dy
R(m,n

2 . o
- ) (detc)® e2mrotebrria) / et oG- =2) ¢(F) df

’ R(m,n)
== 2) detc % 627T7;0‘(C(H+‘u,t)\)) . 6*47Ti0(c)\t(l4,7;v))

1

X/ 47ri o(cyt(u—x))dy
(m, n)
— <2) (detc) QWZU(C(Nf)\tH+2zf«,\)) /( )f(y) 6747” G(Cy"(xfp,)) dy
R(m,n

Since oy, x (A, p, &) = 0 (A, 1, €) 0, = (— 1, A, k), we obtain

(U ( ) )(x)

(UC on * g) Be(on) f) ()

( ,u,/\ K, ( On f)( )

— g2mio(c(k=A"pt22"N) (Be(on) f) (@ — )

m n

< ) detc QWzU(C(Nf/\tM+2zt)\)) / f(y) o—dmi oy t(z—p)) dy.
R(m.n)

Therefore
Be(0n)Ue(9)f = U™ (9) Beow)f  for all f € L*(R™™).
We note that we can take
Re(on) = Be(oy).
Hence we complete the proof of the above theorem. O

Corollary 2. We have the following

(a) we((ts,1)) = Re(ty) and  we((tp,—1)) = —Re(tp).
(b) If deta > 0, then (d,,+1) € Mp(n,R) and hence we have
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wel(da, 1)) = Re(da)  and  wol(da, —1)) = —Ro(da).
(c¢) If deta < 0, then (d,, £i) € Mp(n,R) and hence we have
we((da, 7)) =i Re(da)  and - we((da, —i)) = —i Re(da).
(d) we((on,i"?)) =i"2R.(0,) and  we((on, —i"?)) = —i"/2R.(0y).
Proof. The proof follows immediately from the definition of Mp(n,R) and

Theorem 15. O

Now we review some properties of w.. The Weil representation w, is not an
irreducible representation of Mp(n,R). In [15], Kashiwara and Vergne found
an explicit decomposition of w, into irreducibles. First we observe that the
orthogonal group O(m) acts on L2 (R(™™) by

(a-f)(z) = fla™t2), a€eO(m), z € RO™7) felL? (R(m’")).

This action commutes with w.. For each irreducible representation (o, V) of
O(m), we let L? (R(m’"); U) be the space of all V,-valued square integrable
functions f : R(™") — V, satisfying the condition

fla™'z)=co(a™)f(z) for all @ € O(m), z € R"™™,

We let w.(o) be the representation of Mp(n,R) on L?(R(™™); o) defined
by the formulas in Corollary 1. We denote by O(m) the unitary dual of

-

O(m). In other words, O(m) is the set of all equivalence classes of irreducible
representations of O(m). Let

D = {O’ € 0/(777) ’ L2(R(m’”);0) #0 }

Kashiwara and Vergne proved that for any o € X,,, the representation w.(o)
is an irreducible unitary representation of Mp(n,R) on L?(R(™™):¢) and
that w. is decomposed into irreducibles as follows :

we = @ (dim V) we(o).

oeX,

We realize w.(o) in the space of vector valued holomorphic functions on
H,,. We note that H,, is biholomorphic to the Hermitian complex manifold
Sp(n,R)/K with K := U(n) via the map

Let K be the unitary dual of K. For any (7, V;) € K, we let O(H,,, V;) be the
space of V,-valued holomorphic functions on H,,. Let T, be the representation
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of Mp(n,R) on O(H,,, V) defined by
(T-(M)f)(2) :== 7((CR+ D)) f(M™" - 02), (2.3.14)

AB
CD
be extended uniquely to a representation of the complexification GL(n,C)
of K. If v, is a highest weight vector of 7, then @,(£2) := 7(£2 + ilI,)v, is
a a highest weight vector of T,. It can be shown that T is an irreducible
representation of Sp(n,R) with highest weight vector @..

where M1 = ( ) € Sp(n,R), f € O(H,,V,;) and {2 € H,,. Here 7 can

Definition 9. A polynomial f : R(™™ — C is called pluriharmonic if

=0 forall 1 <i,7 <n.
Z axklax;ﬁ orall1 <i,j<mn
Let $ be the space of all pluriharmonic polynomials on R("") Then O(m) x
GL(n,R) acts on § by
((e,a) - P) = P(a™'za), a€O(m), a € GL(n,R), P € 9.

For (0,V,) € X, we let $(0) be the space of all V,-valued pluriharmonic
polynomials P : R™") — V_ such that

P(az) = a(a )7 P(x) for all & € O(m) and z € R™™,
Let 7(o) be the representation of GL(n,R) on $(o) defined by
(t(0)(a)P)(z) = P(za) a € GL(n,R), P € (o).

For o € X,,, we see that (o) # 0 and 7(0) is an irreducible finite dimensional
representation of GL(n,R) on $(o). They proved that the mapping o —

7(0) is an injection from X, into GL(n,R) and
H = @ T(o)®c* = @ Ho)@o
ocX, o0€Xm
as O(m) x GL(n,R)-module.

Let 0 € X,,. We assume that P : R(™m Home(Vr (), V) is a
Home (V7 (4, Vs )-valued pluriharmonic polynomial on R(™™) satisfying the
conditions

(A) P(azx) = o(a™')"1P(x) for all @ € O(m) and - € R(™™

(B)  P(za) = P(z) (r(0)®det? )(a)  for alla € GL(n,R).
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The unitary operator
Fy: L? (R(m’"); 0’) — O(Hn, VT(O))

defined by
(Fof)(12) := / " @) (o) f(a)dn, [ e L*(RM™M;0), 2 €H,
R(m.n)

intertwines w.(o) with T oy pder—% -
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2.4 Covariant Maps for the Weil Representation

Let ¢ be a symmetric positive definite real matrix of degree m. We define the
map Z(©) : H,, — L*(R(™™) by
<Qf(c)(h(z)(l.) = e27rio’(cfom), N GHTH ZL’GR(m’n). (241)

We define the automorphic factor J,, : Sp(n,R) x H,, — C* for Sp(n,R) on
H,, by

Jn (M, 2) = det(CR2 + D)2, (2.4.2)
A B
where M = <C’ D) € Sp(n,R) and 2 € H,,. We see that Sp(n,R) acts on
H,, transitively by
M- Q= (AQ+ B)(CN+ D)1, (2.4.3)
A B
where M = (C D) € Sp(n,R) and 2 € H,.

Theorem 16. The map F(© : H, — LQ(R(m’")) defined by Formula
(2.4.1) is a covariant map for the Weil representation w. of Mp(n,R) with
respect to the automorphic factor Jp, defined by Formula (2.4.2). In other
words, F(©) satisfies the following covariant relation

R (M)F)(2) = Jp (M, 2)" L F (M - ) (2.4.4)
for all M € Sp(n,R) and 2 € H,,. We recall that
we((M,t)) =t R.(M)  (cf. (2.3.9))
for all (M, t) € Mp(n,R) with M € Sp(n,R) and t € C;.

AB
CD

Q. =M Q= (A2+ B)(CR+ D) (2.4.5)

Proof. For M = < > € Sp(n,R) and {2 € H,,, we put

In this section, we use the notations t;, d, and o, in Section 2.3. It suf-
fices to prove the covariance relation (2.4.4) for the generators t, (b = b €
R™™), d, (a € GL(n,R)) and o,, of Sp(n,R).

Case I. M = t; with b = th € R(m1),

In this case, we have
2, =02+0b.

By Formula (2.3.11) in Theorem 15,
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(R(M) 7 (2)) (x)
= (Re(ty)#9(2)) ()

— eQ‘n’io(cmbt’x) ﬁ(c)(ﬁ)(m)

On the other hand, according to Formula (2.4.2),

T (M, Q2)"L.Z (M - 2)(z)
= 72+ b))
— eQ‘n’ia’(cm(Q—}-b)tm))
_ e27rio(ca:btx)y(c)(g)<$).
Thus
Ro(ty).Z D (02) = T (ty, 2) L7 (1, - 02)

forall b = ‘b € R(™™ and 2 € H,,. Therefore we proved the covariance
relation (2.4.4) in the case M = t;, with b= th € R(™7),

ta 0
0 a™

In this case, we have

Case II. M =d, = < 1) with a € GL(n,R).

2, = taNa.
By Formula (2.3.12) in Theorem 15,

(R(A)F(2)) (x)
= (deta)? Z()(2)(x'a)

_ (deta)% 627\"L0’(C£E afa’ w)

On the other hand, according to Formula (2.4.2),

T (M >1%WM1M>
= (det (U)?f“woww
( e

= (det a)%

2mio(cxtalat z)

Thus
R(do)F D (02) = Jp(dy, ) LZ)(d, - 2)

for all a € GL(n,R) and {2 € H,,. Therefore we proved the covariance relation
(2.4.4) in the case M = d, with d, € GL(n,R).
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0 -1,
Case III. M =0, = (In 0 )

In this case, we have

m
2

2,=-07"  and  J,(M, Q)= (det 2)

In order to prove the covariance relation (2.4.4), we need the following
useful lemma.

Lemma 34. For a fized element 2 € H,, and a fized element Z € C™™) | e
obtain the following property

/ ewia(m(l”z+2xf’2)dxll“_dmmn (246)
R(m,n)
_ detQ 7 e—m’a(zrr“Z)
i )
where © = (z;;) € R™™),
Proof of Lemma 34. By a simple computation, we see that

ewio(xﬂt:r+2th) e*ﬂia(Z.Q_l tZ) . 67ricf{(z+Z.Q_1)Qt(z+Z.Q_l)}

We observe that the real Jacobi group Sp(n,R) x Hﬂ(gn’m) acts on H,, x C(mm)
holomorphically and transitively by

(M,(\,5) - (2,2) = (M- 2,(Z+ A2+ p)(CR+ D)), (2.4.7)

where M € Sp(n,R), (A, p,k) € H"™ 0 € H, and Z € Ct™™. So we
may put

N=1iA'"A, Z=iV, AcR™M V= (y;)eRM™m.
Then we obtain
/ ewia(w!?tx—&-thZ)d:L,ll o dTm
R(m,n)
—mio(Z271t27)

=€

« / em’a[{w-&-iV(iAtA)’l}(iAtA) t{x—Q—iV(iA"A)’l}]dxn e dz,
R(m,n)
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i —1t
—e Tio(Z82 Z)

o —1t
e Tio(Z82 Z)

/ emio{z+V(AA) T HATA 24V (AA) 7)) dz1y

R(m.n)

/ —m (@A) @AY gy
R(m.n)

(Put u=x+ V(AtA)*1 = (uij))

—mio(Z82 1tZ)/ e—ﬂo(wtw)(detA)—m dwyy AW

R(m.n)
(Put w =uA = (w;;))

—mio(Z2717) (det A)_

(B o

i=1j=1
—mio(Z27 1t 27) (detA)im

(because /Re*7T w}; dw;; =1
—mio(Z2717) (det (AtA))_

m
2

_ e—wia(Z_Q’“Z) (det <9)>_2
1

This completes the proof of Lemma 34

for all i,j)

According to Formula (2.3.13) in Theorem 15

(o TG )) (@)

(det c) 2 /
RO, n)
2\ T n
= < (det c)?2
)

/ 27rza(cy9 y) . *4#10’(07; z) dy

R(m;n)

2 775“ n . 20)1 +2 ( 2 )}

(. (detc)? / eriofet( yrey 5 dy
2 R(m,n)

If we substitute u = ¢'/? y, then du = (det c) 2 dy. Therefore according to
Lemma 34, we obtain

(y) e—47ria(cy x) dy

Il

N

<. N
\_/\_/ o
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SIS

(det C)% / eﬂia(u (202) tu+2c/2ut(—22)) (det C)_% du
R(m.m)

)’ / eﬂia(u(QQ)tu+2ut(—2cl/2x))du

SIS

m
2

I
e R R

<det >_ —ﬂia((—2c1/2x)(2 2)"t (=22 2))

—27”0(019 Lt )

On the other hand, according to Formula (2.4.2),

Jm (M, 2)~ 1f<0>(M 2)(z)
= Jn(0, )P F(— 027 (x)
detQ)_m eQﬂza(cr( N Yty

So we see that

Re(00)F02) = Jp(00, 2) L F (0, - 02). (2.4.8)

Therefore the covariance relation (2.4.4) holds for the case o,, = ( ;) _OI">

Since J,,, is an automorphic factor for Sp(n,R) on H,,, we see that if the
covariance relation (2.4.4) holds for My, My in Sp(n,R), then it holds for
M; M. Finally we complete the proof. U

Now we can give another realization of the metaplectic group Mp(n,R)
that was dealt with in Section 2.1 and Section 2.3.

Proposition 9. Let (U., H.) be the Schrédinger representation of the Heisen-
berg group Hﬂ(gn’m) defined by Formula (1.4.8) with the model H. = L> (R(m’")7 d§),
We denote by U(H..) the group of all unitary isomorphisms of H.. Let Mp(c)
be the set of all R € U(H,) such that

RU.(9) =U. (M xg)R = U,(MgM~")R

for all g € Hﬂ({l’m) and for some M € Sp(n,R). Then for a given element

R € Mp(c), the corresponding M € Sp(n,R) is determined uniquely, denoted
by M = v.(R). Moreover there is an exact sequence of groups
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1 — Cj — Mp(c)—= Sp(n,R) — 1. (2.4.9)

—_~

Proof. First of all we observe that Mp(c) is a subgroup of U(H.). Let R €

—_~—

Mp(c), and My, My € Sp(n,R) such that
RU.(g) = UJ(My xg)R= U(Myxg)R  forall g € H{"™.

Then U,(My x g) = U.(Ms % g) for all g € HD({”W). According to Formula
(1.4.8), (M;"My)g = g(M;'My) for all g € H™™ . Thus My = My. It

follows that the map v, : Mp(c) — Sp(n,R) is well defined. it is easily
checked that v, is a group homomorphism. The kernel of v, is given by

kerve = {R € U(H.)| RU.(g) = Uu(g) R for all g € H{™™ } ,

Since U, is irreducible and unitary, according to Schur’s lemma, ker v, = Cj.
The surjectivity of v, follows from the arguments in Section 2.3. O

According to Theorem 15, R.(ty), Rc.(d,) and R.(cy,) are members of

Mp(c) sitting above the generators tp, d, and o, of Sp(n,R) respectively.
That is, ve(Re(ty)) = ty, Ve(Re(dy)) = do and ve(Re(on)) = op.

Theorem 17. Let P € Mp(c) and v.(P) =M = C D> € Sp(n,R). Then

for any 2 € H,,
P.Z(0Q) = B.(P; 2).F (M - 2),
where B.(P; £2) is, up to a scalar of absolute one, a branch of the holomorphic

function { det(CQ2+ D)z} ™ on H,.

—_~— —_~—

Proof. Let G; be the subgroup of Mp(c) consisting of all P € Mp(c) such
that
PF(2) = cp F)(vo(P)-2) forall 2 € H,,

where cp is a constant depending only on P. For P € Gy, we write
PF(2) = B.(P;2) F (v.(P)-2) forall 2 € H,.
Let Go be the set of all P € G; satisfying the following conditions (G1) and
(G2):
(Gl) B.(P; ) is continuous in {2 € H,, ;
(G2) {B.(P;)}?|det(C§2+ D)|™ is independent of {2 with values in C}

for v.(P) = ég) € Sp(n,R).

It is easily checked that for P, Q € Go,
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B.(QP; 2) = B.(P; 2) B.(Q; v2(P) - 2) for all 2 € H,. (2.4.10)

Indeed, we get

QP)Z9)(2) =Q(PF(1)
= B.(P;2) (Q(F© (vo(P) Q)))
= B.(P; 2) Bo(Q; ve(P) - 2) ') (1(Q) - (ve(P) - 2))
= B.(P; 2) B.(Q; ve(P) - 2) F'9 (1.(QP) - 2))

By Formula (2.4.9) together with the fact that J(M,2) := det(C2 + D)

A B
for M = (C’D
that Gz is a subgroup of Gi. We observe that R.(ty), Rc(ds), Rc(on) in

—_~—

> € Sp(n,R) and 2 € H,, is automorphic factor, we see

Theorem 15 and o € Cj generate the group Mp(c). We shall show that

R.(ty), Re(da), Re(opn) and a € Cf belong to Gy. Then Gy = G2 = Mp(c).
This implies the proof of the theorem.

Now we shall prove that R.(ty), Rc(d,), Rc(0,) and o € C} belong to
Gy. For brevity we put F.(P; 2) = {B.(P; 2)}? |det(C2+ D)|™ for v.(P) =

A B . "
(C’ D) € Sp(n,R) with P € Mp(c).

—_~—

Case I. P =a € C; C Mp(c).
In this case, we obtain
PZO(02) = a7 (0).

So we get B.(P;§2) = a and F.(P;2) = o?. Thus a € G,.

Case II. P = R (t,) with t;, = (I(,; Ib) € Sp(n,R).
n

In this case, according to Formula (2.3.11), we obtain
Pﬁ“)(()) — eQﬂio(cxbtw)y(c)(me)
_ e?fria{c:r(9+b) tr}
= FOQ+ b)) = FO b - 2)(x)
= Z (ve(Ro(ty)) - 2) ().
We get B.(P; 2) =1 and F,.(P;2) = 1. Thus R.(ty) € Go.

t
Case IIL. P = R.(d,) with d, = (g a91> € Sp(n,R).

In this case, according to Formula (2.3.12), we obtain
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3

627Ti o{cz(taRa)tz}

FO(d, - 2)(x)
F O (ve(Re(da)) - 2) ().

SERENEEEN

We get B.(P;2) = (deta)? and F.(P;2) = 1. Thus R.(d,) € Gs.

Case IV. P = R.(0y,) with o, = ([0 _(I)n) € Sp(n,R).

In this case, according to Formula (2.3.13), we obtain

. 2 ? € c —4rnio(cytx
Py(@(rz):(i) (det c)3 /R(m) FO(Q)(y) e miotev's) gy

= <2> N (detc)? / e2riofe(y2y=2y")} g,
? R(m.n)
= (det 2)~ % e~2miolca @ 0) by Lemma 14.2)
det Q)% ZO (=Y (x)
det 2)7% Z) (ve(Re(0n)) - 2) ().

|3

= (
= (

We get B.(P;$2) = (det 2)~% with B.(P;il,) =i~ 3", and F.(P;2) =
i~%". Thus R.(0,) € Gy. Hence we complete the proof. O

—_~—

Definition 10. Let x. : Mp(c) — C be the map defined by

—_~—

Xe(P) = det(C2 + D)™ {B.(P;2)}*, P e Mp(c),

where v.(P) = (é g) € Sp(n,R). According to Theorem 17, the image
of x. is contained in C} and x. : /]\)EZ) — C3 is a character of Mp(c).

Furthermore we have
—

Xe(a) = a?  for any o € C; € Mp(c).

We denote by Mp(n,R). the kernel of x.. We call Mp(n,R). the metaplectic
group attached to U.,.

We let o o
me : Mp(c) x Mp(c) — Mp(c)
be the multiplication map and let

P

P« Mp(c) x H,, — C*
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be the map defined by

P()(P,§2) := Bc(P;12), Pe€ Mp(e), 2 € H,.
We provide 1\71;(/6) with the weakest topology such that the following three
maps
Ve ]\/4—\(/6) — Sp(n,R), ms : ]\/4—1;(/0) X ]\/4—1\)(/6) _>]\/4;(/C)7

—_~—

D1 : Mp(c) x H,, — C*

are all continuous.

Then we have the following properties.

—~—

Lemma 35. Mp(c) is a Hausdorff space on the above weakest topology.

Proof. Fix an element 2y € H,,. Let n : Mp(c) — Sp(n,R) x C* by

n(P) := (ve(P), B(P; 2)), P € Mp(c). (2.4.11)

—~— —~—

Then by the weak topology on Mp(c), n is continuous. If P,Q € Mp(c)
such that n(P) = n(Q), then v.(P) = v.(Q) and B.(P; ) = B.(Q; ).
QP! = a € C} because v.(QP~!) = 1. Thus Q = aP. By assumption,

B.(Q; $20) = Be(aP; ) = aB.(P; ) = B.(P; {20).

Therefore a = 1, that is, P = @. This implies that 7 is one-to-one.
Let f: Sp(n,R) x C* — C* be the map defined by

f(M,a) = o? {det(C2y + D)}™, (2.4.12)
AB ——
where M = <C’ D> € Sp(n,R) and o € C*. By Theorem 17, n(Mp(c)) =

—_~—

f71(Cy). Since % # 0 and Cj is a submanifold of C*, we see that n(Mp(c))

—_~—

is a submanifold of Sp(n,R) x C*. Therefore n(Mp(c)) is Hausdorff because
Sp(n,R) and C* are Hausdorff. O

Lemma 36. Let h : Mp(c) — Sp(n,R) x C; be the map defined by

—_~—

h(P) = (ve(P),xc(P)), P € Mp(c).

Then the map h defines a connected double covering of the Lie group Sp(n, R)x

—_~—

Cx, and hence gives Mp(c) the structure of a Lie group.

Proof. We note that h is continuous. We see that



2.4 Covariant Maps for the Weil Representation 117

CI) = {£1}.

Let h, : Sp(n,R) x C* — Sp(n,R) x C* be the map defined by

ker h = kerv. Nker x. = C] Nkerx. = ker (Xc

he(M, ) := (M, f(M,«)), M € Sp(n,R), a € C*, (2.4.13)

where f is the map defined by (2.4.12). Then h = h, o7, where 7 is the
map defined by (2.4.11). Clearly h, is a double covering projection. Since
h:t(Sp(n,R x Ct) = n(Mp(c)), the restriction h, , of h, to n(Mp(c)) is a
double covering

hyn : Mp(c) — Sp(n,R) x C]
of the manifold Sp(n,R) x Ci. It only remains to prove that Mp(c) is con-
nected. Since Sp(n,R) and C¥ are connected, according to the exact sequence
(2.4.9), Mp(c) is connected. O
Proposition 10. Mp(n,R). is a closed connected subgroup of Mp(c) and q. :
Mp(n,R), — Sp(n,R) is a double covering projection with ker q. = {£1},
where q. is the restriction of v. to Mp(n,R)..

Proof. By Lemma 36, ¢. is a double covering projection of Sp(n,R). Ir only

remains to prove that Mp(n,R). is connected. The stabilizer at i I,, under
the action (2.1.6) of Sp(n,R) is given by

{( A B) e Sp(n,R) ] A'A+ B'B=1,, A'B= BtB}

—-B A
- . . A B
that is isomorphic to U(n) via B A) The map
Mp(an)c - H’ru P+— qc(P) ' (Z In)a Pe MP(”; R)c

gives the coset space of Mp(n,R). with respect to g }(U(n)), i.e.,
Mp(n,R)/qz " (U(n)) = H,.
For 2 = i1, the map B.,r, : ¢- *(U(n)) — C7 defined by
Be.ir, (P) == B.(P;il,), P¢€q ' (U(n)) (2.4.14)

is a continuous character. If P € ;1 (U(n)) with ¢.(P) = <% i) € U(n),

then
m

{Ber, (P)}* = {Be(Pyil)}* = {det(A—iB)}
We define the map det’ : U(n) — C} by
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det, (_‘;43 Z) = {det(A—iB)}™ ", (_AB i) e U(n). (2.4.15)

and the map Sq : C; — Cj by Sq(a) = o? with a € Cj. The we have the
following commutative diagram :

Bejiry,

¢z ' (U(n)) &1

qcl lSq

Uy —== ¢

diagram 14.1
Thus ¢; 1 (U(n)) along with its topology is the fibre product of det; and Sq.
Since U(n) and C} are connected, g *(U(n)) is connected. O
Corollary 3. The exact sequence
1 — {*1} — Mp(n,R).~% Sp(n,R) — 1 (2.4.16)
is non-split and [Mp(n,R)., Mp(n,R).] = Mp(n,R)..

Proof. Embed U(1) into U(n) via z — diag(z,1,1,---,1), and embedd U(n)
into Sp(n,R) via

A B

U(n)> A+iB — (BA

) € Sp(n,R) with A, B € R,

So U(1) c U(n) C Sp(n,R). According to the commutative diagram in the
proof of Proposition 10, the exact sequence

1 —{+1} — ¢ (UQ) U@ —1
can be identified to
1 {1} —cC Lo (2.4.17)

If we restrict the exact sequence (2.4.17) to the torsion subgroups, then we
get the non-split exact sequence

1— 7/2Z — Q/Z 2 Q/Z — 1, (2.4.18)

where mgy : Q/Z — Q/Z is the map defined by ma(z) = 2z for z € Q/Z.
Thus the exact sequence (2.4.16) is non-split.
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For brevity, we put Mp) = Mp(n,R).. Since [Sp(n,R), Sp(n,R)] =
Sp(n, R), [Mp(y, Mp(e] sits in the exact sequence

1 — {1} N [Mp(e), Mp(e)] — [Mp(e), Mp()] — Sp(n,R) — 1.
(2.4.19)
Assume {+1} N [Mp(oy, Mp(e] is trivial. Then according to the above exact
sequence (2.4.19), we have an isomorphism ¢ : Sp(n, R) — [Mp(cy, Mp(c)] #
Mp ). Thus the exact sequence (2.4.16) is split because g. o ¢ the identity
map. This contradicts the fact that the exact sequence (2.4.16) is non-split.
Hence we obtain

{£1} N [Mp(ey, Mpeyl = {£1}  and  [Mp(e), Mp(e)] = Mp(c).-

Corollary 4. For a fixed element §2 € H,,, we let
U {M € Sp(n | M- 2= Q}

Let Mg € Sp(n,R) such that 2 = M - (il,,). Then U( ) = Mo U(n)Mg".
If P € ¢ (U(R2)) such that q.(P) = Mg q.(Po)M" with Py € ¢ (U(n)),
then

{BA(P: )} = det? (ac(P)).

where det; : U(n) — C} is the map defined by Formula (2.4.15).

Proof. The case {2 = i, has already been proved before. We note that
U(il,) =U(n). For M = (64 g) and 2 € H,,, we put J(M, 2) = det(CN2+
D). By definition, if P € ¢;'(U(£2)) such that g.(P) = Mg q.(Py)M," with

Py € ;' (U(n)) and q.(Po) = <—/}B ﬁ) € U(n), then

—m

{Be(P;2)}" = J(q(P), 2)™™ = {J(Mo qe(Po)M", 2) }
= {J(Mq q.(Po),il,) J(Mg5*, )} ™
= {J(Mq,il,) J(Mg", $2) J(qe(Po),iln) }
= {J(qe(Po),iL,)} "
= {det(A—iB)} " = det} (¢(D)).

—m
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2.5 Theta Series with Quadratic Forms

In this chapter, we review the theta series of several type.

Definition 11. A symmetric integral matrix S of degree m is said to be
even if ¢ S ¢ = 0 mod 2 for all ¢ € Z(™ Y. The level ¢ of an even symmetric
nonsingular matrix .S is defined to be the smallest positive integer such that
gS~1 is even.

It is well known that if S is positive definite even integral matrix of degree
m such that det S = 1, then m is divisible by 8.

Definition 12. For a symmetric integral matrix 7' of degree n and a sym-
metric integral matrix S of degree m, we define

A(S,T) == t{eeZ™M | '¢S¢ = T}

We observe that if S is positive definite, A(S,T) is finite. It is easy to see
that S; and Sy are equivalent, that is, 'US, U = Sy for some U € GL(m,Z)
if and only if A(S1,T) = A(Se,T) for all n and symmetric integral matrices
T of degree n.

Let S be a positive definite integral matrix of degree m. We define the
theta series ¥g : H,, — C by

Is(Q)= Y T 0 H,. (2.5.1)
gez(m.m)
Then ¥g(§2) is a holomorphic function on H,,. We see that
Ds(2)= > AST)er 7T,
T=1T>0

where T runs over the set of all semipositive symmetric integral matrices of
degree n.

Theorem 18. Let S be a positive definite symmetric integral matriz of degree
m. Then 9g(§2) satisfies the transformation formula

m

n Q
19571(—(271) = (det S)2 (det > 9s(82) forall 2 e H,. (2.5.2)
)
Here the function h : H,, — C given by
1
Q 2
h(£2) = (det z) , 2 e€H,

is the function determined uniquely by the following properties
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(a) h2(2) = (det), QeH,,

(b) h(iY) = (detY)z
of degree n.

121

for any positive definite symmetric real matrix Y

For a positive integer m, we define

(det?) = {(det?) } , 2 eH,.

Proof. For a fixed element 2 € H,,, we define f : R"™") — C by

flay=" > rioBErn i) g e glmm), (2.5.3)
gezlim.m)

We observe that f is well defined because the sum of the right hand side of
(2.5.3) converges absolutely. It is clear that if z = (x;;) is a coordinate in
R(™™) then f is periodic in x4; with period 1. That is,

flz+a)=f(z) for all a € Z(™™,

Thus f has the Fourier series

flz) = Z o 2o g g RO, (2.5.4)
acZ(m,n)
where
1 1
_ / / f 727r20(y ) dy
0 0
1 1
_ / / (miolS(ER) 21} 2micly’a) g
0 0 £€Z(7n n)

/ 7\"LO’S’UQU 2’U a)dy

R(m,n)

_ / eriolSw2ly=2y" (57 a)} g
R(m,n)

QN7 s tantt
= (det S)"% (det) e mio(ST a7 ) (hy Lemma 34.

According to Formulas (2.5.3) and (2.5.4),
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an(wL,n)

n 0y ol ~1yt
_ (detS)_f <det z) eﬂ'lU{S la (=27 YHta}

= (det S)"2 (det?) Ig-1(—0271).

Consequently we obtain the formula (2.5.2). O

Let S be an positive definite even integral symmetric matrix of degree m.
Let A and B be m x n rational matrices. We define the theta series

Us.4,5(£2) = Z e io{S(E+3A) Q1 (E+5A) +BEY
gezlm:mn)
Theorem 19. Let S be an positive definite even integral symmetric matriz of

degree m. Let A and B be m x n rational matrices. Then 9g.4, p({2) satisfies
the transformation formula

m
2

1 : t n .Q
Og-1,ap5(—0271) = e 27100 AB) (det §) % (deti> Vs.5.—a(2) (2.5.5)

for all 2 € H,,.

Proof. Following the argument of the proof of Theorem 18, we can obtain the
formula (2.5.5). We leave the detail to the reader. O

Definition 13. A holomorphic function f : H,, — C is called a Siegel
modular form of weight k € Z if it satisfies the following properties:

1) f(M-2)= det(CR+ D)*f(2) fory= (g g) €r,.

2) f is bounded in the domain Y > Yy > 0 with 2 =X 4+iY, XY real.

We will give some examples of Siegel modular forms using the so-called
thetanullwerte. For a,b € Z"™, we consider the thetanullwerte

I(Q;ab) = Y il EHOQEHOTG g eH,.  (25.6)
gezn

Lemma 37. Let a,b € Z™. Then 9(§2;a,b) satisfies the following properties
(a) H(2;a,b1) =9(2;a,bs) if by = by mod 2.
(b) If @ € Z, then 9(2;a+2a,b) = (—1)"%9(2;a,b).
(¢c) 9(2;a,b) = (~1)'®9(2;a,b).
(d) 9(2;a,b) =0 if tab#£0 mod 2.
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Proof. (a) follows from a direct computation. If we put & = £ + a,

Y(2;a+2a,b) = Z emio{!(E+Fa+d) 2 (E+Fata) +'be}
cezn
= Z emio{ (€a+30) 2 (&t+3a) + b(&—a) }
IMYAL
= e*ﬂi‘baﬂ(n;%b).

Therefore we get the formula (b). If we substitute £ into —§ — a, we obtain
the formula (c). (d) follows immediately from the formula (c). O

A pair {a,b} with a,b € {0,1}™ is called a theta characteristic. A theta
characteristic {a, b} is said to be even (resp. odd) if ‘ab is even (resp. odd).
By induction on n, we can show that the number of even theta characteristics
is (27 + 1) 271,

Let v = (é g) € I, and let {a,b} be a theta characteristic. We define

a\ _ (D -=C\ (a (C'tD)g
where T} is the column vector determined by the diagonal entries of an n xn
matrix 7.

Theorem 20. (1) The Siegel modular group I, acts on the set € of theta
characteristics by

<Z> =y o (Z), v €y, {a,b} €F.

(2) The sign (—1)"® of the theta characteristic {a,b} is invariant under the
action (2.5.7) of T,.

(8) I, acts on the set €¢ of all even theta characteristics transitively.

(4) If v = (é g) er,, 2ecH, and {a,b} € €, then we have

02 (v - 2;a,b) = v(v) det(C2 + D)9 (2;a,b), (2.5.8)

where
(a) v(y)'=1,

o ()0

Proof. By a direct computation, we prove the statement (a). It suffices to show

the invariance of the sign of (_1)% under the generators tg = (Ig f) with
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S =1tSe7zm™ and J,. By a simple computation,

I, S a\ _ a

<0 In>°(b> = (bSa+So) mod 2,
I, S a\ _ (b

(i Yo (5= (4 e

Therefore it is obvious that the sign of (—1)'?® is invariant under the actions
of tg and J,. In order to prove the transitivity of I3, on €°¢, first of all we
have to prove the fact that given an even characteristic {a,b} € €, there

A B> € I, such that

exists an element v = ( cD

yo (8) = <Z> , d.e, a=(C'D)y, b= (A'B)y mod 2.

We decompose

S
Il

a _
<1>, a1 €Z, ay € 2",
az

S8
I

<b1> . b €Z, byez™ N
ba
Case 1. a1b; =0

Then {a1,b1} is even and also {as, bs} is even. By induction on n, we can

find v € I3, such that v o (8) = (Z) .

Case 2. a;=b; =1

Since fab is even, there exists an index v with 2 < v < n such that a, =
b, = 1. Therefore we can find a symmetric integral matrix S = tS e Z(™™)

so that 5
In ay\ a
<o In>°(b> = <b—Sa+So) mod 2

is an even theta characteristic satisfying the assumption of Case 1.
According to Case 1 and Case 2, we see that I}, acts on ¢ transitively.

The transformation formula (2.5.8) for the generator J,, follows from the
formula (2.5.5) with S = 1 and m = 1. For a generator tg with S = 'S €
Z("7) it is easy to see that

wit

92+ S;a,b) = eT 5T Y9(2;a,b+ Sa+ Sp). (2.5.9)
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In fact, (2.5.9) follows from the following simple fact that *£S¢ = %Sp & mod 2
for any ¢ € Z™ and 22 = 2 mod 2 for any x € Z. We know that 9(£2;0,0) # 0
because ¥(i Y ;0,0) > 0. O

Theorem 21. We set

8 if n=1
1 if n>3.

We define the function A™(§2) on H, by

AM(Q2) = ] 9(2;a,b)*,
{a,b}
where {a,b} runs through even theta characteristics. Then A () is a

nonzero Siegel modular form on H,, of weight 12, 10 and (2" + 1)2"~2 re-
spectively if n = 1,2 and n > 3 respectively.

Proof. The proof can be found in [7]. O

Theorem 22. Let m be an even positive integer. Let S be a positive definite
even integral symmetric matriz of degree m and of level q. Then for all v =

A B .
<C D) € I, 0(q) with det D > 0,

Is(v-2) = vs(v) det(CR + D)% 95(82), Qe H,,
where

vs(y) = (det D)Z—mm 37 Erio(BDTHESY)
gezlm,n)

m (—1)% detS
= D 2 _— .
(sgn det D) ( et D)

Here (%) denotes the generalized Legendre symbol.
Proof. The proof can be found in [7], pp. 302-303. O

Theorem 23. Let m be an even positive integer. Let S be a positive definite
even integral symmetric matriz of degree m and of level q. Then ¥g(12) is a
modular form with respect to the principal congruence subgroup I, (q) of I,.

Proof. The proof follows from Theorem 22. (I

Theorem 24. Let S be an positive definite even integral symmetric matriz
of degree m. Let A and B be m x n rational matrices. Then the theta series

Isap(@) = 3 eriolSEiNatErinse

EeZ(m,n)
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is a modular form of weight 7 with respect to a certain congruence subgroup
I.(8) of I,.

Proof. The proof can be found in [1]. O
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2.6 Theta Series in Spherical Harmonics

Let S be a positive definite symmetric m x m rational matrix, and let o and
0 be an m X n rational matrix. We define the theta series

195[0‘} . H, x C™n) ., ¢

g
by
] D S e T Y31
NeQ(m.m)

where 2 € H,,, Z € Ct™™ and

xM(N)_ {e 1 if N — o g Z0mm)

B 2mio("NB)  otherwise.

Let B, » be the algebra of complex valued polynomial functions on Ccm.n)
We take a coordinate Z = (z;) in C™™).

Definition 14. Let S, « and 3 be as above. For a homogeneous polynomial
P € B, n, we define

e m = N%w * B} (N) P(N) emte(NSNEH2ND), (2.6.2)
Vs,p(92,2) = 79S,P|:8:| (2,2), (2.6.3)
ﬁs,P[g](Q) = ﬁs,P[g} (£2,0). (2.6.4)

For any homogeneous polynomial P in *B,, ,, we put

Then we get

P(9)ds m (2,7) (2.6.5)
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Definition 15. Let T' = (ti;) be the inverse matrix of S. Then a polynomial
P in B, , is said to be pluriharmonic with respect to S if it satisfies the
equations

9P
Za 3 trhy = 0 foralli,j=1,2,---,n
k=1 OFkiOZ1

Theorem 25. Let S, « and B be as above. Then for all <é [B)) in a suitable
subgroup I' of I',,, we have

ﬁs[g] (A2 + B)(C2 + D)1, 2(CQ2 + D)™") (2.6.6)
= det(C2 + D)% 102 D)ICZST [g] (2,2)

Proof. Sp(n,R) acts on the homogeneous space H,, x C("™") by
M- (2,2) = (A2 +B)(CR+D)™', Z(C2+ D)™ 1),

where M = <é g) € Sp(n,R), 2 € H, and Z € C™™_ Tt is known that
Sp(n,R) is generated by the translations ¢, with b = ‘b and the inversion o,.
Thus it suffices to prove the functional equation (2.6.6) for the generators t,

and o, in a suitable congruence subgroup I" of I,.

For t, = (IO Ib> € Sp(n,R),

ﬁs{g}(9+b7z) _ Z X{g}(]\,) o io('NSN(2+b) +2'NZ)
NeQUmm)

= ﬁs[g](gvz)

if we choose suitable b’s so that e™io(NSNb) — 1 This is possible because
S, a and [ are rational matrices.

0 -1,
I, 0O

(2.6.6) following the argument in the proof of Theorem 18. We leave the
details to a reader. Another representation theoretic proof can be found in
28] O

For the inversion o,, = ( ), we can prove the functional equation

Lemma 38. Let Py := C[Xy, -, Xy } For P € Py, we let P(9) denote
the differential operator P (821 AR 8X ) For P, Q € Py, we define
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(P,Q) = (P(9)Q)(0).

Then {, ) is a symmetric nondegenerate bilinear form on Py which satisfies

the property (P,QR) = (Q(0)P, R) = (R(0)P, Q) for all P,Q, R € P

Proof. We first observe that

(o ity = ftent @ aw) = (),
0 otherwise.

Thus (P, Q) is a symmetric nondegenerate bilinear form on PBy. Similarly
(P,QR) = (Q(0)P,R) = (R(0)P, Q) is easily shown for monomials P, @), R.
Hence we complete the proof. (I

Lemma 39. Let $H(S) C Ppn be the space of pluriharmonic polynomi-
als with respect to S, and I C By, be the ideal generated by the h;; =
Z,{lel trizkiziy for all i, j = 1,-++ n, where T = (ty) = S~ as before in
Definition 16.2. Then $(S) = I+ with respect to the pairing ( , ) introduced
i Lemma 16.4, and

Bmn =98I (orthogonal sum).

Proof. Let P € Pup. Then (fhij, P) = (f(0)hi;(0)P)(0) = 0 for all f €
B, if and only if h;;(0)P = 0 for all 4, j if and only if P is pluriharmonic
with respect to S. Thus $(S5) = I'+. Let Bru.n(R) = R[Z11, Z12, "+ Zmn)- By
the same argument, we have $(S)g = I, where H(S)r = H(S) N Pon.n(R)
and Ig = I NP, n(R). It is easy to see that ( , ) is positive definite on
B (R). S0 Py o (R) = H(S)r & Ir. Therefore we have B, ,, = H(S) S 1. O

Lemma 40. If P is a pluriharmonic polynomial in $(S) C P n, then
(P(a) [g(Z) eo(2C tZS’”D (0) = (P(2)g(2))(0) (2.6.7)

for any C € C™™ and any analytic function g defined in a neighborhood of
0.

Proof. We put h(Z) = o(ZC'ZS™1) and T = (t;) = S~1. It suffices to prove
the formula (2.6.7) for any polynomials g(Z).
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=Y % (h(0)"P,g)  (by Lemma 38).

By the way, h(9)P = 0 because P is pluriharmonic. Indeed, if we put C' =

(cij) and Z = (zy;), then we have
a(zC
Z Z i 2ki 215 | -
=1 k=1

We put fi;(Z) = Zz,llzl tri 2ki 215. Then h(0)P = Z:‘tj:l Cij (fzj(ﬁ)P) =0
because P is pluriharmonic. Therefore we get

(P©) |9(2)e"@]) (0) = (P.g) = (P(0)9(2))(0).

hZ) =

O

Corollary 5. If P is a pluriharmonic polynomial in $(S) C By, and C is
an n X n symmetric complex matriz, then

P(a) o(ZCtZS~ ) (QCtZS ) a(ZCtZS_l).
Proof. We put h(Z) = e”(2C"25™) For any A € C(™™) | we let
f(2) =nMZ + A) = WZ) h(A) g(2),

where g(Z) = €27(AC"ZS™") Then

(P(0)n(2))(A) = (P(0)£(2))(0)
= h(4) (P(9)[(Z) 9(£)])(0)
= h(A) (P(9)g(2))(0) (Lemma 40)
But
T~ (205 i g(2)

By a repeated application of this, we have

P(0)g(Z) = P(2C'AS™Y) g(2).
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Therefore
(P(O)M(Z))(A) = h(A) (P(9)g(Z))(0)
= h(A) P(2C'AS™) g(0)
= h(A)P(2C'AS™).
Hence P(0)h(Z) = P(2C'AS~ 1) h(Z). O

Lemma 41. Let f be an analytic function on C"™™) and let P € PBrn- For
A e Cm gnd B e Cmm™) e let

fap(Z)=f(BZA)  and  Pap(Z)=P('BZA™).

Then
P(0)fa,B(Z) = (Pa,s(0)f)(BZA).
In particular, (P, fa,B) = (Pa.B, [)-

Proof. We let A = (a;;) € C™™ b= (by) € C'™™ and Z = (z,). By an
easy computation, we get

5fAA,B(Z) = Zzbklapi%(BZA)v 1<i<m, 1<p<n.

Ozip k=1i=1 Ozki -
We put
Z="'BZA™" with Z=(%,)
Since
bkza177 1<l<m,1<p<n,
azlp ; zz; P Zki

we have 9 9

Jap p _ 9F —2 (BZA)  for all I,p.

8le 8zlp
Therefore we have P(9)fa,5(Z) = (Pa,p(9)f)(BZA). 0.

Lemma 42. GL(n,C) x O(S) acts on $Hp,.n by
(A,B)P(Z) = P(B~'ZA), (2.6.8)

where A € GL(n,C), B € O(S) and P € Py, n- The space H(S) of plurihar-
monic polynomials in P, », is invariant under the action (2.6.8).

Proof. According to Lemma 39, I = $(S)* is the ideal of %, ,, generated
by hij(Z) = z;:l:l tr zxi 215 for all 4, 5. So by Lemma 41, it suffices to show
that h;;(ZA) and h;;(BZ) belong to I for all A € GL(n,C) and B € O(S5).
If A= (a;;) € GL(n,C), Z = (2;) € C™™ and T = (t3;) = S~!, then



132 2 Theta Functions and the Weil Representation

m
,J (ZA) E Api Qg E thiZkp2ig

p,q=1 k=1
n
= ) apiaghpe(Z) € 1.
p,q=1

If B= (bkl) € O(S), then

hij(BZ) =Y Zpizej | D tribipbig

p,q=1 k=1
n
_ Lt
= g Zpi Zqj ( BTB)pq
p,q=1

Since B € O(S), we have T = 'BTB. Indeed BS'B = and hence
tBS~1 B~! = S~ Thus !BTB = T. Hence we have

hi;j(BZ) = Z tpg Zpi 2qj = hij(Z) € 1.

p,q=1

Therefore we complete the proof. (I

Theorem 26. Let S, o and B be as above. Let P be a pluriharmonic poly-
nomial in P, , with respect to S. Then

(%

ﬁ&P[ﬁ

}(Q) = det(CR+D)" % W5 [a

5} ((AR+B)(CNR+D)™), (2.6.9)

where P(Z) = P(Z(C2 + D)), for all <A B

c D) in a suitable subgroup I' of
.

Proof. Let P be a homogeneous pluriharmonic polynomial of degree k. Then
according to Formula (2.6.5), we get

(27i)"*P(9)Vs m (2,2)
= @ri) Y X[g](N)P(27rz'N)e“"(tNSN9+2tNZ)
NeQ(m,n)

_ Z X|:0‘:|(N)P(N)eﬂia(tNSNQ+2tNZ)
NeQ(m,n) p

= 19571{%} (2, 2).
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Here the fact that P is homogeneous of degree k was used in the second
equality. Putting Z = 0, we get

@2mi)~* (P(@)ﬂs {gD(Q,O) = ﬂS,P[g] (2). (2.6.10)
By Theorem 25,

ﬁs[a} (2, Zy=det(CR2 + D)~ %

B
we—Tio(Z(CR+D)TIC1Z8TY) (2.6.11)
x O [g] (AR + B)(CQ2+ D)}, Z(C2+ D)™).

If we apply the differential operator (2mi)~*P(d) to both sides of Formula
(2.6.11) and put Z = 0, according to Formula (2.6.10), Lemma 40 and Lemma
41, we obtain

«

Us,p [ﬂ} (2)
= (27mi) " * det(CR+ D)~ %

" |:P(8)195 {ﬁ] (A2 + B)(CQ + D)1, Z(CQ2 + D)_l)} o

B
(AR + B)(C2+ D)~ 1,0)

= (274)* det(CQ + D)~ % {ﬁ(a)ﬁs[a]((AQ+B)(CQ+D)_1,Z)L_O

= det(CQ + D)~ % 19515[

|

™R @R

det(C2 + D)~ % 195,15[ ] (A2 + B)(CR2+ D)),

where P(Z) = P(Z(C2 + D)). We note that we used Formula (2.6.6) and
Lemma 40 in the first equality, and Lemma 41 in the second equality. In the
third equality we used the fact that P is homogeneous of degree k. Conse-
quently we complete the proof. (I

Definition 16. Let (p,V,) be a finite dimensional rational representation of
GL(n,C). A vector valued function f : H, — V, is called a modular form
with respect to p if it is a holomorphic function on H,, such that

f((AR+ B)(CR +D)™Y) = p(CR+D)f(2), 2cH,

for all (é, g) in a suitable congruence subgroup of I5,.
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We recall that $(.S) denotes the space of all pluriharmonic polynomials in
B, n With respect to S. Let W be some GL(n,C)-stable subspace of $(5).

We define the W*-valued function dy {g} : H, — W* by

(0w | 5] @) )= 05| 5] @) (2.6.12)

for all 2 € H,, and P € W C $(S). Here W* denotes the dual space of W.

Now we introduce the homogeneous line bundle £z over H,. First of all
we consider the double covering GL(n,C) of GL(n,C) defined by

—~

GL(n,C) = {(g.a)| o® = det(g), g€ GL(n,C), a € C*}
equipped with the multiplication
(g1, 01)(g2, 22) = (9192,0102), 91,92 € GL(n,C), 1,02 € C".
Let p be a one-dimensional representation of GL(n,C) defined by
plg,a) = a = (det(g))%7 g € GL(n,C), a € C*.

Then p yields the homogeneous line bundle on H,,, denoted by L£z. The
complex manifold )
L2 = H, xC

is a holomorphic line bundle over H,, with the action of the metaplectic group
Mp(n,R) given by

M-(2,2) = (AQ+ B)(CQ2+ D)™!, det(CQ2+ D)V?2), M e Mp(n,R),

where (é, g € Sp(n,R) is the image of M under the surjective homomor-

phism of Mp(n,R) onto Sp(n,R). For a positive integer k, we define
e = (ﬁé)(@k = L?® --®L? (k—times).
Let 7 be the representation of GL(n,C) on W defined by
(r(9)P)(Z):= P(Zg), g€ GL(n,C), PeW, ZeCm™n.

We observe that if 13~is a homogeneous pluriharmonic polynomial given by
Theorem 16.9, then P = 7(C{2 + D)P. Let 7* be the contragredient of 7.
That is,

(*(9)0)(P) = £(r(9)""P), g€ GL(n,C), Le W*, PeW.
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Theorem 27. Let o and 8 as above. Then the function Oy [g} (£2) defined

in (2.6.12) is a modular form with values in W* @ L% with respect to the
representation 7* @ det2 for a suitable congruence subgroup I'. For any W
and §2, it is non-zero for suitable o and .

Proof. By Theorem 26, for all P € W C $(.S) and for all (g g) in a suitable

congruence subgroup I" of I},, we get

(e fshn)er

m

= det(CR+ D)~ % 193713[ ]((AQ+B)(CQ+D)‘1)

m

= det(CQ2+ D)~ % (ﬁw[ } AQ+B)(CQ+D)—1))(15)
o

= det(CR2+ D)~ [ } AQ+B)(CQ+D)1)) (r(CR2+ D)P)

det(CR+ D)~ % (T*(CQ + D)"Yy m (A2 + B)(C2 + D)1)> (P),

where P is a homogeneous pluriharmonic polynomial defined by IS(Z) =
P(Z(C2+ D)). Therefore

ﬁwm (A2+B)(CQ+D)™Y) = det(C()—kD)’;'T*(CQ+D)§W{E}(Q)‘

B

Hence dy [g] (£2) is a modular form on H,, with values in W* ® £% with

respect to a suitable congruence subgroup I" of I,. ([

Remark 7. Using Theorem 27, we can prove that for alln > 2 and 1 <r <
n— 1, there are congruence subgroups I' C I3, and I'-invariant non-vanishing
holomorphic k-forms on H,,, where & = "("TH) — T(TTH) The proof can be
found in [28]. This fact was proved by Freitag and Stillman.

Definition 17. Let (p,V,) be a finite dimensional rational representation of
GL(n,C). A pluriharmonic form with respect to p is a polynomial P from
Clmn) to V, if it satisfies the following conditions:

0 foralli,7=1,2,--- 2.6.13
Zazmaz;@ oralli,j=1,2,---,n ( )

nd
) P(ZA) = p('"A)P(Z) for all A € GL(n,C). (2.6.14)
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We denote by £, ,(p) the space of all pluriharmonic forms with respect to
p-

Freitag proved the following.

Theorem 28. Let S be a positive definite even unimodular matriz of degree
m and let (p,V,) be a finite dimensional rational representation of GL(n,C).
Let P € $3mn(p) be a pluriharmonic form with respect to p. Then the theta
series

Os,p(2):= Y P(SV2N)eric(NSND) (2.6.15)

NezZ(m.m)

is a modular form with respect to the representation p. of GL(n,C) defined
by

m
2

p.(A) = p(A) (det A)%, A€ GL(n,C)
for the the Siegel modular group I,.

Proof. We will omit the proof. The proof can be found in [7]. O
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2.7 Relation between Theta Series and the Weil
Representation

Let (7, V;) be a unitary projective representation of Sp(n,R) on the repre-
sentation space V. We assume that (7, V) satisfies the following conditions
(A) and (B):

(A) There exists a vector valued map
F H, — V., N Fqo:=F(0)
satisfying the following covariance relation
T(M)Fq = (M) J(M, )" Fryo (2.7.1)

for all M € Sp(n,R) and 2 € H,. Here # is a character of Sp(n,R) and
J: Sp(n,R) x H,, — GL(1,C) is a certain automorphic factor for Sp(n,R)
on H,,.

(B) Let I' be an arithmetic subgroup of the Siegel modular group I',. There
exists a linear functional 6 : V; — C which is semi-invariant under the action
of I, in other words, for all v € I" and {2 € H,,,

(1" (M0, Fa) = (0,7()" Fa) =x(1) (0, Fa), (2.7.2)

where 7* is the contragredient of 7 and x : I' — Cj is a unitary character
of I'.

Under the assumptions (A) and (B) on a unitary projective representation
(m, V), we define the function © on H,, by

0(02) = (6,Zq) = 0(F,), QcH,. (2.7.3)

We now shall see that @ is an automorphic form on H,, with respect to I
for the automorphic factor J.

Lemma 43. Let (w,V;) be a unitary projective representation of Sp(n,R)
satisfying the above assumptions (A) and (B). Then the function © on H,
defined by (17.3) satisfies the following modular transformation behavior

O(y-2) = v~ ' x(1) Iy, 2)B(2) (2.7.4)
forally eI’ and 2 € H,.

Proof. For any v € I' and {2 € H,,, according to the assumptions (2.7.1) and
(2.7.2), we obtain
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O
Now for a positive definite real symmetric matrix M of degree m, we define
the holomorphic function O, : H,, — C by
om) =Y @ricMeee)  gem, (2.7.5)
cezim.n)

Theorem 29. Let 2 M be a symmetric positive definite, unimodular even
integral matriz of degree m. Then for any v € I,, the function O satisfies
the functional equation

Oy 2) = pm(Y) I (7, 2)O M (£2), eH,, (2.7.6)

where ppq is a character of I' with [pa(7)|® = 1 for all v € I, and J,,, :
Sp(n,R) x H,, — Cj is the automorphic factor for Sp(n,R) on H,, defined
by the formula (2.4.2) in Section 2.4.

Proof. For an element v = <é g) € I, and 2 € H,,, we put

2, =~v-2=(A+ B)(C2+ D).

We define the linear functional ¥ on L*(R(™™)) by

I =@, )= > fe), felL*RmM).

gezlm.m)

We note that O (§2) = 19(93\4)). Since .Z M) is a covariant map for the
WEeil representation wpyq with respect to the automorphic factor J,,, by The-
orem 16, according to Lemma 43, it suffices to prove that ¢ is semi-invariant
for waq under the action of I,, in other words, 9 satisfies the following semi-
invariance relation

(9, RN FG ) = paan)™ (0, 75) (2.7.7)

for all v € I}, and {2 € H,,.

We see that the following elements
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lg = <% Ii) with any g = ‘3 € Z("’"),

ta 0 .
dy 0 a-1 with any « € GL(n,7Z),

o — 0 -1,
" I, O
generate the Siegel modular group I,. Therefore it suffices to prove the semi-
invariance relation (2.7.7) for the above generators of I,.

Case I. v = t5 with g =t € Z(""),

In this case, we have
2, =0+p and Im(7,802) = 1.
According to the covariance relation (2.4.4) in Section 2.4, we obtain

(0, Ru(ZG)
— M
= <797 T (7, Q) 1y§.9)>
M
= (9, yé+g>
M
= Z 9‘}2#)_3(5)
gezlm,n)
=Y emieMe(@)e)
£€Z(7n,n)
_ Z P2Tio(MERQY) | 2mio(MEBT)
¢ez(m,n)
. p2mio(MER'E)
cezimm
= (9, 75).
Here we used the fact that 20(MEB%) is an even integer because 2 M
is even integral. We put pr(y) = pm(tsg) = 1 for all B = 8 € Z(m),

Therefore ¥ satisfies the semi-invariance relation (2.7.7) in the case v = tg
with g = '3 e Z(mn),

Case II. v = d,, with a« € GL(n,Z).
In this case, we have

m
2

2, ='aNa and Im(da, 2) = (det )™

According to the covariance relation (2.4.4) in Section 2.4, we obtain
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<19, RM('y),?éM) > with v = d,
= (0, Jm(r, 2) D)
(det o) ® (0, ﬂt(o/lvga )
= (det a)% Z ﬁt(of/ga
gezlmm)
— (deta)% Z eZwia(M&”aQa”&)
gezlm:m)

= (deta)? Y @motMiE 2 E )
ez lm,n)

= (deta)? <19,ﬁf(2M) ).
Here we put pa(da) = (det )~ % . Therefore ¥ satisfies the semi-invariance

relation (2.7.7) in the case v = d,, with a € GL(n,Z).

0 -1,
Case IIl. y =0, = (In 0 ) .
In this case, we have
Q.=—027"  and  Jo(0n,2) = (det 2)*

In the process of the proof of Theorem 16, using Lemma 34, we already
showed that

/ oMty (2.7.8)
(m,n)

. 20\ % , L
= (detM) <det > 6727rza(./\/lm(2 L x)

By Formula (2.7.8), we obtain

-

FIV @ Ma) = /( )y(()M)(y) e—2mioly' @ M) g
R m,n
_ / eQﬂio(MyQty).6—47riU(Mytx)dy
R(m,n)

N / 2mio{iMuy 2y +2y " (=2))} g,
R(m,m)
(det M)** (det 29) e—2mio(M(~x) 2 't (—a))
7

1n

20 A _
— (det M)~ (det) e2mioMz 07 )
i
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Thus we obtain
m

o _n 20\ . —1t
ﬁgw)@./\/lx) = (det M) ® <det z) e 2mic(Ma 7 m) (2.7.9)
where fis the Fourier transform of f defined by
flz) = / fly)e 2™ D qy, g e WM,
R(m,n)

We prove the Poisson summation formula in our setting.

Lemma 44. Let f be an element in L? (R(m’”)). Then

Y fo= Y re. (2.7.10)

genimm) gentmm
Proof. We define
haz)= Y fl@+¢, azeRM™M. (2.7.11)
eezimm)
We see that h(x) is periodic in z;; with period 1, where x = (z;;) is a

coordinate in R(™™), Thus h(z) has the following Fourier series

hz)= > cee?mio@’o), (2.7.12)
EeZ(nL,n)

1 1
ce = / / h(z)e 2700 gy
0 0

= /1.../1 Z f($+£)€_2ﬂi0(mt£)d$
0 0

er(nl,n)

where

~

= [ e fe)
R(m,m)

Here we interchanged summation and integration, and made a change of
variables replacing x + £ by x to obtain the above equality.

By the definition (2.7.11), we have

ho)= > £

gez(rw,n)

On the other hand, from Formula (2.7.12), we get
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ho)y= Y = > f©

gezlm,n) gezlm,n)

Therefore we obtain the Poisson summation formula (2.7.10). g

According to the covariance relation (2.4.4) in Section 2.4, Formula (2.7.9)
and Poisson summation formula, we obtain

(0, Rm(y )f(M)> Withvzan
=< ( ml 2
= 1< Q 1>

_ (detQ)_7 Z 6—271'1'0(./\/15.071%)
er(m,n)

— (det 2)" % (det M) * <det2f> Y 7 ﬂ*(M (2ME)

gezlm.n)
(by Formula (2.7.9))

m

3 A <M>
_ 2 n a
= (det2.M) (det ; ) > 7
gezimm)
(because 2 M is unimodular))

I\?
= <det n) Z FE(€)  (by Poisson summation formula)
i
gez(m n)

= (9, 75
= ()% (9, 75).

I
—
L
=
M

We put paq(0,) = (—i)~“2". Therefore 9 satisfies the semi-invariance relation
(2.7.7) in the case v = 0,. The proof of Case III is completed. Since Jy, is
an automorphic factor for Sp(n,R) on H,, we see that if the formula (2.7.6)
holds for two elements 1,2 in I', then it holds for ;2. Finally we complete
the proof of Theorem 29. O

Remark 8. For a symmetric positive definite integral matrix M such that 2M
is not unimodular even integral, we obtain a similar transformation formula
like (2.7.6). If m is odd, Oar(£2) is a modular form of a half-integral weight
5 and index % with respect to a suitable arithmetic subgroup I'e aq of I,

and a suitable character paq of I'g aq.



2.8 Spectral Theory on the Abelian Variety 143

2.8 Spectral Theory on the Abelian Variety

We recall the Jacobi group (cf. Section 2.3)
G’ = Sp(n,R) x Hﬂén’m)

which is the semidirect product of Sp(n,R) and Hﬂgn’m) endowed with the
following multiplication law

(M, O\, s H)) (M’, (N, m’)) = (MM'7 A+, i+, H+/€/+Xt,u’—/7t/\')>

with M, M’ € Sp(n,R), (A, u, k), (N, 1/, k") € HD({L’m) and (X, ) = (A p)M'.
Then G” acts on H,, x C"™") transitively by

(M, (N, 1K) - (2, 2) (2.8.1)
= ((AR+B)(CR+ D) " (Z+ A2+ p)(CR+ D)),

AB
CcD
We note that the Jacobi group G” is not a reductive Lie group and also that
the space H,, x C™™ is not a symmetric space. We refer to [50]-[56] and

[58] about automorphic forms on G and topics related to the content of this
book.

where M = < ) € Sp(n,R), (A, i, k) € Hﬂ(&"’m) and (£2, Z) € H,, xCmn),

From now on, for brevity, we write
H,, m := H,, x C™™,

H,, ., is called the Siegel-Jacobi space of degree n and index m.

We let
D i= I, x HSP™

be the discrete subgroup of G, where

H™ = { () € HE™ | A p e 200, g e z0mm) ]

Let E}; be the m x n matrix with entry 1 where the k-th row and the j-th
colume meet, and all other entries 0. For an element {2 € H,, we set for
brevity

Fi;(92) .= Ey; 12, 1<k<m,1<j<n. (2.8.2)

For each 2 € F,,, we define a subset Py of C™™ by
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m

Po=q 2 > Muibi +Zzﬂkijj(-Q)‘ 0 < Ay ey <1

k=1 j=1 k=1 j=1
For each {2 € F,,, we define the subset Dy of H, ,,, by
Dg Z:{(Q,Z) GHn,m‘ ZEP_Q}.

We define
]:n,m = UQE}-nDQ-

Theorem 30. F,, ,,, is a fundamental domain for Iy m,\Hy, .

Proof. Let (f), Z ) be an arbitrary element of H,, ,,,. We must find an element
(2,Z) of Fpm and an element v/ = (v, (\, p; k) € Iy m with v € I, such
that v/ -(£2, Z) = (12, Z). Since F,, is a fundamental domain for I}, \H,,, there
exists an element + of I, and an element £2 of F, such that - 2 = 2. Here
{2 is unique up to the boundary of F,.

AB
¥ = (C' D) erl,.
It is easy to see that we can find A\, € Z("™™ and Z € Py, satisfying the
equation

We write

Z4+ X2+ p=Z(CR+ D).

If we take v/ = (7, (A, 11;0)) € I, we see that v/ - (2,2) = (22, 2).
Therefore we obtain

— J
Hpm = Uyer, ., 7" - Fom:

Let (£2,Z) and v/ - (2, Z) be two elements of F,, ,, with v/ = (v, (A, u; 8)) €
Iy m. Then both {2 and y - {2 lie in F,,. Therefore both of them either lie in
the boundary of F,, or v = £15,,. In the case that both {2 and - {2 lie in the
boundary of F,,, both (£2,Z) and v/ - (£2, Z) lie in the boundary of F,, ,,,. If
v = +15,, we have

ZePy and +(Z+ X2+ p) € Py, A\pezZ™m. (2.8.3)

From the definition of Py, and (2.8.3), we see that either A = =0, v # —Ia,
or both Z and +(Z + A2 + p) lie on the boundary of the parallelepiped
Pg. Hence either both(2, Z) and 47 - (2, Z) lie in the boundary of F, ,, or
) = (I2n, (0,0; %)) € Iy m. Consequently F,, ,,, is a fundamental domain for
Fn,m\Hn,m~ O

For a coordinate (£2,7) € H,, », with 2 = (wy,) € H, and Z = (211) €
Cm") | we put
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N=X+1Y, X = (), Y = (yuw) real,
Z =U + iV, U = (ur), V = (vg) real,
d? = (dw,), dX = (dz,.), dY = (dyu),
dZ = (dzp), dU = (dug), dV = (dvy),
a9 = (dw,m), dZ = (dzr1),

o0 > Ow, )
o] el 9
i B 0z11 823’7»1 i B 0z11 0Zm1
9z o] 3 07 9 9

0z1n """ OzZmn BZ1in ' OZmn
Remark 9. The following metric
ds? ,,=o (Y'Y ~'dQ2) + o (Y V'V VY TldRY1d0)
+ o (Y '"dZ)dZ)
—o (VY HRY T HdQ) + VY THdRY T H(dZ))
is a Kéhler metric on H,, ,,, which is invariant under the action (2.8.1) of the
Jacobi group G”. Its Laplacian is given by

du a0 (v (v ) ) <0 (v Z(2))
+ 4o (Vy—”v (Y{i) aaz)
(v ) 2 ) ae (v (v 2) ).
The following differential form
dvpm = (det Y )" [AX] A [dY] A [dU] A [dV]

is a G7-invariant volume element on H,,,m, where

= A dzp, [dY] = A dyu, [dU] = )\ duy and [dV]= /\dvkl

n<v p<v k,l

The point is that the invariant metric dsim and its Laplacian are beautifully
expressed in terms of the trace form. The above facts were proved by the
author in [48]. We also refer to [49] for the action of the Jacobi group G” on
the Siegel-Jacobi disk D,, x C("™™),
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We fix two positive integers m and n throughout this section.

For an element (2 € H,,, we set
Lg := Z(™m™ 4 z(mn)

We use the notation (2.8.2). It follows from the positivity of Im {2 that the
elements Ey;, Fi;(2) (1 <k <m, 1 <j <n)of Ly are linearly independent
over R. Therefore Ly, is a lattice in C™™) and the set

{ Exj, Firy(2)| 1<k<m, 1<j<n}

forms an integral basis of L. We see easily that if {2 is an element of H,,,
the period matrix 2, := (I, {2) satisfies the Riemann conditions (RC.1) and
(RC.2):

(RC.1) £, Jp 02, =0;

(RC2) —140,J,"2,>0.

Thus the complex torus Ag = C™™) /Lg is an abelian variety. For more
details on A, we refer to [14] and [27].

It might be interesting to investigate the spectral theory of the Laplacian
Ay m on a fundamental domain F,, ,,. But this work is very complicated and
difficult at this moment. It may be that the first step is to develop the spectral
theory of the Laplacian A, on the abelian variety Ag. The second step will
be to study the spectral theory of the Laplacian A, (see (2.2.2) in Section
2.2) on the moduli space I,\H,, of principally polarized abelian varieties of
dimension g. The final step would be to combine the above steps and more
works to develop the spectral theory of the Lapalcian A,, ,,, on F,, ,,,. In this
section, we deal only with the spectral theory Ap on L?(Ag).

We fix an element {2 = X +7Y of H,, with X = Re {2 and Y = Im (2. For a
pair (A, B) with A, B € Z(™™) we define the function Eq.4 p : C"™™ — C
by

Eoap(Z) = e27ri(a(tAU)+a (B—AX)Y ! tv)),
where Z = U + iV is a variable in C"™ with real U, V.

Lemma 45. For any A, B € ZU""™) | the function Eq. 4. satisfies the follow-
ing functional equation

Eouap(Z+ A2+ 1) = Egap(Z), ZeCimm
for all A\, i € Z(™") - Thus Eg.4,p can be regarded as a function on Ag.

Proof. We write 2 = X +iY with real X,Y. For any \, u € Z(™™ we have
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Eoap(Z4+ X2+ p)=Eqap((U+ XX +up)+i(V+AY))
_ 62771'{ o (PA(UHAX +p))+ o (B—AX)Y T (V+AY)) }
_ e27ri{ o (PAU+TANX+TAp)+ o (B—AX)Y T TV4BIA-AX TA) }
_ 627”'{ o ("AU) + o (B-AX)Y 1 'V)}
= Ega,8(2).

Here we used the fact that Ay and B\ are integral. O

Lemma 46. The metric
dsfy = o (Im2)~" "(dZ)dZ))

is a Kdihler metric on Ag invariant under the action (18.1) of I'! =
Sp(n,Z) x Hé"’m) on (£2,Z) with 2 fized. Its Laplacian Ag of ds%, is given

by
o' o
- J o AB = 5
Proof. Let ¥ = (v, (A, p;5)) € I'Y with vy = cp) € Sp(n,Z) and (£2,72) =
7+ (02,Z) with 2 € H,, fixed. Then according to [23, p. 33],
Im~y-2="%CR+D) ' Im 2(CN+D)™*
and R
dZ =dZ (CRQ+ D)™ "
Therefore
(Im 2)~'(dZ)dZ
= (CR2+ D)(Im 2)"'Y(CR+ D) (CN+ D) *"(dZ)dZ (CR + D)™ *
— (O + D) (Im 2)~'*(dZ)dZ (C2 + D).
The metric ds;;, = o(dZ'(dZ)) at Z = 0 is positive definite. Since G acts

on H,, ., transitively, ds?l is a Riemannian metric for any {2 € H,,. We note
that the differential operator A, is invariant under the action of I'/. In fact,

0 0
5 =(C2+D) 5.

Hence if f is a differentiable function on Ag,, then
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57 (%)
0Z \oz
=YCR+D)'(Im 2)(CR+ D) (CNR2+ D)= 0° (CN+ D)—= of
o 0Z 0z
=YCR+D)! Q— g YO+ D).
07
Therefore
t
“(mogz (55) - (meaz (7))
0Z \pz 0z
By the induction on m, we can compute the Laplacian Ag,. ([

We let L?(Ap,) be the space of all functions f : Ap — C such that

flle = /A F(2)2dva,

where dvg, is the volume element on A normalized so that f Ao dvg = 1.
The inner product ( , ) on the Hilbert space L?(Ag,) is given by

(fag)ﬂ = A f( ) ( )vaa f7g€L2(AQ) (284)

Theorem 31. The set {EQ;A)B | A,B € 7,(m.n) } 18 a complete orthonormal
basis for L?(Agq). Moreover we have the following spectral decomposition of
AQ.'

Lz(A_Q) = @A,Bez(mv")c : EQ;A,B-

Proof. Let

be the torus of real dimension 2mn. The Hilbert space L*(T) is isomorphic
to the 2mn tensor product of L?(R/Z), where R/Z is the one-dimensional
real torus. Since L2(R/Z) = ®pezC - €2™*% the Hilbert space L%(T) is
L*(T) = @4 pegommC - Ea g(W),
where W =P +iQ, P,Q € R™™) and
EA B(W) — eQﬂ'ia’( tAP-‘rtBQ), A,B c Z(nl’n).

The inner product on L?(T) is defined by
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1 1

where f,g € L*(T), W = P+iQ € T, P = (pr;) and Q = (qx;). Then we
see that the set
{EA,B(W) | A, B € z(mm }

is a complete orthonormal basis for L?(T), and each E4 (W) is an eigen-
function of the standard Laplacian

We define the mapping @, : T — A by
Po(P+iQ)=(P+QX)+1iQY, (2.8.6)

where P+iQ € T, P,Q € R(™™)_ This is well defined. We can see that $¢
is a diffeomorphism and that the inverse @51 of @, is given by

P U+iV)=U-VY'X) +ivy 1 (2.8.7)

where U + iV € Ap, U,V € R™"  Using (2.8.7), we can show that for
A,B € Z™™ | the function Ea g(W) on T is transformed to the function
Eq.a.p on Ag via the diffeomorphism @,. Using (2.8.5) and the diffeomor-
phism &, we can choose a normalized volume element dv, on Ag and then
we get the inner product on L?(Ag,) defined by (2.8.4). This completes the
proof. O
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