INVARIANT DIFFERENTIAL OPERATORS ON SIEGEL-JACOBI SPACE

JAE-HYUN YANG

ABSTRACT. For two positive integers m and n, we let \mathbb{H}_n be the Siegel upper half plane of degree n and let $\mathbb{C}^{(m,n)}$ be the set of all $m \times n$ complex matrices. In this article, we study differential operators on the Siegel-Jacobi space $\mathbb{H}_n \times \mathbb{C}^{(m,n)}$ that are invariant under the *natural* action of the Jacobi group $Sp(n,\mathbb{R}) \ltimes H_{\mathbb{R}}^{(n,m)}$ on $\mathbb{H}_n \times \mathbb{C}^{(m,n)}$, where $H_{\mathbb{R}}^{(n,m)}$ denotes the Heisenberg group. We give some explicit invariant differential operators. We present important problems which are natural. We give some partial solutions for these natural problems.

1. Introduction

For a given fixed positive integer n, we let

$$\mathbb{H}_n = \{ \Omega \in \mathbb{C}^{(n,n)} \mid \Omega = {}^t \Omega, \quad \operatorname{Im} \Omega > 0 \}$$

be the Siegel upper half plane of degree n and let

$$Sp(n,\mathbb{R}) = \{ M \in \mathbb{R}^{(2n,2n)} \mid {}^{t}MJ_nM = J_n \}$$

be the symplectic group of degree n, where $F^{(k,l)}$ denotes the set of all $k \times l$ matrices with entries in a commutative ring F for two positive integers k and l, ${}^{t}M$ denotes the transpose matrix of a matrix M and

$$J_n = \begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}.$$

 $Sp(n,\mathbb{R})$ acts on \mathbb{H}_n transitively by

(1.1)
$$M \cdot \Omega = (A\Omega + B)(C\Omega + D)^{-1}$$

where $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(n, \mathbb{R})$ and $\Omega \in \mathbb{H}_n$.

For two positive integers m and n, we consider the Heisenberg group

$$H_{\mathbb{R}}^{(n,m)} = \left\{ \left(\lambda,\mu;\kappa\right) \mid \lambda,\mu \in \mathbb{R}^{(m,n)}, \ \kappa \in \mathbb{R}^{(m,m)}, \ \kappa + \mu^{t}\lambda \text{ symmetric } \right\}$$

2000 Mathematics Subject Classification. Primary 13A50, 32Wxx, 15A72.

Keywords and phrases: invariants, invariant differential operators, Siegel-Jacobi space.

This work was supported by Basic Science Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (41493-01) and partially supported by the Max-Planck-Institut für Mathematik in Bonn.

endowed with the following multiplication law

$$(\lambda,\mu;\kappa) \circ (\lambda',\mu';\kappa') = (\lambda+\lambda',\mu+\mu';\kappa+\kappa'+\lambda^t\mu'-\mu^t\lambda')$$

with $(\lambda, \mu; \kappa), (\lambda', \mu'; \kappa') \in H^{(n,m)}_{\mathbb{R}}$. We define the semidirect product of $Sp(n, \mathbb{R})$ and $H^{(n,m)}_{\mathbb{R}}$

$$G^J = Sp(n, \mathbb{R}) \ltimes H^{(n,m)}_{\mathbb{R}}$$

endowed with the following multiplication law

$$\left(M,(\lambda,\mu;\kappa)\right)\cdot\left(M',(\lambda',\mu';\kappa')\right)=\left(MM',(\tilde{\lambda}+\lambda',\tilde{\mu}+\mu';\kappa+\kappa'+\tilde{\lambda}{}^{t}\mu'-\tilde{\mu}{}^{t}\lambda')\right)$$

with $M, M' \in Sp(n, \mathbb{R}), (\lambda, \mu; \kappa), (\lambda', \mu'; \kappa') \in H^{(n,m)}_{\mathbb{R}}$ and $(\tilde{\lambda}, \tilde{\mu}) = (\lambda, \mu)M'$. Then G^J acts on $\mathbb{H}_n \times \mathbb{C}^{(m,n)}$ transitively by

(1.2)
$$(M, (\lambda, \mu; \kappa)) \cdot (\Omega, Z) = (M \cdot \Omega, (Z + \lambda \Omega + \mu)(C\Omega + D)^{-1}),$$

where $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(n, \mathbb{R}), \ (\lambda, \mu; \kappa) \in H^{(n,m)}_{\mathbb{R}} \text{ and } (\Omega, Z) \in \mathbb{H}_n \times \mathbb{C}^{(m,n)}.$ We note that the Jacobi group G^J is *not* a reductive Lie group and that the homogeneous space $\mathbb{H}_n \times \mathbb{C}^{(m,n)}$ is not a symmetric space. We refer to [1, 6, 22, 23, 24, 25, 27, 28, 29, 30, 31] about automorphic forms on G^J and topics related to the content of this paper. From now on, for brevity we write $\mathbb{H}_{n,m} = \mathbb{H}_n \times \mathbb{C}^{(m,n)}$, called the Siegel-Jacobi space of degree n and index m.

The aim of this paper is to study differential operators on $\mathbb{H}_{n,m}$ which are invariant under the *natural* action (1.2) of G^{J} . The study of these invariant differential operators on the Siegel-Jacobi space $\mathbb{H}_{n,m}$ is interesting and important in the aspects of invariant theory, arithmetic and geometry. This article is organized as follows. In Section 2, we review differential operators on \mathbb{H}_n invariant under the action (1.1) of $Sp(n,\mathbb{R})$. We let $\mathbb{D}(\mathbb{H}_n)$ denote the algebra of all differential operators on \mathbb{H}_n that are invariant under the action (1.1). According to the work of Harish-Chandra [7, 8], we see that $\mathbb{D}(\mathbb{H}_n)$ is a commutative algebra which is isomorphic to the center of the universal enveloping algebra of the complexification of the Lie algebra of $Sp(n,\mathbb{R})$. We briefly describe the work of Maass [14] about constructing explicit algebraically independent generators of $\mathbb{D}(\mathbb{H}_n)$ and Shimura's construction [18] of canonically defined algebraically independent generators of $\mathbb{D}(\mathbb{H}_n)$. In Section 3, we study differential operators on $\mathbb{H}_{n,m}$ invariant under the action (1.2) of G^J . For two positive integers m and n, we let

$$T_{n,m} = \left\{ \left(\omega, z \right) \mid \omega = {}^{t} \omega \in \mathbb{C}^{(n,n)}, \ z \in \mathbb{C}^{(m,n)} \right\}$$

be the complex vector space of dimension $\frac{n(n+1)}{2} + mn$. From the adjoint action of the Jacobi group G^J , we have the *natural action* of the unitary group U(n) on $T_{n,m}$ given by

(1.3)
$$u \cdot (\omega, z) = (u \omega^{t} u, z^{t} u), \quad u \in U(n), \ (\omega, z) \in T_{n,m}.$$

The action (1.3) of U(n) induces canonically the representation τ of U(n) on the polynomial algebra $Pol(T_{n,m})$ consisting of complex valued polynomial functions on $T_{n,m}$. Let $\operatorname{Pol}(T_{n,m})^{U(n)}$ denote the subalgebra of $\operatorname{Pol}(T_{n,m})$ consisting of all polynomials on $T_{n,m}$ invariant under the representation τ of U(n), and $\mathbb{D}(\mathbb{H}_{n,m})$ denote the algebra of all differential operators on $\mathbb{H}_{n,m}$ invariant under the action (1.2) of G^J . We see that there is a canonically defined linear bijection of $\operatorname{Pol}(T_{n,m})^{U(n)}$ onto $\mathbb{D}(\mathbb{H}_{n,m})$ which is not multiplicative. We will see that $\mathbb{D}(\mathbb{H}_{n,m})$ is not commutative. The main important problem is to find explicit generators of $Pol(T_{n,m})^{U(n)}$ and explicit generators of $\mathbb{D}(\mathbb{H}_{n,m})$. We propose several natural problems. We want to mention that at this moment it is quite complicated and difficult to find the explicit generators of $\mathbb{D}(\mathbb{H}_{n,m})$ and to express invariant differential operators on $\mathbb{H}_{n,m}$ explicitly. In Section 4, we gives some examples of explicit G^{J} -invariant differential operators on $\mathbb{H}_{n,m}$ that are obtained by complicated calculations. In Section 5, we deal with the special case n = m = 1 in detail. We give complete solutions of the problems that are proposed in Section 3. In Section 6, we deal with the case that n = 1 and m is arbitrary. We give some partial solutions for the problems proposed in Section 3. In the final section, using these invariant differential operators on the Siegel-Jacobi space, we discuss a notion of Maass-Jacobi forms.

Acknowledgements: This work was in part done during my stay at the Max-Planck-Institut für Mathematik in Bonn. I am very grateful for the hospitality and financial support. I also thank the National Research Foundation of Korea for its financial support. Finally I would like to give my hearty thanks to Don Zagier, Eberhard Freitag, Rainer Weissauer, Hiroyuki Ochiai and Minoru Itoh for their interests in this work and fruitful discussions.

Notations: We denote by \mathbb{Q} , \mathbb{R} and \mathbb{C} the field of rational numbers, the field of real numbers and the field of complex numbers respectively. We denote by \mathbb{Z} and \mathbb{Z}^+ the ring of integers and the set of all positive integers respectively. The symbol ":=" means that the expression on the right is the definition of that on the left. For two positive integers k and l, $F^{(k,l)}$ denotes the set of all $k \times l$ matrices with entries in a commutative ring F. For a square matrix $A \in F^{(k,k)}$ of degree k, tr(A) denotes the trace of A. For any $M \in F^{(k,l)}$, tM denotes the transpose matrix of M. I_n denotes the identity matrix of degree n. For $A \in F^{(k,l)}$ and $B \in F^{(k,k)}$, we set $B[A] = {}^tABA$. For a complex matrix A, \overline{A} denotes the complex *conjugate* of A. For $A \in \mathbb{C}^{(k,l)}$ and $B \in \mathbb{C}^{(k,k)}$, we use the abbreviation $B\{A\} = {}^t\overline{A}BA$. For a positive integer n, I_n denotes the identity matrix of degree n. For a complex number z, |z| denotes the absolute value of z. For a complex number z, Re z and Im z denote the real part of z and the imaginary part of z respectively.

2. Invariant Differential Operators on the Siegel Space

For a coordinate $\Omega = (\omega_{ij}) \in \mathbb{H}_n$, we write $\Omega = X + i Y$ with $X = (x_{ij}), Y = (y_{ij})$ real. We put $d\Omega = (d\omega_{ij})$ and $d\overline{\Omega} = (d\overline{\omega}_{ij})$. We also put

$$\frac{\partial}{\partial\Omega} = \left(\frac{1+\delta_{ij}}{2}\frac{\partial}{\partial\omega_{ij}}\right) \quad \text{and} \quad \frac{\partial}{\partial\overline{\Omega}} = \left(\frac{1+\delta_{ij}}{2}\frac{\partial}{\partial\overline{\omega}_{ij}}\right).$$

Then for a positive real number A,

(2.1)
$$ds_{n;A}^2 = A \operatorname{tr} \left(Y^{-1} d\Omega \, Y^{-1} d\overline{\Omega} \right)$$

is a $Sp(n, \mathbb{R})$ -invariant Kähler metric on \mathbb{H}_n (cf. [19, 20]), where tr(M) denotes the trace of a square matrix M. H. Maass [13] proved that the Laplacian of $ds_{n;A}^2$ is given by

(2.2)
$$\Delta_{n;A} = \frac{4}{A} \operatorname{tr} \left(Y \left(Y \frac{\partial}{\partial \overline{\Omega}} \right) \frac{\partial}{\partial \Omega} \right).$$

And

$$dv_n(\Omega) = (\det Y)^{-(n+1)} \prod_{1 \le i \le j \le n} dx_{ij} \prod_{1 \le i \le j \le n} dy_{ij}$$

is a $Sp(n, \mathbb{R})$ -invariant volume element on \mathbb{H}_n (cf. [20, p. 130]).

For brevity, we write $G = Sp(n, \mathbb{R})$. The isotropy subgroup K at iI_n for the action (1.1) is a maximal compact subgroup given by

$$K = \left\{ \begin{pmatrix} A & -B \\ B & A \end{pmatrix} \middle| A^{t}A + B^{t}B = I_{n}, A^{t}B = B^{t}A, A, B \in \mathbb{R}^{(n,n)} \right\}.$$

Let \mathfrak{k} be the Lie algebra of K. Then the Lie algebra \mathfrak{g} of G has a Cartan decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{p}$, where

$$\mathfrak{g} = \left\{ \begin{pmatrix} X_1 & X_2 \\ X_3 & -{}^tX_1 \end{pmatrix} \mid X_1, X_2, X_3 \in \mathbb{R}^{(n,n)}, \ X_2 = {}^tX_2, \ X_3 = {}^tX_3 \right\},$$
$$\mathfrak{k} = \left\{ \begin{pmatrix} X & -Y \\ Y & X \end{pmatrix} \in \mathbb{R}^{(2n,2n)} \mid {}^tX + X = 0, \ Y = {}^tY \right\},$$
$$\mathfrak{p} = \left\{ \begin{pmatrix} X & Y \\ Y & -X \end{pmatrix} \mid X = {}^tX, \ Y = {}^tY, \ X, Y \in \mathbb{R}^{(n,n)} \right\}.$$

The subspace \mathfrak{p} of \mathfrak{g} may be regarded as the tangent space of \mathbb{H}_n at iI_n . The adjoint representation of G on \mathfrak{g} induces the action of K on \mathfrak{p} given by

(2.3)
$$k \cdot Z = kZ^{t}k, \quad k \in K, \ Z \in \mathfrak{p}.$$

Let T_n be the vector space of $n \times n$ symmetric complex matrices. We let $\Psi : \mathfrak{p} \longrightarrow T_n$ be the map defined by

(2.4)
$$\Psi\left(\begin{pmatrix} X & Y \\ Y & -X \end{pmatrix}\right) = X + iY, \quad \begin{pmatrix} X & Y \\ Y & -X \end{pmatrix} \in \mathfrak{p}.$$

We let $\delta: K \longrightarrow U(n)$ be the isomorphism defined by

(2.5)
$$\delta\left(\begin{pmatrix} A & -B \\ B & A \end{pmatrix}\right) = A + iB, \quad \begin{pmatrix} A & -B \\ B & A \end{pmatrix} \in K,$$

where U(n) denotes the unitary group of degree n. We identify \mathfrak{p} (resp. K) with T_n (resp. U(n)) through the map Ψ (resp. δ). We consider the action of U(n) on T_n defined by

(2.6)
$$h \cdot \omega = h \omega^{t} h, \quad h \in U(n), \; \omega \in T_{n}.$$

Then the adjoint action (2.3) of K on \mathfrak{p} is compatible with the action (2.6) of U(n) on T_n through the map Ψ . Precisely for any $k \in K$ and $Z \in \mathfrak{p}$, we get

(2.7)
$$\Psi(k Z^{t} k) = \delta(k) \Psi(Z)^{t} \delta(k).$$

The action (2.6) induces the action of U(n) on the polynomial algebra $Pol(T_n)$ and the symmetric algebra $S(T_n)$ respectively. We denote by $Pol(T_n)^{U(n)}$ (resp. $S(T_n)^{U(n)}$) the subalgebra of $Pol(T_n)$ (resp. $S(T_n)$) consisting of U(n)-invariants. The following inner product (,) on T_n defined by

$$(Z, W) = \operatorname{tr}(Z\overline{W}), \quad Z, W \in T_n$$

gives an isomorphism as vector spaces

(2.8)
$$T_n \cong T_n^*, \quad Z \mapsto f_Z, \quad Z \in T_n$$

where T_n^* denotes the dual space of T_n and f_Z is the linear functional on T_n defined by

$$f_Z(W) = (W, Z), \quad W \in T_n.$$

It is known that there is a canonical linear bijection of $S(T_n)^{U(n)}$ onto the algebra $\mathbb{D}(\mathbb{H}_n)$ of differential operators on \mathbb{H}_n invariant under the action (1.1) of G. Identifying T_n with T_n^* by the above isomorphism (2.8), we get a canonical linear bijection

(2.9)
$$\Theta_n : \operatorname{Pol}(T_n)^{U(n)} \longrightarrow \mathbb{D}(\mathbb{H}_n)$$

of $\operatorname{Pol}(T_n)^{U(n)}$ onto $\mathbb{D}(\mathbb{H}_n)$. The map Θ_n is described explicitly as follows. Similarly the action (2.3) induces the action of K on the polynomial algebra $\operatorname{Pol}(\mathfrak{p})$ and the symmetric algebra $S(\mathfrak{p})$ respectively. Through the map Ψ , the subalgebra $\operatorname{Pol}(\mathfrak{p})^K$ of $\operatorname{Pol}(\mathfrak{p})$ consisting of K-invariants is isomorphic to $\operatorname{Pol}(T_n)^{U(n)}$. We put N = n(n+1). Let $\{\xi_\alpha \mid 1 \leq \alpha \leq N\}$ be a basis of a real vector space \mathfrak{p} . If $P \in \operatorname{Pol}(\mathfrak{p})^K$, then

(2.10)
$$\left(\Theta_n(P)f\right)(gK) = \left[P\left(\frac{\partial}{\partial t_\alpha}\right)f\left(g\exp\left(\sum_{\alpha=1}^N t_\alpha\xi_\alpha\right)K\right)\right]_{(t_\alpha)=0}$$

where $f \in C^{\infty}(\mathbb{H}_n)$. We refer to [9, 10] for more detail. In general, it is hard to express $\Phi(P)$ explicitly for a polynomial $P \in \operatorname{Pol}(\mathfrak{p})^K$.

According to the work of Harish-Chandra [7, 8], the algebra $\mathbb{D}(\mathbb{H}_n)$ is generated by *n* algebraically independent generators and is isomorphic to the commutative ring

 $\mathbb{C}[x_1, \cdots, x_n]$ with *n* indeterminates. We note that *n* is the real rank of *G*. Let $\mathfrak{g}_{\mathbb{C}}$ be the complexification of \mathfrak{g} . It is known that $\mathbb{D}(\mathbb{H}_n)$ is isomorphic to the center of the universal enveloping algebra of $\mathfrak{g}_{\mathbb{C}}$.

Using a classical invariant theory (cf. [11, 21], we can show that $\operatorname{Pol}(T_n)^{U(n)}$ is generated by the following algebraically independent polynomials

(2.11)
$$q_j(\omega) = \operatorname{tr}\left(\left(\omega\overline{\omega}\right)^j\right), \quad \omega \in T_n, \quad j = 1, 2, \cdots, n.$$

For each j with $1 \leq j \leq n$, the image $\Theta_n(q_j)$ of q_j is an invariant differential operator on \mathbb{H}_n of degree 2j. The algebra $\mathbb{D}(\mathbb{H}_n)$ is generated by n algebraically independent generators $\Theta_n(q_1), \Theta_n(q_2), \cdots, \Theta_n(q_n)$. In particular,

(2.12)
$$\Theta_n(q_1) = c_1 \operatorname{tr} \left(Y \left(\frac{\partial}{\partial \overline{\Omega}} \right) \frac{\partial}{\partial \Omega} \right) \quad \text{for some constant } c_1.$$

We observe that if we take $\omega = x + iy \in T_n$ with real x, y, then $q_1(\omega) = q_1(x, y) = tr(x^2 + y^2)$ and

$$q_2(\omega) = q_2(x,y) = \operatorname{tr}\left(\left(x^2 + y^2\right)^2 + 2x(xy - yx)y\right).$$

It is a natural question to express the images $\Theta_n(q_j)$ explicitly for $j = 2, 3, \dots, n$. We hope that the images $\Theta_n(q_j)$ for $j = 2, 3, \dots, n$ are expressed in the form of the *trace* as $\Phi(q_1)$.

H. Maass [14] found algebraically independent generators H_1, H_2, \dots, H_n of $\mathbb{D}(\mathbb{H}_n)$. We will describe H_1, H_2, \dots, H_n explicitly. For $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(n, \mathbb{R})$ and $\Omega = X + iY \in \mathbb{H}_n$ with real X, Y, we set

$$\Omega_* = M \cdot \Omega = X_* + iY_*$$
 with X_*, Y_* real

We set

$$K = (\Omega - \overline{\Omega}) \frac{\partial}{\partial \Omega} = 2 i Y \frac{\partial}{\partial \Omega},$$

$$\Lambda = (\Omega - \overline{\Omega}) \frac{\partial}{\partial \overline{\Omega}} = 2 i Y \frac{\partial}{\partial \overline{\Omega}},$$

$$K_* = (\Omega_* - \overline{\Omega}_*) \frac{\partial}{\partial \Omega_*} = 2 i Y_* \frac{\partial}{\partial \Omega_*},$$

$$\Lambda_* = (\Omega_* - \overline{\Omega}_*) \frac{\partial}{\partial \overline{\Omega}_*} = 2 i Y_* \frac{\partial}{\partial \overline{\Omega}_*}.$$

Then it is easily seen that

(2.13)
$$K_* = {}^t (C\overline{\Omega} + D)^{-1} {}^t \{ (C\Omega + D) {}^t K \},$$

(2.14)
$$\Lambda_* = {}^t (C\Omega + D)^{-1} {}^t \left\{ (C\overline{\Omega} + D) {}^t \Lambda \right\}$$

and

(2.15)
$${}^{t}\left\{\left(C\overline{\Omega}+D\right){}^{t}\Lambda\right\} = \Lambda^{t}\left(C\overline{\Omega}+D\right) - \frac{n+1}{2}\left(\Omega-\overline{\Omega}\right){}^{t}C$$

Using Formulas (2.13), (2.14) and (2.15), we can show that

(2.16)
$$\Lambda_* K_* + \frac{n+1}{2} K_* = {}^t (C\Omega + D)^{-1} \left\{ (C\Omega + D)^t \left(\Lambda K + \frac{n+1}{2} K \right) \right\}.$$

Therefore we get

(2.17)
$$\operatorname{tr}\left(\Lambda_*K_* + \frac{n+1}{2}K_*\right) = \operatorname{tr}\left(\Lambda K + \frac{n+1}{2}K\right)$$

We set

(2.18)
$$A^{(1)} = \Lambda K + \frac{n+1}{2}K.$$

We define $A^{(j)}$ $(j = 2, 3, \dots, n)$ recursively by

(2.19)
$$A^{(j)} = A^{(1)}A^{(j-1)} - \frac{n+1}{2}\Lambda A^{(j-1)} + \frac{1}{2}\Lambda \operatorname{tr}(A^{(j-1)}) + \frac{1}{2}\left(\Omega - \overline{\Omega}\right)^{t}\left\{\left(\Omega - \overline{\Omega}\right)^{-1}t\left({}^{t}\Lambda {}^{t}A^{(j-1)}\right)\right\}.$$

We set

(2.20)
$$H_j = \operatorname{tr}(A^{(j)}), \quad j = 1, 2, \cdots, n$$

As mentioned before, Maass proved that H_1, H_2, \cdots, H_n are algebraically independent generators of $\mathbb{D}(\mathbb{H}_n)$.

In fact, we see that

(2.21)
$$-H_1 = \Delta_{n;1} = 4 \operatorname{tr} \left(Y \left(Y \frac{\partial}{\partial \overline{\Omega}} \right) \frac{\partial}{\partial \Omega} \right).$$

is the Laplacian for the invariant metric $ds_{n;1}^2$ on \mathbb{H}_n .

Conjecture. For $j = 2, 3, \dots, n$, $\Theta_n(q_j) = c_j H_j$ for a suitable constant c_j .

Example 2.1. We consider the case n = 1. The algebra $Pol(T_1)^{U(1)}$ is generated by the polynomial

 $q(\omega) = \omega \overline{\omega}, \quad \omega = x + iy \in \mathbb{C} \text{ with } x, y \text{ real.}$

Using Formula (2.10), we get

$$\Theta_1(q) = 4 y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right).$$

Therefore $\mathbb{D}(\mathbb{H}_1) = \mathbb{C}[\Theta_1(q)] = \mathbb{C}[H_1].$

Example 2.2. We consider the case n = 2. The algebra $Pol(T_2)^{U(2)}$ is generated by the polynomial

$$q_1(\omega) = \operatorname{tr}(\omega \,\overline{\omega}), \quad q_2(\omega) = \operatorname{tr}((\omega \,\overline{\omega})^2), \quad \omega \in T_2.$$

Using Formula (2.10), we may express $\Theta_2(q_1)$ and $\Theta_2(q_2)$ explicitly. $\Theta_2(q_1)$ is expressed by Formula (2.12). The computation of $\Theta_2(q_2)$ might be quite tedious. We leave the detail to the reader. In this case, $\Theta_2(q_2)$ was essentially computed in [4], Proposition 6. Therefore

$$\mathbb{D}(\mathbb{H}_2) = \mathbb{C}\big[\Theta_2(q_1), \Theta_2(q_2)\big] = \mathbb{C}[H_1, H_2].$$

In fact, the center of the universal enveloping algebra $\mathscr{U}(\mathfrak{g}_{\mathbb{C}})$ was computed in [4].

G. Shimura [18] found canonically defined algebraically independent generators of $\mathbb{D}(\mathbb{H}_n)$. We will describe his way of constructing those generators roughly. Let $K_{\mathbb{C}}, \mathfrak{g}_{\mathbb{C}}, \mathfrak{k}_{\mathbb{C}}, \mathfrak{p}_{\mathbb{C}}, \cdots$ denote the complexication of $K, \mathfrak{g}, \mathfrak{k}, \mathfrak{p}, \cdots$ respectively. Then we have the Cartan decomposition

$$\mathfrak{g}_{\mathbb{C}}=\mathfrak{k}_{\mathbb{C}}+\mathfrak{p}_{\mathbb{C}},\quad \mathfrak{p}_{\mathbb{C}}=\mathfrak{p}_{\mathbb{C}}^++\mathfrak{p}_{\mathbb{C}}^-$$

with the properties

$$[\mathfrak{k}_{\mathbb{C}},\mathfrak{p}_{\mathbb{C}}^{\pm}] \subset \mathfrak{p}_{\mathbb{C}}^{\pm}, \quad [\mathfrak{p}_{\mathbb{C}}^{+},\mathfrak{p}_{\mathbb{C}}^{+}] = [\mathfrak{p}_{\mathbb{C}}^{-},\mathfrak{p}_{\mathbb{C}}^{-}] = \{0\}, \quad [\mathfrak{p}_{\mathbb{C}}^{+},\mathfrak{p}_{\mathbb{C}}^{-}] = \mathfrak{k}_{\mathbb{C}},$$

where

$$\mathfrak{g}_{\mathbb{C}} = \left\{ \begin{pmatrix} X_1 & X_2 \\ X_3 & -{}^t X_1 \end{pmatrix} \mid X_1, X_2, X_3 \in \mathbb{C}^{(n,n)}, \ X_2 = {}^t X_2, \ X_3 = {}^t X_3 \right\},$$
$$\mathfrak{k}_{\mathbb{C}} = \left\{ \begin{pmatrix} A & -B \\ B & A \end{pmatrix} \in \mathbb{C}^{(2n,2n)} \mid {}^t A + A = 0, \ B = {}^t B \right\},$$
$$\mathfrak{p}_{\mathbb{C}} = \left\{ \begin{pmatrix} X & Y \\ Y & -X \end{pmatrix} \in \mathbb{C}^{(2n,2n)} \mid X = {}^t X, \ Y = {}^t Y \right\},$$
$$\mathfrak{p}_{\mathbb{C}}^+ = \left\{ \begin{pmatrix} Z & iZ \\ iZ & -Z \end{pmatrix} \in \mathbb{C}^{(2n,2n)} \mid Z = {}^t Z \in \mathbb{C}^{(n,n)} \right\},$$
$$\mathfrak{p}_{\mathbb{C}}^- = \left\{ \begin{pmatrix} Z & -iZ \\ -iZ & -Z \end{pmatrix} \in \mathbb{C}^{(2n,2n)} \mid Z = {}^t Z \in \mathbb{C}^{(n,n)} \right\}.$$

For a complex vector space W and a nonnegative integer r, we denote by $\operatorname{Pol}_r(W)$ the vector space of complex-valued homogeneous polynomial functions on W of degree r. We put

$$\operatorname{Pol}^{r}(W) := \sum_{s=0}^{r} \operatorname{Pol}_{s}(W).$$

 $\mathrm{Ml}_r(W)$ denotes the vector space of all \mathbb{C} -multilinear maps of $W \times \cdots \times W$ (r copies) into \mathbb{C} . An element Q of $\mathrm{Ml}_r(W)$ is called *symmetric* if

$$Q(x_1,\cdots,x_r) = Q(x_{\pi(1)},\cdots,x_{\pi(r)})$$

for each permutation π of $\{1, 2, \dots, r\}$. Given $P \in \operatorname{Pol}_r(W)$, there is a unique element symmetric element P_* of $\operatorname{Ml}_r(W)$ such that

(2.22)
$$P(x) = P_*(x, \cdots, x) \quad \text{for all } x \in W.$$

Moreover the map $P \mapsto P_*$ is a \mathbb{C} -linear bijection of $\operatorname{Pol}_r(W)$ onto the set of all symmetric elements of $\operatorname{Ml}_r(W)$. We let $S_r(W)$ denote the subspace consisting of all homogeneous elements of degree r in the symmetric algebra S(W). We note that $\operatorname{Pol}_r(W)$ and $S_r(W)$ are dual to each other with respect to the pairing

(2.23)
$$\langle \alpha, x_1 \cdots x_r \rangle = \alpha_*(x_1, \cdots, x_r) \qquad (x_i \in W, \ \alpha \in \operatorname{Pol}_r(W)).$$

Let $\mathfrak{p}_{\mathbb{C}}^*$ be the dual space of $\mathfrak{p}_{\mathbb{C}}$, that is, $\mathfrak{p}_{\mathbb{C}}^* = \operatorname{Pol}_1(\mathfrak{p}_{\mathbb{C}})$. Let $\{X_1, \dots, X_N\}$ be a basis of $\mathfrak{p}_{\mathbb{C}}$ and $\{Y_1, \dots, Y_N\}$ be the basis of $\mathfrak{p}_{\mathbb{C}}^*$ dual to $\{X_\nu\}$, where N = n(n+1). We note that $\operatorname{Pol}_r(\mathfrak{p}_{\mathbb{C}})$ and $\operatorname{Pol}_r(\mathfrak{p}_{\mathbb{C}}^*)$ are dual to each other with respect to the pairing

(2.24)
$$\langle \alpha, \beta \rangle = \sum \alpha_*(X_{i_1}, \cdots, X_{i_r}) \beta_*(Y_{i_1}, \cdots, Y_{i_r}),$$

where $\alpha \in \operatorname{Pol}_r(\mathfrak{p}_{\mathbb{C}})$, $\beta \in \operatorname{Pol}_r(\mathfrak{p}_{\mathbb{C}}^*)$ and (i_1, \dots, i_r) runs over $\{1, \dots, N\}^r$. Let $\mathscr{U}(\mathfrak{g}_{\mathbb{C}})$ be the universal enveloping algebra of $\mathfrak{g}_{\mathbb{C}}$ and $\mathscr{U}^p(\mathfrak{g}_{\mathbb{C}})$ its subspace spanned by the elements of the form $V_1 \cdots V_s$ with $V_i \in \mathfrak{g}_{\mathbb{C}}$ and $s \leq p$. We recall that there is a \mathbb{C} -linear bijection ψ of the symmetric algebra $S(\mathfrak{g}_{\mathbb{C}})$ of $\mathfrak{g}_{\mathbb{C}}$ onto $\mathscr{U}(\mathfrak{g}_{\mathbb{C}})$ which is characterized by the property that $\psi(X^r) = X^r$ for all $X \in \mathfrak{g}_{\mathbb{C}}$. For each $\alpha \in \operatorname{Pol}_r(\mathfrak{p}_{\mathbb{C}}^*)$ we define an element $\omega(\alpha)$ of $\mathscr{U}(\mathfrak{g}_{\mathbb{C}})$ by

(2.25)
$$\omega(\alpha) := \sum \alpha_*(Y_{i_1}, \cdots, Y_{i_r}) X_{i_1} \cdots X_{i_r},$$

where (i_1, \dots, i_r) runs over $\{1, \dots, N\}^r$. If $Y \in \mathfrak{p}_{\mathbb{C}}$, then Y^r as an element of $\operatorname{Pol}_r(\mathfrak{p}_{\mathbb{C}}^*)$ is defined by

$$Y^r(u) = Y(u)^r$$
 for all $u \in \mathfrak{p}^*_{\mathbb{C}}$.

Hence $(Y^r)_*(u_1, \dots, u_r) = Y(u_1) \cdots Y(u_r)$. According to (2.25), we see that if $\alpha(\sum t_i Y_i) = P(t_1, \dots, t_N)$ for $t_i \in \mathbb{C}$ with a polynomial P, then

(2.26)
$$\omega(\alpha) = \psi(P(X_1, \cdots, X_N)).$$

Thus ω is a \mathbb{C} -linear injection of $\operatorname{Pol}(\mathfrak{p}^*_{\mathbb{C}})$ into $\mathscr{U}(\mathfrak{g}_{\mathbb{C}})$ independent of the choice of a basis. We observe that $\omega(\operatorname{Pol}_r(\mathfrak{p}^*_{\mathbb{C}})) = \psi(S_r(\mathfrak{p}_{\mathbb{C}}))$. It is a well-known fact that if $\alpha_1, \dots, \alpha_m \in \operatorname{Pol}_r(\mathfrak{p}^*_{\mathbb{C}})$, then

(2.27)
$$\omega(\alpha_1 \cdots \alpha_m) - \omega(\alpha_m) \cdots \omega(\alpha_1) \in \mathscr{U}^{r-1}(\mathfrak{g}_{\mathbb{C}}).$$

We have a canonical pairing

(2.28)
$$\langle , \rangle : \operatorname{Pol}_r(\mathfrak{p}_{\mathbb{C}}^+) \times \operatorname{Pol}_r(\mathfrak{p}_{\mathbb{C}}^-) \longrightarrow \mathbb{C}$$

defined by

(2.29)
$$\langle f,g\rangle = \sum f_*(\widetilde{X}_{i_1},\cdots,\widetilde{X}_{i_r})g_*(\widetilde{Y}_{i_1},\cdots,\widetilde{Y}_{i_r}),$$

where f_* (resp. g_*) are the unique symmetric elements of $\mathrm{Ml}_r(\mathfrak{p}^+_{\mathbb{C}})$ (resp. $\mathrm{Ml}_r(\mathfrak{p}^-_{\mathbb{C}})$), and $\{\widetilde{X}_1, \cdots, \widetilde{X}_{\widetilde{N}}\}$ and $\{\widetilde{Y}_1, \cdots, \widetilde{Y}_{\widetilde{N}}\}$ are dual bases of $\mathfrak{p}^+_{\mathbb{C}}$ and $\mathfrak{p}^-_{\mathbb{C}}$ with respect to

the Killing form $B(X,Y) = 2(n+1)\operatorname{tr}(XY)$, $\widetilde{N} = \frac{n(n+1)}{2}$, and (i_1,\cdots,i_r) runs over $\{1,\cdots,\widetilde{N}\}^r$.

The adjoint representation of $K_{\mathbb{C}}$ on $\mathfrak{p}_{\mathbb{C}}^{\pm}$ induces the representation of $K_{\mathbb{C}}$ on $\operatorname{Pol}_r(\mathfrak{p}_{\mathbb{C}}^{\pm})$. Given a $K_{\mathbb{C}}$ -irreducible subspace Z of $\operatorname{Pol}_r(\mathfrak{p}_{\mathbb{C}}^{\pm})$, we can find a unique $K_{\mathbb{C}}$ -irreducible subspace W of $\operatorname{Pol}_r(\mathfrak{p}_{\mathbb{C}}^{\pm})$ such that $\operatorname{Pol}_r(\mathfrak{p}_{\mathbb{C}}^{\pm})$ is the direct sum of W and the annihilator of Z. Then Z and W are dual with respect to the pairing (2.28). Take bases $\{\zeta_1, \dots, \zeta_\kappa\}$ of Z and $\{\xi_1, \dots, \xi_\kappa\}$ of W that are dual to each other. We set

(2.30)
$$f_Z(x,y) = \sum_{\nu=1}^{\kappa} \zeta_{\nu}(x) \,\xi_{\nu}(y) \qquad (x \in \mathfrak{p}_{\mathbb{C}}^+, \ y \in \mathfrak{p}_{\mathbb{C}}^-).$$

It is easily seen that f_Z belongs to $\operatorname{Pol}_{2r}(\mathfrak{p}_{\mathbb{C}})^K$ and is independent of the choice of dual bases $\{\zeta_\nu\}$ and $\{\xi_\nu\}$. Shimura [18] proved that there exists a canonically defined set $\{Z_1, \dots, Z_n\}$ with a $K_{\mathbb{C}}$ -irreducible subspace Z_r of $\operatorname{Pol}_r(\mathfrak{p}_{\mathbb{C}}^+)$ $(1 \leq r \leq n)$ such that f_{Z_1}, \dots, f_{Z_n} are algebraically independent generators of $\operatorname{Pol}(\mathfrak{p}_{\mathbb{C}})^K$. We can identify $\mathfrak{p}_{\mathbb{C}}^+$ with T_n . We recall that T_n denotes the vector space of $n \times n$ symmetric complex matrices. We can take Z_r as the subspace of $\operatorname{Pol}_r(T_n)$ spanned by the functions $f_{a;r}(Z) = \det_r({}^t a Z a)$ for all $a \in GL(n, \mathbb{C})$, where $\det_r(x)$ denotes the determinant of the upper left $r \times r$ submatrix of x. For every $f \in \operatorname{Pol}(\mathfrak{p}_{\mathbb{C}})^K$, we let $\Omega(f)$ denote the element of $\mathbb{D}(\mathbb{H}_n)$ represented by $\omega(f)$. Then $\mathbb{D}(\mathbb{H}_n)$ is the polynomial ring $\mathbb{C}[\omega(f_{Z_1}), \dots, \omega(f_{Z_n})]$ generated by n algebraically independent elements $\omega(f_{Z_1}), \dots, \omega(f_{Z_n})$.

3. Invariant Differential Operators on Siegel-Jacobi Space

The stabilizer K^J of G^J at $(iI_n, 0)$ is given by

$$K^{J} = \left\{ \left(k, (0,0;\kappa) \right) \mid k \in K, \ \kappa = {}^{t}\kappa \in \mathbb{R}^{(m,m)} \right\}$$

Therefore $\mathbb{H}_{n,m} \cong G^J/K^J$ is a homogeneous space of *non-reductive type*. The Lie algebra \mathfrak{g}^J of G^J has a decomposition

$$\mathfrak{g}^J = \mathfrak{k}^J + \mathfrak{p}^J,$$

where

$$\begin{split} \mathbf{\mathfrak{g}}^{J} &= \Big\{ \left(Z, \left(P, Q, R \right) \right) \mid Z \in \mathbf{\mathfrak{g}}, \ P, Q \in \mathbb{R}^{(m,n)}, \ R = \ {}^{t}\!R \in \mathbb{R}^{(m,m)} \Big\}, \\ \mathbf{\mathfrak{t}}^{J} &= \Big\{ \left(X, \left(0, 0, R \right) \right) \mid X \in \mathbf{\mathfrak{t}}, \ R = \ {}^{t}\!R \in \mathbb{R}^{(m,m)} \Big\}, \\ \mathbf{\mathfrak{p}}^{J} &= \Big\{ \left(Y, \left(P, Q, 0 \right) \right) \mid Y \in \mathbf{\mathfrak{p}}, \ P, Q \in \mathbb{R}^{(m,n)} \Big\}. \end{split}$$

Thus the tangent space of the homogeneous space $\mathbb{H}_{n,m}$ at $(iI_n, 0)$ is identified with \mathfrak{p}^J .

If
$$\alpha = \left(\begin{pmatrix} X_1 & Y_1 \\ Z_1 & -^t X_1 \end{pmatrix}, (P_1, Q_1, R_1) \right)$$
 and $\beta = \left(\begin{pmatrix} X_2 & Y_2 \\ Z_2 & -^t X_2 \end{pmatrix}, (P_2, Q_2, R_2) \right)$ are elements of \mathfrak{g}^J , then the Lie bracket $[\alpha, \beta]$ of α and β is given by

(3.1)
$$[\alpha,\beta] = \left(\begin{pmatrix} X^* & Y^* \\ Z^* & -tX^* \end{pmatrix}, (P^*,Q^*,R^*) \right),$$

where

$$\begin{aligned} X^* &= X_1 X_2 - X_2 X_1 + Y_1 Z_2 - Y_2 Z_1, \\ Y^* &= X_1 Y_2 - X_2 Y_1 + Y_2 {}^t X_1 - Y_1 {}^t X_2, \\ Z^* &= Z_1 X_2 - Z_2 X_1 + {}^t X_2 Z_1 - {}^t X_1 Z_2, \\ P^* &= P_1 X_2 - P_2 X_1 + Q_1 Z_2 - Q_2 Z_1, \\ Q^* &= P_1 Y_2 - P_2 Y_1 + Q_2 {}^t X_1 - Q_1 {}^t X_2, \\ R^* &= P_1 {}^t Q_2 - P_2 {}^t Q_1 + Q_2 {}^t P_1 - Q_1 {}^t P_2 \end{aligned}$$

Lemma 3.1.

$$[\mathfrak{k}^J,\mathfrak{k}^J]\subset\mathfrak{k}^J,\quad [\mathfrak{k}^J,\mathfrak{p}^J]\subset\mathfrak{p}^J.$$

Proof. The proof follows immediately from Formula (3.1).

Lemma 3.2. Let

$$k^{J} = \left(\begin{pmatrix} A & -B \\ B & A \end{pmatrix}, (0, 0, \kappa) \right) \in K^{J}$$

with $\begin{pmatrix} A & -B \\ B & A \end{pmatrix} \in K$, $\kappa = {}^{t}\kappa \in \mathbb{R}^{(m,m)}$ and

$$\alpha = \left(\begin{pmatrix} X & Y \\ Y & -X \end{pmatrix}, (P, Q, 0) \right) \in \mathfrak{p}^J$$

with $X = {}^{t}X$, $Y = {}^{t}Y \in \mathbb{R}^{(n,n)}$, $P, Q \in \mathbb{R}^{(m,n)}$. Then the adjoint action of K^{J} on \mathfrak{p}^{J} is given by

(3.2)
$$Ad(k^J)\alpha = \left(\begin{pmatrix} X_* & Y_* \\ Y_* & -X_* \end{pmatrix}, (P_*, Q_*, 0) \right),$$

where

$$(3.3) X_* = AX^{t}A - (BX^{t}B + BY^{t}A + AY^{t}B),$$

(3.4)
$$Y_* = \left(AX^{t}B + AY^{t}A + BX^{t}A\right) - BY^{t}B,$$

(3.5)
$$P_* = P^{t}A - Q^{t}B,$$

(3.6)
$$Q_* = P {}^t B + Q {}^t A.$$

Proof. We leave the proof to the reader.

11

We recall that T_n denotes the vector space of all $n \times n$ symmetric complex matrices. For brevity, we put $T_{n,m} := T_n \times \mathbb{C}^{(m,n)}$. We define the real linear map $\Phi : \mathfrak{p}^J \longrightarrow T_{n,m}$ by

(3.7)
$$\Phi\left(\begin{pmatrix} X & Y \\ Y & -X \end{pmatrix}, (P,Q,0)\right) = (X + iY, P + iQ),$$

where $\begin{pmatrix} X & Y \\ Y & -X \end{pmatrix} \in \mathfrak{p}$ and $P, Q \in \mathbb{R}^{(m,n)}$.

Let $S(m, \mathbb{R})$ denote the additive group consisting of all $m \times m$ real symmetric matrices. Now we define the isomorphism $\theta : K^J \longrightarrow U(n) \times S(m, \mathbb{R})$ by

(3.8)
$$\theta(h, (0, 0, \kappa)) = (\delta(h), \kappa), \quad h \in K, \ \kappa \in S(m, \mathbb{R}),$$

where $\delta : K \longrightarrow U(n)$ is the map defined by (2.5). Identifying $\mathbb{R}^{(m,n)} \times \mathbb{R}^{(m,n)}$ with $\mathbb{C}^{(m,n)}$, we can identify \mathfrak{p}^J with $T_n \times \mathbb{C}^{(m,n)}$.

Theorem 3.1. The adjoint representation of K^J on \mathfrak{p}^J is compatible with the natural action of $U(n) \times S(m, \mathbb{R})$ on $T_{n,m}$ defined by

$$(3.9) \qquad (h,\kappa) \cdot (\omega,z) := (h \,\omega^{t} h, \, z^{t} h), \qquad h \in U(n), \ \kappa \in S(m,\mathbb{R}), \ (\omega,z) \in T_{n,m}$$

through the maps Φ and θ . Precisely, if $k^J \in K^J$ and $\alpha \in \mathfrak{p}^J$, then we have the following equality

(3.10)
$$\Phi(Ad(k^J)\alpha) = \theta(k^J) \cdot \Phi(\alpha)$$

Here we regard the complex vector space $T_{n,m}$ as a real vector space.

Proof. Let

$$k^{J} = \left(\begin{pmatrix} A & -B \\ B & A \end{pmatrix}, (0, 0, \kappa) \right) \in K^{J}$$

with $\begin{pmatrix} A & -B \\ B & A \end{pmatrix} \in K$, $\kappa = {}^t \kappa \in \mathbb{R}^{(m,m)}$ and

$$\alpha = \left(\begin{pmatrix} X & Y \\ Y & -X \end{pmatrix}, (P, Q, 0) \right) \in \mathfrak{p}^J$$

with $X = {}^{t}X, Y = {}^{t}Y \in \mathbb{R}^{(n,n)}, P, Q \in \mathbb{R}^{(m,n)}$. Then we have

$$\begin{aligned} \theta(k^{J}) \cdot \Phi(\alpha) &= (A + iB, \kappa) \cdot (X + iY, P + iQ) \\ &= ((A + iB)(X + iY)^{t}(A + iB), (P + iQ)^{t}(A + iB)) \\ &= (X_{*} + iY_{*}, P_{*} + iQ_{*}) \\ &= \Phi\left(\begin{pmatrix} X_{*} & Y_{*} \\ Y_{*} & -X_{*} \end{pmatrix}, (P_{*}, Q_{*}, 0)\right) \\ &= \Phi(Ad(k^{J})\alpha) \qquad (by \ Lemma \ 3.2), \end{aligned}$$

12

where X_*, Y_*, Z_* and Q_* are given by the formulas (3.3), (3.4), (3.5) and (3.6) respectively.

We now study the algebra $\mathbb{D}(\mathbb{H}_{n,m})$ of all differential operators on $\mathbb{H}_{n,m}$ invariant under the *natural action* (1.2) of G^J . The action (3.9) induces the action of U(n) on the polynomial algebra $\operatorname{Pol}_{n,m} := \operatorname{Pol}(T_{n,m})$. We denote by $\operatorname{Pol}_{n,m}^{U(n)}$ the subalgebra of $\operatorname{Pol}_{n,m}$ consisting of all U(n)-invariants. Similarly the action (3.2) of K induces the action of K on the polynomial algebra $\operatorname{Pol}(\mathfrak{p}^J)$. We see that through the identification of \mathfrak{p}^J with $T_{n,m}$, the algebra $\operatorname{Pol}(\mathfrak{p}^J)$ is isomorphic to $\operatorname{Pol}_{n,m}$. The following U(n)invariant inner product $(\ ,\)_*$ of the complex vector space $T_{n,m}$ defined by

$$((\omega, z), (\omega', z'))_* = \operatorname{tr}(\omega\overline{\omega'}) + \operatorname{tr}(z \, {}^t\overline{z'}), \quad (\omega, z), \, (\omega', z') \in T_{n,m}$$

gives a canonical isomorphism

$$T_{n,m} \cong T^*_{n,m}, \quad (\omega, z) \mapsto f_{\omega,z}, \quad (\omega, z) \in T_{n,m},$$

where $f_{\omega,z}$ is the linear functional on $T_{n,m}$ defined by

$$f_{\omega,z}((\omega',z')) = ((\omega',z'),(\omega,z))_*, \quad (\omega',z') \in T_{n,m}.$$

According to Helgason ([10], p. 287), one gets a canonical linear bijection of $S(T_{n,m})^{U(n)}$ onto $\mathbb{D}(\mathbb{H}_{n,m})$. Identifying $T_{n,m}$ with $T^*_{n,m}$ by the above isomorphism, one gets a natural linear bijection

$$\Theta_{n,m}: \operatorname{Pol}_{n,m}^{U(n)} \longrightarrow \mathbb{D}(\mathbb{H}_{n,m})$$

of $\operatorname{Pol}_{n,m}^{U(n)}$ onto $\mathbb{D}(\mathbb{H}_{n,m})$. The map $\Theta_{n,m}$ is described explicitly as follows. We put $N_{\star} = n(n+1) + 2mn$. Let $\{\eta_{\alpha} \mid 1 \leq \alpha \leq N_{\star}\}$ be a basis of \mathfrak{p}^{J} . If $P \in \operatorname{Pol}(\mathfrak{p}^{J})^{K} = \operatorname{Pol}_{n,m}^{U(n)}$, then

(3.11)
$$\left(\Theta_{n,m}(P)f\right)(gK^J) = \left[P\left(\frac{\partial}{\partial t_{\alpha}}\right)f\left(g\exp\left(\sum_{\alpha=1}^{N_{\star}}t_{\alpha}\eta_{\alpha}\right)K^J\right)\right]_{(t_{\alpha})=0},$$

where $g \in G^J$ and $f \in C^{\infty}(\mathbb{H}_{n,m})$. In general, it is hard to express $\Theta_{n,m}(P)$ explicitly for a polynomial $P \in \operatorname{Pol}(\mathfrak{p}^J)^K$. We refer to [10], p. 287.

We present the following *basic* U(n)-invariant polynomials in $\operatorname{Pol}_{n,m}^{U(n)}$.

(3.12)
$$q_j(\omega, z) = \operatorname{tr}((\omega \overline{\omega})^{j+1}), \quad 0 \le j \le n-1$$

(3.13)
$$\alpha_{kp}^{(j)}(\omega, z) = \operatorname{Re}\left(z \,(\overline{\omega}\omega)^{j t} \overline{z}\right)_{kp}, \quad 0 \le j \le n-1, \ 1 \le k \le p \le m,$$

(3.14)
$$\beta_{lq}^{(j)}(\omega, z) = \operatorname{Im}\left(z \,(\overline{\omega}\omega)^{j t} \overline{z}\right)_{lq}, \quad 0 \le j \le n-1, \ 1 \le l < q \le m,$$

(3.15)
$$f_{kp}^{(j)}(\omega, z) = \operatorname{Re}\left(z \,(\overline{\omega}\omega)^j \,\overline{\omega}\,{}^t z\right)_{kp}, \quad 0 \le j \le n-1, \ 1 \le k \le p \le m,$$

(3.16)
$$g_{kp}^{(j)}(\omega, z) = \operatorname{Im}\left(z\left(\overline{\omega}\omega\right)^{j}\overline{\omega}^{t}z\right)_{kp}, \quad 0 \le j \le n-1, \ 1 \le k \le p \le m,$$

where $\omega \in T_n$ and $z \in \mathbb{C}^{(m,n)}$.

We present some interesting U(n)-invariants. For an $m \times m$ matrix S, we define the following invariant polynomials in $\operatorname{Pol}_{n,m}^{U(n)}$:

(3.17)
$$m_{j;S}^{(1)}(\omega, z) = \operatorname{Re}\left(\operatorname{tr}\left(\omega\overline{\omega} + {}^{t}zS\overline{z}\right)^{j}\right), \quad 1 \le j \le n,$$

(3.18)
$$m_{j;S}^{(2)}(\omega, z) = \operatorname{Im}\left(\operatorname{tr}\left(\omega\overline{\omega} + {}^{t}zS\overline{z}\right)^{j}\right), \quad 1 \le j \le n$$

(3.19)
$$q_{k;S}^{(1)}(\omega, z) = \operatorname{Re}\left(\operatorname{tr}\left(({}^{t}z\,S\,\overline{z})^{k}\right)\right), \quad 1 \le k \le m,$$

(3.20)
$$q_{k;S}^{(2)}(\omega, z) = \operatorname{Im}\left(\operatorname{tr}\left(({}^{t}z\,S\,\overline{z})^{k}\right)\right), \quad 1 \le k \le m,$$

(3.21)
$$\theta_{i,k,j;S}^{(1)}(\omega,z) = \operatorname{Re}\left(\operatorname{tr}\left((\omega\overline{\omega})^{i}\left({}^{t}z\,S\,\overline{z}\right)^{k}\left(\omega\overline{\omega} + {}^{t}z\,S\,\overline{z}\,\right)^{j}\right)\right),$$

(3.22)
$$\theta_{i,k,j;S}^{(2)}(\omega,z) = \operatorname{Im}\left(\operatorname{tr}\left((\omega\overline{\omega})^{i}\left({}^{t}z\,S\,\overline{z}\right)^{k}\left(\omega\overline{\omega}+{}^{t}z\,S\,\overline{z}\,\right)^{j}\right)\right),$$

where $1 \leq i, j \leq n$ and $1 \leq k \leq m$.

We define the following U(n)-invariant polynomials in $\operatorname{Pol}_{n,m}^{U(n)}$.

(3.23)
$$r_{jk}^{(1)}(\omega, z) = \operatorname{Re}\left(\det\left((\omega\overline{\omega})^{j} \left({}^{t}z\overline{z}\right)^{k}\right)\right), \quad 1 \le j \le n, \ 1 \le k \le m,$$

(3.24)
$$r_{jk}^{(2)}(\omega, z) = \operatorname{Im}\left(\det\left((\omega\overline{\omega})^{j} \left({}^{t}z\overline{z}\right)^{k}\right)\right), \quad 1 \le j \le n, \ 1 \le k \le m.$$

We propose the following natural problems.

Problem 1. Find a complete list of explicit generators of $\operatorname{Pol}_{n,m}^{U(n)}$.

Problem 2. Find all the relations among a set of generators of $\operatorname{Pol}_{n,m}^{U(n)}$.

Problem 3. Find an easy or effective way to express the images of the above invariant polynomials or generators of $\operatorname{Pol}_{n,m}^{U(n)}$ under the Helgason map $\Theta_{n,m}$ explicitly.

Problem 4. Decompose $Pol_{n,m}$ into U(n)-irreducibles.

Problem 5. Find a complete list of explicit generators of the algebra $\mathbb{D}(\mathbb{H}_{n,m})$. Or construct explicit G^{J} -invariant differential operators on $\mathbb{H}_{n,m}$.

Problem 6. Find all the relations among a set of generators of $\mathbb{D}(\mathbb{H}_{n,m})$.

Problem 7. Is $\operatorname{Pol}_{n,m}^{U(n)}$ finitely generated ? Is $\mathbb{D}(\mathbb{H}_{n,m})$ finitely generated ?

Quite recently Minoru Itoh [12] solved Problem 1 and Problem 7.

Theorem 3.2. $\operatorname{Pol}_{n,m}^{U(n)}$ is generated by

 $q_j(\omega, z), \ \alpha_{kp}^{(j)}(\omega, z), \ \beta_{lq}^{(j)}(\omega, z), \ f_{kp}^{(j)}(\omega, z) \ and \ g_{kp}^{(j)}(\omega, z),$

where $0 \le j \le n-1$, $1 \le k \le p \le m$ and $1 \le l < q \le m$.

4. Examples of Explicit G^J-Invariant Differential Operators

In this section we give examples of explicit G^{J} -invariant differential operators on the Siegel-Jacobi space and the Siegel-Jacobi disk.

For $g = (M, (\lambda, \mu; \kappa)) \in G^J$ with $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(n, \mathbb{R})$ and $(\Omega, Z) \in \mathbb{H}_{n,m}$, we set

$$\begin{aligned} \Omega_* &= M \cdot \Omega = X_* + i Y_*, \quad X_*, Y_* \text{ real}, \\ Z_* &= (Z + \lambda \Omega + \mu) (C\Omega + D)^{-1} = U_* + i V_*, \quad U_*, V_* \text{ real} \end{aligned}$$

For a coordinate $(\Omega, Z) \in \mathbb{H}_{n,m}$ with $\Omega = (\omega_{\mu\nu})$ and $Z = (z_{kl})$, we put $d\Omega, \ d\overline{\Omega}, \ \frac{\partial}{\partial\Omega}, \ \frac{\partial}{\partial\overline{\Omega}}$ as before and set

$$Z = U + iV, \quad U = (u_{kl}), \quad V = (v_{kl}) \text{ real},$$

$$dZ = (dz_{kl}), \quad d\overline{Z} = (d\overline{z}_{kl}),$$

$$\frac{\partial}{\partial Z} = \begin{pmatrix} \frac{\partial}{\partial z_{11}} & \cdots & \frac{\partial}{\partial z_{m1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial z_{1n}} & \cdots & \frac{\partial}{\partial z_{mn}} \end{pmatrix}, \quad \frac{\partial}{\partial \overline{Z}} = \begin{pmatrix} \frac{\partial}{\partial \overline{z}_{11}} & \cdots & \frac{\partial}{\partial \overline{z}_{m1}} \\ \vdots & \ddots & \vdots \\ \frac{\partial}{\partial \overline{z}_{1n}} & \cdots & \frac{\partial}{\partial \overline{z}_{mn}} \end{pmatrix}.$$

Then we can show that

$$(4.1) \qquad d\Omega_* = {}^t (C\Omega + D)^{-1} d\Omega (C\Omega + D)^{-1},$$

$$(4.2) \qquad dZ_* = dZ (C\Omega + D)^{-1} + \left\{ \lambda - (Z + \lambda\Omega + \mu)(C\Omega + D)^{-1}C \right\} d\Omega (C\Omega + D)^{-1},$$

$$(4.3) \qquad \frac{\partial}{\partial\Omega_*} = (C\Omega + D) {}^t \left\{ (C\Omega + D) \frac{\partial}{\partial\Omega} \right\} + (C\Omega + D) {}^t \left\{ (C\Omega + D) \frac{\partial}{\partial\Omega} \right\}$$

and

(4.4)
$$\frac{\partial}{\partial Z_*} = (C\Omega + D)\frac{\partial}{\partial Z}.$$

From [14, p. 33] or [20, p. 128], we know that

(4.5)
$$Y_* = {}^t (C\overline{\Omega} + D)^{-1} Y (C\Omega + D)^{-1} = {}^t (C\Omega + D)^{-1} Y (C\overline{\Omega} + D)^{-1}.$$

Using Formulas (4.1), (4.2) and (4.5), the author [29] proved that for any two positive real numbers A and B,

$$ds_{n,m;A,B}^{2} = A \operatorname{tr} \left(Y^{-1} d\Omega Y^{-1} d\overline{\Omega} \right) + B \left\{ \operatorname{tr} \left(Y^{-1 t} V V Y^{-1} d\Omega Y^{-1} d\overline{\Omega} \right) + \operatorname{tr} \left(Y^{-1 t} (dZ) d\overline{Z} \right) - \operatorname{tr} \left(V Y^{-1} d\Omega Y^{-1 t} (d\overline{Z}) \right) - \operatorname{tr} \left(V Y^{-1} d\overline{\Omega} Y^{-1 t} (dZ) \right) \right\}$$

is a Riemannian metric on $\mathbb{H}_{n,m}$ which is invariant under the action (1.2) of G^{J} .

The following lemma is very useful for computing the invariant differential operators. H. Maass [13] observed the following useful fact.

Lemma 4.1. (a) Let A be an $m \times n$ matrix and B an $n \times l$ matrix. Assume that the entries of A commute with the entries of B. Then ${}^{t}(AB) = {}^{t}B {}^{t}A$.

(b) Let A, B and C be a $k \times l$, an $n \times m$ and an $m \times l$ matrix respectively. Assume that the entries of A commute with the entries of B. Then

$${}^{t}(A {}^{t}(BC)) = B {}^{t}(A {}^{t}C).$$

Proof. The proof follows immediately from the direct computation.

Using Formulas (4.3), (4.4), (4.5) and Lemma 4.1, the author [29] proved that the following differential operators \mathbb{M}_1 and \mathbb{M}_2 on $\mathbb{H}_{n,m}$ defined by

(4.6)
$$\mathbb{M}_{1} = \operatorname{tr}\left(Y\frac{\partial}{\partial Z}^{t}\left(\frac{\partial}{\partial \overline{Z}}\right)\right)$$

and

(4.7)
$$\mathbb{M}_{2} = \operatorname{tr}\left(Y^{t}\left(Y\frac{\partial}{\partial\overline{\Omega}}\right)\frac{\partial}{\partial\Omega}\right) + \operatorname{tr}\left(VY^{-1} V^{t}\left(Y\frac{\partial}{\partial\overline{Z}}\right)\frac{\partial}{\partial Z}\right) \\ + \operatorname{tr}\left(V^{t}\left(Y\frac{\partial}{\partial\overline{\Omega}}\right)\frac{\partial}{\partial Z}\right) + \operatorname{tr}\left({}^{t}V^{t}\left(Y\frac{\partial}{\partial\overline{Z}}\right)\frac{\partial}{\partial\Omega}\right)$$

are invariant under the action (1.2) of G^{J} . The author [29] proved that for any two positive real numbers A and B, the following differential operator

(4.8)
$$\Delta_{n,m;A,B} = \frac{4}{A} \mathbb{M}_2 + \frac{4}{B} \mathbb{M}_1$$

is the Laplacian of the G^{J} -invariant Riemannian metric $ds^{2}_{n,m;A,B}$.

16

Proposition 4.1. The following differential operator \mathbb{K} on $\mathbb{H}_{n,m}$ of degree 2n defined by

(4.9)
$$\mathbb{K} = \det(Y) \, \det\left(\frac{\partial}{\partial Z}^t \left(\frac{\partial}{\partial \overline{Z}}\right)\right)$$

is invariant under the action (1.2) of G^{J} .

Proof. Let $\mathbb{K}_{M,(\lambda,\mu;\kappa)}$ denote the image of \mathbb{K} under the transformation

$$(\Omega, Z) \longmapsto \left((M \cdot \Omega, (Z + \lambda \Omega + \mu)(C\Omega + D)^{-1} \right)$$

with $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(n, \mathbb{R})$ and $(\lambda, \mu; \kappa) \in H^{(n,m)}_{\mathbb{R}}$. If f is a C^{∞} function on $\mathbb{H}_{n,m}$, using (4.4), (4.5) and Lemma 4.1, we have

$$\begin{split} \mathbb{K}_{M,(\lambda,\mu;\kappa)} f &= \det(Y) |\det(C\Omega+D)|^{-2} \det\left[(C\Omega+D) \frac{\partial}{\partial Z}^{t} \Big\{ (C\overline{\Omega}+D) \frac{\partial f}{\partial \overline{Z}} \Big\} \right] \\ &= \det(Y) |\det(C\Omega+D)|^{-2} \det\left[(C\Omega+D)^{t} \Big\{ (C\overline{\Omega}+D)^{t} \Big(\frac{\partial}{\partial Z}^{t} \Big(\frac{\partial f}{\partial \overline{Z}} \Big) \Big) \Big\} \Big] \\ &= \det(Y) |\det(C\Omega+D)|^{-2} \det\left[(C\Omega+D) \frac{\partial}{\partial Z}^{t} \Big(\frac{\partial f}{\partial \overline{Z}} \Big)^{t} (C\overline{\Omega}+D) \right] \\ &= \det(Y) \det\left(\frac{\partial}{\partial Z}^{t} \Big(\frac{\partial f}{\partial \overline{Z}} \Big) \right) \\ &= \mathbb{K} f. \end{split}$$

Since $M \in Sp(n, \mathbb{R})$ and $(\lambda, \mu; \kappa) \in H^{(n,m)}_{\mathbb{R}}$ are arbitrary, \mathbb{K} is invariant under the action (1.2) of G^J .

Proposition 4.2. The following matrix-valued differential operator \mathbb{T} on $\mathbb{H}_{n,m}$ defined by

(4.10)
$$\mathbb{T} = {t \choose \frac{\partial}{\partial \overline{Z}}} Y \frac{\partial}{\partial Z}$$

is invariant under the action (1.2) of G^{J} .

Proof. Let $\mathbb{T}_{M,(\lambda,\mu;\kappa)}$ denote the image of K under the transformation

$$(\Omega, Z) \longmapsto \left((M \cdot \Omega, (Z + \lambda \Omega + \mu)(C\Omega + D)^{-1} \right)$$

with $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(n, \mathbb{R})$ and $(\lambda, \mu; \kappa) \in H^{(n,m)}_{\mathbb{R}}$. If f is a C^{∞} function on $\mathbb{H}_{n,m}$, according to (4.4), (4.5) and Lemma 4.1, we have

$$\begin{aligned} \mathbb{T}_{M,(\lambda,\mu;\kappa)}f &= \begin{pmatrix} t \\ (C\overline{\Omega}+D)\frac{\partial}{\partial\overline{Z}} \end{pmatrix} t (C\overline{\Omega}+D)^{-1}Y(C\Omega+D)^{-1}(C\Omega+D)\frac{\partial f}{\partial Z} \\ &= \begin{pmatrix} t \\ \partial\overline{\partial\overline{Z}} \end{pmatrix} Y \frac{\partial f}{\partial Z} \\ &= \mathbb{T}f. \end{aligned}$$

Since $M \in Sp(n, \mathbb{R})$ and $(\lambda, \mu; \kappa) \in H^{(n,m)}_{\mathbb{R}}$ are arbitrary, \mathbb{T} is invariant under the action (1.2) of G^J .

Corollary 4.1. Each (k, l)-entry \mathbb{T}_{kl} of \mathbb{T} given by

(4.11)
$$\mathbb{T}_{kl} = \sum_{i,j=1}^{n} y_{ij} \frac{\partial^2}{\partial \overline{z}_{ki} \partial z_{lj}}, \quad 1 \le k, l \le m$$

is an element of $\mathbb{D}(\mathbb{H}_{n,m})$.

Proof. It follows immediately from Proposition 4.2.

Now we consider invariant differential operators on the Siegel-Jacobi disk. Let

$$\mathbb{D}_n = \left\{ W \in \mathbb{C}^{(n,n)} \mid W = {}^t W, \ I_n - \overline{W}W > 0 \right\}$$

be the generalized unit disk.

For brevity, we write $\mathbb{D}_{n,m} := \mathbb{D}_n \times \mathbb{C}^{(m,n)}$. For a coordinate $(W, \eta) \in \mathbb{D}_{n,m}$ with $W = (w_{\mu\nu}) \in \mathbb{D}_n$ and $\eta = (\eta_{kl}) \in \mathbb{C}^{(m,n)}$, we put

$$dW = (dw_{\mu\nu}), \quad d\overline{W} = (d\overline{w}_{\mu\nu}), d\eta = (d\eta_{kl}), \quad d\overline{\eta} = (d\overline{\eta}_{kl})$$

and

$$\frac{\partial}{\partial W} = \left(\frac{1+\delta_{\mu\nu}}{2}\frac{\partial}{\partial w_{\mu\nu}}\right), \quad \frac{\partial}{\partial \overline{W}} = \left(\frac{1+\delta_{\mu\nu}}{2}\frac{\partial}{\partial \overline{w}_{\mu\nu}}\right),$$
$$\frac{\partial}{\partial \eta} = \left(\begin{array}{ccc}\frac{\partial}{\partial \eta_{11}}&\cdots&\frac{\partial}{\partial \eta_{m1}}\\\vdots&\ddots&\vdots\\\frac{\partial}{\partial \eta_{1n}}&\cdots&\frac{\partial}{\partial \eta_{mn}}\end{array}\right), \quad \frac{\partial}{\partial \overline{\eta}} = \left(\begin{array}{ccc}\frac{\partial}{\partial \overline{\eta}_{11}}&\cdots&\frac{\partial}{\partial \overline{\eta}_{m1}}\\\vdots&\ddots&\vdots\\\frac{\partial}{\partial \overline{\eta}_{1n}}&\cdots&\frac{\partial}{\partial \overline{\eta}_{mn}}\end{array}\right).$$

We can identify an element $g = (M, (\lambda, \mu; \kappa))$ of G^J , $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(n, \mathbb{R})$ with the element

$$\begin{pmatrix} A & 0 & B & A^{t}\mu - B^{t}\lambda \\ \lambda & I_{m} & \mu & \kappa \\ C & 0 & D & C^{t}\mu - D^{t}\lambda \\ 0 & 0 & 0 & I_{m} \end{pmatrix}$$

of $Sp(m+n,\mathbb{R})$.

We set

$$T_* = \frac{1}{\sqrt{2}} \begin{pmatrix} I_{m+n} & I_{m+n} \\ iI_{m+n} & -iI_{m+n} \end{pmatrix}.$$

We now consider the group G^J_* defined by

$$G^J_\ast := T_\ast^{-1} G^J T_\ast$$

If $g = (M, (\lambda, \mu; \kappa)) \in G^J$ with $M = \begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(n, \mathbb{R})$, then $T_*^{-1}gT_*$ is given by

(4.12)
$$T_*^{-1}gT_* = \begin{pmatrix} P_* & Q_* \\ \overline{Q}_* & \overline{P}_* \end{pmatrix},$$

where

$$P_* = \begin{pmatrix} P & \frac{1}{2} \left\{ Q^{t}(\lambda + i\mu) - P^{t}(\lambda - i\mu) \right\} \\ \frac{1}{2}(\lambda + i\mu) & I_h + i\frac{\kappa}{2} \end{pmatrix},$$
$$Q_* = \begin{pmatrix} Q & \frac{1}{2} \left\{ P^{t}(\lambda - i\mu) - Q^{t}(\lambda + i\mu) \right\} \\ \frac{1}{2}(\lambda - i\mu) & -i\frac{\kappa}{2} \end{pmatrix},$$

and P, Q are given by the formulas

(4.13)
$$P = \frac{1}{2} \{ (A+D) + i (B-C) \}$$

and

(4.14)
$$Q = \frac{1}{2} \left\{ (A - D) - i (B + C) \right\}.$$

From now on, we write

$$\left(\begin{pmatrix} P & Q \\ \overline{Q} & \overline{P} \end{pmatrix}, \begin{pmatrix} \frac{1}{2}(\lambda + i\mu), \frac{1}{2}(\lambda - i\mu); -i\frac{\kappa}{2} \end{pmatrix} \right) := \begin{pmatrix} P_* & Q_* \\ \overline{Q}_* & \overline{P}_* \end{pmatrix}.$$

In other words, we have the relation

$$T_*^{-1}\left(\begin{pmatrix} A & B\\ C & D \end{pmatrix}, (\lambda, \mu; \kappa)\right) T_* = \left(\begin{pmatrix} P & Q\\ \overline{Q} & \overline{P} \end{pmatrix}, \left(\frac{1}{2}(\lambda + i\mu), \frac{1}{2}(\lambda - i\mu); -i\frac{\kappa}{2}\right)\right).$$

Let

 $H^{(n,m)}_{\mathbb{C}} := \left\{ (\xi,\eta;\zeta) \mid \xi,\eta \in \mathbb{C}^{(m,n)}, \ \zeta \in \mathbb{C}^{(m,m)}, \ \zeta + \eta^{t}\xi \text{ symmetric} \right\}$ be the complex Heisenberg group endowed with the following multiplication

$$(\xi,\eta\,;\zeta)\circ(\xi',\eta';\zeta'):=(\xi+\xi',\eta+\eta'\,;\zeta+\zeta'+\xi^{\,t}\eta'-\eta^{\,t}\xi'))$$

We define the semidirect product

$$SL(2n,\mathbb{C})\ltimes H^{(n,m)}_{\mathbb{C}}$$

endowed with the following multiplication

$$\begin{pmatrix} \begin{pmatrix} P & Q \\ R & S \end{pmatrix}, (\xi, \eta; \zeta) \end{pmatrix} \cdot \begin{pmatrix} \begin{pmatrix} P' & Q' \\ R' & S' \end{pmatrix}, (\xi', \eta'; \zeta') \end{pmatrix}$$

$$= \begin{pmatrix} \begin{pmatrix} P & Q \\ R & S \end{pmatrix} \begin{pmatrix} P' & Q' \\ R' & S' \end{pmatrix}, (\tilde{\xi} + \xi', \tilde{\eta} + \eta'; \zeta + \zeta' + \tilde{\xi}^{t} \eta' - \tilde{\eta}^{t} \xi') \end{pmatrix},$$

where $\tilde{\xi} = \xi P' + \eta R'$ and $\tilde{\eta} = \xi Q' + \eta S'$.

If we identify $H_{\mathbb{R}}^{(n,m)}$ with the subgroup

$$\left\{ (\xi, \overline{\xi}; i\kappa) \mid \xi \in \mathbb{C}^{(m,n)}, \ \kappa \in \mathbb{R}^{(m,m)} \right\}$$

of $H^{(n,m)}_{\mathbb{C}}$, we have the following inclusion

$$G^J_* \subset SU(n,n) \ltimes H^{(n,m)}_{\mathbb{R}} \subset SL(2n,\mathbb{C}) \ltimes H^{(n,m)}_{\mathbb{C}}$$

We define the mapping $\Theta:G^J\longrightarrow G^J_*$ by

$$(4.15) \quad \Theta\left(\begin{pmatrix} A & B \\ C & D \end{pmatrix}, (\lambda, \mu; \kappa)\right) := \left(\begin{pmatrix} P & Q \\ \overline{Q} & \overline{P} \end{pmatrix}, \begin{pmatrix} \frac{1}{2}(\lambda + i\mu), \frac{1}{2}(\lambda - i\mu); -i\frac{\kappa}{2} \end{pmatrix}\right),$$

where P and Q are given by (4.13) and (4.14). We can see that if $g_1, g_2 \in G^J$, then $\Theta(g_1g_2) = \Theta(g_1)\Theta(g_2)$.

According to [26, p. 250], G_*^J is of the Harish-Chandra type (cf. [17, p. 118]). Let

$$g_* = \left(\begin{pmatrix} P & Q \\ \overline{Q} & \overline{P} \end{pmatrix}, (\lambda, \mu; \kappa) \right)$$

be an element of G_*^J . Since the Harish-Chandra decomposition of an element $\begin{pmatrix} P & Q \\ R & S \end{pmatrix}$ in SU(n,n) is given by

$$\begin{pmatrix} P & Q \\ R & S \end{pmatrix} = \begin{pmatrix} I_n & QS^{-1} \\ 0 & I_n \end{pmatrix} \begin{pmatrix} P - QS^{-1}R & 0 \\ 0 & S \end{pmatrix} \begin{pmatrix} I_n & 0 \\ S^{-1}R & I_n \end{pmatrix},$$

the P_*^+ -component of the following element

$$g_* \cdot \left(\begin{pmatrix} I_n & W \\ 0 & I_n \end{pmatrix}, (0, \eta; 0) \right), \quad W \in \mathbb{D}_n$$

of $SL(2n, \mathbb{C}) \ltimes H^{(n,m)}_{\mathbb{C}}$ is given by

(4.16)
$$\left(\begin{pmatrix} I_n & (PW+Q)(\overline{Q}W+\overline{P})^{-1} \\ 0 & I_n \end{pmatrix}, (0, (\eta+\lambda W+\mu)(\overline{Q}W+\overline{P})^{-1}; 0) \end{pmatrix} \right).$$

We can identify $\mathbb{D}_{n,m}$ with the subset

$$\left\{ \left(\begin{pmatrix} I_n & W \\ 0 & I_n \end{pmatrix}, (0, \eta; 0) \right) \mid W \in \mathbb{D}_n, \ \eta \in \mathbb{C}^{(m, n)} \right\}$$

of the complexification of G^J_* . Indeed, $\mathbb{D}_{n,m}$ is embedded into P^+_* given by

$$P_*^+ = \left\{ \left(\begin{pmatrix} I_n & W \\ 0 & I_n \end{pmatrix}, (0, \eta; 0) \right) \mid W = {}^t W \in \mathbb{C}^{(n,n)}, \ \eta \in \mathbb{C}^{(m,n)} \right\}.$$

This is a generalization of the Harish-Chandra embedding (cf. [17, p. 119]). Then we get the *natural transitive action* of G_*^J on $\mathbb{D}_{n,m}$ defined by

(4.17)
$$\begin{pmatrix} \left(\frac{P}{\overline{Q}} \quad \frac{Q}{\overline{P}} \right), \left(\xi, \overline{\xi}; i\kappa\right) \end{pmatrix} \cdot (W, \eta) \\ = \left((PW + Q)(\overline{Q}W + \overline{P})^{-1}, (\eta + \xi W + \overline{\xi})(\overline{Q}W + \overline{P})^{-1} \right),$$

where $\begin{pmatrix} P & Q \\ \overline{Q} & \overline{P} \end{pmatrix} \in G_*, \ \xi \in \mathbb{C}^{(m,n)}, \ \kappa \in \mathbb{R}^{(m,m)} \text{ and } (W,\eta) \in \mathbb{D}_{n,m}.$

The author [30] proved that the action (1.2) of G^J on $\mathbb{H}_{n,m}$ is compatible with the action (4.17) of G^J_* on $\mathbb{D}_{n,m}$ through a partial Cayley transform $\Phi : \mathbb{D}_{n,m} \longrightarrow \mathbb{H}_{n,m}$ defined by

(4.18)
$$\Phi(W,\eta) := \left(i(I_n + W)(I_n - W)^{-1}, 2\,i\,\eta\,(I_n - W)^{-1}\right).$$

In other words, if $g_0 \in G^J$ and $(W, \eta) \in \mathbb{D}_{n,m}$,

(4.19)
$$g_0 \cdot \Phi(W,\eta) = \Phi(g_* \cdot (W,\eta)),$$

where $g_* = T_*^{-1}g_0T_*$. Φ is a biholomorphic mapping of $\mathbb{D}_{n,m}$ onto $\mathbb{H}_{n,m}$ which gives the partially bounded realization of $\mathbb{H}_{n,m}$ by $\mathbb{D}_{n,m}$. The inverse of Φ is

$$\Phi^{-1}(\Omega, Z) = \left((\Omega - iI_n)(\Omega + iI_n)^{-1}, \, Z(\Omega + iI_n)^{-1} \right).$$

For $(W, \eta) \in \mathbb{D}_{n,m}$, we write

$$(\Omega, Z) := \Phi(W, \eta).$$

Thus

(4.20)
$$\Omega = i(I_n + W)(I_n - W)^{-1}, \qquad Z = 2 i \eta (I_n - W)^{-1}.$$

Since

$$d(I_n - W)^{-1} = (I_n - W)^{-1} dW (I_n - W)^{-1}$$

and

$$I_n + (I_n + W)(I_n - W)^{-1} = 2(I_n - W)^{-1},$$

we get the following formulas from (4.20)

(4.21)
$$Y = \frac{1}{2i} (\Omega - \overline{\Omega}) = (I_n - W)^{-1} (I_n - W\overline{W}) (I_n - \overline{W})^{-1},$$

(4.22)
$$V = \frac{1}{2i} (Z - \overline{Z}) = \eta (I_n - W)^{-1} + \overline{\eta} (I_n - \overline{W})^{-1},$$

(4.23)
$$d\Omega = 2i(I_n - W)^{-1}dW(I_n - W)^{-1},$$

(4.24)
$$dZ = 2i \left\{ d\eta + \eta \left(I_n - W \right)^{-1} dW \right\} (I_n - W)^{-1}.$$

Using Formulas (4.18), (4.20)-(4.24), the author [31] proved that for any two positive real numbers A and B, the following metric $d\tilde{s}_{n,m;A,B}^2$ defined by

$$\begin{split} ds_{\mathbb{D}_{n,m};A,B}^{2} &= 4A\operatorname{tr}\left((I_{n}-W\overline{W})^{-1}dW(I_{n}-\overline{W}W)^{-1}d\overline{W}\right) \\ &+ 4B\left\{\operatorname{tr}\left((I_{n}-W\overline{W})^{-1}t(d\eta)\beta\right) \\ &+ \operatorname{tr}\left((\eta\overline{W}-\overline{\eta})(I_{n}-W\overline{W})^{-1}dW(I_{n}-\overline{W}W)^{-1}t(d\eta)\right) \\ &+ \operatorname{tr}\left((\overline{\eta}W-\eta)(I_{n}-\overline{W}W)^{-1}d\overline{W}(I_{n}-W\overline{W})^{-1}t(d\eta)\right) \\ &- \operatorname{tr}\left((I_{n}-W\overline{W})^{-1}t\eta\eta(I_{n}-\overline{W}W)^{-1}\overline{W}dW(I_{n}-\overline{W}W)^{-1}d\overline{W}\right) \\ &- \operatorname{tr}\left(W(I_{n}-\overline{W}W)^{-1}t\overline{\eta}\overline{\eta}(I_{n}-W\overline{W})^{-1}dW(I_{n}-\overline{W}W)^{-1}d\overline{W}\right) \\ &+ \operatorname{tr}\left((I_{n}-W\overline{W})^{-1}t\eta\overline{\eta}(I_{n}-W\overline{W})^{-1}dW(I_{n}-\overline{W}W)^{-1}d\overline{W}\right) \\ &+ \operatorname{tr}\left((I_{n}-\overline{W})^{-1}t\overline{\eta}\eta\overline{W}(I_{n}-W\overline{W})^{-1}dW(I_{n}-\overline{W}W)^{-1}d\overline{W}\right) \\ &+ \operatorname{tr}\left((I_{n}-\overline{W})^{-1}(I_{n}-W)(I_{n}-\overline{W}W)^{-1}t\overline{\eta}\eta(I_{n}-\overline{W}W)^{-1}d\overline{W}\right) \\ &- \operatorname{tr}\left((I_{n}-W\overline{W})^{-1}(I_{n}-W)(I_{n}-\overline{W}W)^{-1}d\overline{W}\right) \\ &- \operatorname{tr}\left((I_{n}-W\overline{W})^{-1}(I_{n}-W)(I_{n}-\overline{W})^{-1}t\overline{\eta}\eta(I_{n}-W)^{-1}\right) \\ &\times dW(I_{n}-\overline{W}W)^{-1}d\overline{W}\right) \bigg\}$$

is a Riemannian metric on $\mathbb{D}_{n,m}$ which is invariant under the action (4.17) of the Jacobi group G^J_* .

We note that if n = m = 1 and A = B = 1, we get

$$\begin{aligned} \frac{1}{4} ds_{\mathbb{D}_{1,1};1,1}^2 &= \frac{dW \, d\overline{W}}{(1-|W|^2)^2} + \frac{1}{(1-|W|^2)} \, d\eta \, d\overline{\eta} \\ &+ \frac{(1+|W|^2)|\eta|^2 - \overline{W}\eta^2 - W\overline{\eta}^2}{(1-|W|^2)^3} \, dW \, d\overline{W} \\ &+ \frac{\eta \overline{W} - \overline{\eta}}{(1-|W|^2)^2} \, dW d\overline{\eta} + \frac{\overline{\eta} W - \eta}{(1-|W|^2)^2} \, d\overline{W} d\eta. \end{aligned}$$

From the formulas (4.20), (4.23) and (4.24), we get

(4.25)
$$\frac{\partial}{\partial\Omega} = \frac{1}{2i} (I_n - W) \left[{}^t \left\{ (I_n - W) \frac{\partial}{\partial W} \right\} - {}^t \left\{ {}^t \eta \left(\frac{\partial}{\partial \eta} \right) \right\} \right]$$

and

(4.26)
$$\frac{\partial}{\partial Z} = \frac{1}{2i} (I_n - W) \frac{\partial}{\partial \eta}.$$

Using Formulas (4.20)-(4.22), (4.25), (4.26) and Lemma 4.1, the author [31] proved that the following differential operators \mathbb{S}_1 and \mathbb{S}_2 on $\mathbb{D}_{n,m}$ defined by

$$\mathbb{S}_1 = \sigma \left((I_n - \overline{W}W) \frac{\partial}{\partial \eta}^t \left(\frac{\partial}{\partial \overline{\eta}} \right) \right)$$

and

$$S_{2} = \operatorname{tr}\left(\left(I_{n}-W\overline{W}\right)^{t}\left(\left(I_{n}-W\overline{W}\right)\frac{\partial}{\partial\overline{W}}\right)\frac{\partial}{\partial\overline{W}}\right)\right) + \operatorname{tr}\left(^{t}(\eta-\overline{\eta}W)^{t}\left(\frac{\partial}{\partial\overline{\eta}}\right)\left(I_{n}-\overline{W}W\right)\frac{\partial}{\partial\overline{W}}\right) + \operatorname{tr}\left(\left(\overline{\eta}-\eta\overline{W}\right)^{t}\left(\left(I_{n}-W\overline{W}\right)\frac{\partial}{\partial\overline{W}}\right)\frac{\partial}{\partial\eta}\right)\right) - \operatorname{tr}\left(\eta\overline{W}(I_{n}-W\overline{W})^{-1}t\eta^{t}\left(\frac{\partial}{\partial\overline{\eta}}\right)\left(I_{n}-\overline{W}W\right)\frac{\partial}{\partial\eta}\right) - \operatorname{tr}\left(\overline{\eta}W(I_{n}-\overline{W}W)^{-1}t\overline{\eta}^{t}\left(\frac{\partial}{\partial\overline{\eta}}\right)\left(I_{n}-\overline{W}W\right)\frac{\partial}{\partial\eta}\right) + \operatorname{tr}\left(\overline{\eta}(I_{n}-W\overline{W})^{-1}t\eta^{t}\left(\frac{\partial}{\partial\overline{\eta}}\right)\left(I_{n}-\overline{W}W\right)\frac{\partial}{\partial\eta}\right) + \operatorname{tr}\left(\eta\overline{W}W(I_{n}-\overline{W}W)^{-1}t\overline{\eta}^{t}\left(\frac{\partial}{\partial\overline{\eta}}\right)\left(I_{n}-\overline{W}W\right)\frac{\partial}{\partial\eta}\right)$$

are invariant under the action (4.17) of G_*^J . The author also proved that

(4.27)
$$\Delta_{\mathbb{D}_{n,m};A,B} := \frac{1}{A} \mathbb{S}_2 + \frac{1}{B} \mathbb{S}_2$$

is the Laplacian of the invariant metric $ds^2_{\mathbb{D}_{n,m};A,B}$ on $\mathbb{D}_{n,m}$ (cf. [31]).

Proposition 4.3. The following differential operator on $\mathbb{D}_{n,m}$ defined by

(4.28)
$$\mathbb{K}_{\mathbb{D}} = \det(I_n - \overline{W}W) \det\left(\frac{\partial}{\partial \eta}^t \left(\frac{\partial}{\partial \overline{\eta}}\right)\right)$$

is invariant under the action (4.17) of G^J_* on $\mathbb{D}_{n,m}$.

Proof. It follows from Proposition 4.1, Formulas (4.21), (4.26) and the fact that the action (1.2) of G^J on $\mathbb{H}_{n,m}$ is compatible with the action (4.17) of G^J_* on $\mathbb{D}_{n,m}$ via the partial Cayley transform.

Proposition 4.4. The following matrix-valued differential operator on $\mathbb{D}_{n,m}$ defined by

(4.29)
$$\mathbb{T}^{\mathbb{D}} := {t \choose \frac{\partial}{\partial \overline{\eta}}} (I_n - \overline{W}W) \frac{\partial}{\partial \eta}$$

is invariant under the action (4.17) of G^J_* on $\mathbb{D}_{n,m}$.

Proof. It follows from Proposition 4.2, Formulas (4.21), (4.26) and the fact that the action (1.2) of G^J on $\mathbb{H}_{n,m}$ is compatible with the action (4.17) of G^J_* on $\mathbb{D}_{n,m}$ via the partial Cayley transform.

Corollary 4.2. Each (k, l)-entry $\mathbb{T}_{kl}^{\mathbb{D}}$ of $\mathbb{T}^{\mathbb{D}}$ given by

(4.30)
$$\mathbb{T}_{kl}^{\mathbb{D}} = \sum_{i,j=1}^{n} \left(\delta_{ij} - \sum_{r=1}^{n} \overline{w}_{ir} \, w_{jr} \right) \frac{\partial^2}{\partial \overline{\eta}_{ki} \partial \eta_{lj}}, \quad 1 \le k, l \le m$$

is a G^J_* -invariant differential operator on $\mathbb{D}_{n,m}$.

Proof. It follows immediately from Proposition 4.4.

For two differential operators D_1 and D_2 on $\mathbb{H}_{n,m}$ or $\mathbb{D}_{n,m}$, we write

$$[D_1, D_2] := D_1 D_2 - D_2 D_1.$$

Then

 $(4.31) \qquad \qquad \mathbb{M}_3 = [\mathbb{M}_1, \mathbb{M}_2] = \mathbb{M}_1 \mathbb{M}_2 - \mathbb{M}_2 \mathbb{M}_1$

is an invariant differential operator of degree three on $\mathbb{H}_{n,m}$ and

(4.32)
$$\mathbb{P}_{kl} = [\mathbb{K}, \mathbb{T}_{kl}] = \mathbb{K}\mathbb{T}_{kl} - \mathbb{T}_{kl}\mathbb{K}, \quad 1 \le k, l \le m$$

is an invariant differential operator of degree 2n + 1 on $\mathbb{H}_{n,m}$.

Similarly

$$(4.33) \qquad \qquad \mathbb{S}_3 = [\mathbb{S}_1, \mathbb{S}_2] = \mathbb{S}_1 \mathbb{S}_2 - \mathbb{S}_2 \mathbb{S}_1$$

is an invariant differential operator of degree three on $\mathbb{D}_{n,m}$ and

(4.34)
$$\mathbb{Q}_{kl} = [\mathbb{K}_{\mathbb{D}}, \mathbb{T}_{kl}^{\mathbb{D}}] = \mathbb{K}_{\mathbb{D}}\mathbb{T}_{kl}^{\mathbb{D}} - \mathbb{T}_{kl}^{\mathbb{D}}\mathbb{K}_{\mathbb{D}}, \quad 1 \le k, l \le m$$

is an invariant differential operator of degree 2n + 1 on $\mathbb{D}_{n,m}$.

Indeed it is very complicated and difficult at this moment to express the generators of the algebra of all G^J_* -invariant differential operators on $\mathbb{D}_{n,m}$ explicitly.

5. The Case n = m = 1

We consider the case n = m = 1. For a coordinate (w, ξ) in $T_{1,1} = \mathbb{C} \times \mathbb{C}$, we write w = r + is, $\xi = \zeta + i\eta \in \mathbb{C}$, r, s, ζ, η real. The author [27] proved that the algebra $\operatorname{Pol}_{1,1}^{U(1)}$ is generated by

$$q(w,\xi) = \frac{1}{4} w \,\overline{w} = \frac{1}{4} \left(r^2 + s^2 \right),$$

$$\alpha(w,\xi) = \xi \,\overline{\xi} = \zeta^2 + \eta^2,$$

$$\phi(w,\xi) = \frac{1}{2} \operatorname{Re} \left(\xi^2 \overline{w} \right) = \frac{1}{2} r \left(\zeta^2 - \eta^2 \right) + s \,\zeta \eta,$$

$$\psi(w,\xi) = \frac{1}{2} \operatorname{Im} \left(\xi^2 \overline{w} \right) = \frac{1}{2} s \left(\eta^2 - \zeta^2 \right) + r \,\zeta \eta.$$

In [27], using Formula (3.11) the author calculated explicitly the images

$$D_1 = \Theta_{1,1}(q), \quad D_2 = \Theta_{1,1}(\alpha), \quad D_3 = \Theta_{1,1}(\phi) \text{ and } D_4 = \Theta_{1,1}(\psi)$$

of q, ξ , ϕ and ψ under the Helgason map $\Theta_{1,1}$. We can show that the algebra $\mathbb{D}(\mathbb{H}_{1,1})$ is generated by the following differential operators

$$D_{1} = y^{2} \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} \right) + v^{2} \left(\frac{\partial^{2}}{\partial u^{2}} + \frac{\partial^{2}}{\partial v^{2}} \right)$$
$$+ 2 y v \left(\frac{\partial^{2}}{\partial x \partial u} + \frac{\partial^{2}}{\partial y \partial v} \right),$$
$$D_{2} = y \left(\frac{\partial^{2}}{\partial u^{2}} + \frac{\partial^{2}}{\partial v^{2}} \right),$$
$$D_{3} = y^{2} \frac{\partial}{\partial y} \left(\frac{\partial^{2}}{\partial u^{2}} - \frac{\partial^{2}}{\partial v^{2}} \right) - 2y^{2} \frac{\partial^{3}}{\partial x \partial u \partial v}$$
$$- \left(v \frac{\partial}{\partial v} + 1 \right) D_{2}$$

and

$$D_4 = y^2 \frac{\partial}{\partial x} \left(\frac{\partial^2}{\partial v^2} - \frac{\partial^2}{\partial u^2} \right) - 2 y^2 \frac{\partial^3}{\partial y \partial u \partial v} - v \frac{\partial}{\partial u} D_2,$$

where $\tau = x + iy$ and z = u + iv with real variables x, y, u, v. Moreover, we have

$$D_1 D_2 - D_2 D_1 = 2 y^2 \frac{\partial}{\partial y} \left(\frac{\partial^2}{\partial u^2} - \frac{\partial^2}{\partial v^2} \right) - 4 y^2 \frac{\partial^3}{\partial x \partial u \partial v} - 2 \left(v \frac{\partial}{\partial v} D_2 + D_2 \right)$$

In particular, the algebra $\mathbb{D}(\mathbb{H}_{1,1})$ is not commutative. We refer to [1, 27] for more detail.

Recently Hiroyuki Ochiai [15] (cf. [1]) proved the following results.

Theorem 5.1. We have the following relation

(5.1)
$$\phi^2 + \psi^2 = q \,\alpha^2.$$

This relation exhausts all the relations among the generators q, α , ϕ and ψ of $\operatorname{Pol}_{1,1}^{U(1)}$.

Theorem 5.2. We have the following relations

(a)
$$[D_1, D_2] = 2D_3$$

(b) $[D_1, D_3] = 2D_1D_2 - 2D_3$
(c) $[D_2, D_3] = -D_2^2$
(d) $[D_4, D_1] = 0$
(e) $[D_4, D_2] = 0$
(f) $[D_4, D_3] = 0$

(g) $D_3^2 + D_4^2 = D_2 D_1 D_2$

These seven relations exhaust all the relations among the generators D_1 , D_2 , D_3 and D_4 of $\mathbb{D}(\mathbb{H}_{1,1})$.

We can prove the following

Theorem 5.3. The action of U(1) on $\operatorname{Pol}_{1,1}^{U(1)}$ is not multiplicity-free.

Finally we see that for the case n = m = 1, the seven problems proposed in Section 3 are completely solved.

26

Remark 5.1. According to Theorem 5.2, we see that D_4 is a generator of the center of $\mathbb{D}(\mathbb{H}_{1,1})$. We observe that the Lapalcian

$$\Delta_{1,1;A,B} = \frac{4}{A} D_1 + \frac{4}{B} D_2 \qquad (\text{see } (4.8))$$

of $(\mathbb{H}_{1,1}, ds^2_{1,1:A,B})$ does not belong to the center of $\mathbb{D}(\mathbb{H}_{1,1})$.

6. The Case n = 1 and m is arbitrary

Conley and Raum [5] found the $2m^2 + m + 1$ explicit generators of $\mathbb{D}(\mathbb{H}_{1,m})$ and the explicit one generator of the center of $\mathbb{D}(\mathbb{H}_{1,m})$. They also found the generators of the center of the universal enveloping algebra of $\mathfrak{U}(\mathfrak{g}^J)$ of the Jacobi Lie algebra \mathfrak{g}^J . The number of generators of the center of $\mathfrak{U}(\mathfrak{g}^J)$ is $1 + \frac{m(m+1)}{2}$.

According to Theorem 3.2, $\operatorname{Pol}_{1,m}^{U(1)}$ is generated by

(6.1)
$$q(w,\xi) = \operatorname{tr}(w\,\overline{w}),$$

(6.2)
$$\alpha_{kp}(w,\xi) = \operatorname{Re}\left(\xi^{t}\overline{\xi}\right)_{kp} = \operatorname{Re}\left(\xi_{k}\overline{\xi}_{p}\right), \quad 1 \le k \le p \le m,$$

(6.3)
$$\beta_{lq}(w,\xi) = \operatorname{Im}\left(\xi^{t}\overline{\xi}\right)_{lq} = \operatorname{Im}\left(\xi_{l}\overline{\xi}_{q}\right), \quad 1 \le l < q \le m,$$

(6.4)
$$f_{kp}(w,\xi) = \operatorname{Re}\left(\overline{w}\,\xi\,{}^{t}\xi\right)_{kp} = \operatorname{Re}\left(\overline{w}\,\xi_{k}\,\xi_{p}\right), \quad 1 \le k \le p \le m,$$

(6.5) $g_{kp}(w,\xi) = \operatorname{Im}(\overline{w}\,\xi\,{}^{t}\xi)_{kp} = \operatorname{Im}(\overline{w}\,\xi_{k}\,\xi_{p}), \quad 1 \le k \le p \le m,$

where $w \in \mathbb{C}$ and $\xi \in \mathbb{C}^m$.

We let

$$w = r + i s \in \mathbb{C}$$
 and $\xi = {}^{t}(\xi_{1}, \cdots, \xi_{m}) \in \mathbb{C}^{m}$ with $\xi_{k} = \zeta_{k} + i \eta_{k}, 1 \leq k \leq m$,
where $r, s, \zeta_{1}, \eta_{1}, \cdots, \zeta_{m}, \eta_{m}$ are real. The invariants $q, \alpha_{kp}, \beta_{lq}, f_{kp}$ and g_{kp} are expressed in terms of $r, s, \zeta_{k}, \eta_{l}$ ($1 \leq k, l \leq m$) as follows:

$$q(w,\xi) = r^{2} + s^{2},$$

$$\alpha_{kp}(w,\xi) = \zeta_{k}\zeta_{p} + \eta_{k}\eta_{p}, \quad 1 \le k \le p \le m,$$

$$\beta_{lq}(w,\xi) = \zeta_{q}\eta_{l} - \zeta_{l}\eta_{q}, \quad 1 \le l < q \le m,$$

$$f_{kp}(w,\xi) = r(\zeta_{k}\zeta_{p} - \eta_{k}\eta_{p}) + s(\zeta_{k}\eta_{p} + \eta_{k}\zeta_{p}), \quad 1 \le k \le p \le m,$$

$$g_{kp}(w,\xi) = r(\zeta_{k}\eta_{p} + \eta_{k}\zeta_{p}) - s(\zeta_{k}\zeta_{p} - \eta_{k}\eta_{p}), \quad 1 \le k \le p \le m.$$

Theorem 6.1. The $\frac{m(m+1)}{2}$ relations

(6.6)
$$f_{kp}^2 + g_{kp}^2 = q \,\alpha_{kk} \,\alpha_{pp}, \quad 1 \le k \le p \le m$$

exhaust all the relations among a complete set of generators q, α_{kp} , β_{lq} , f_{kp} and g_{kp} of $\operatorname{Pol}_{1,m}^{U(1)}$ with $1 \leq k \leq p \leq m$ and $1 \leq l < q \leq m$. **Theorem 6.2.** The action of U(1) on $Pol_{1,m}$ is not multiplicity-free. In fact, if

$$\operatorname{Pol}_{1,m} = \sum_{\sigma \in \widehat{U(1)}} m_{\sigma} \sigma,$$

then $m_{\sigma} = \infty$.

Problem 1, Problem 2, Problem 4, Problem 5 and Problem 7 were solved. Problem 3 can be handled. Finally Problem 6 is unsolved in the case that n = 1 and m is arbitrary.

7. Final Remarks

Using G^{J} -invariant differential operators on the Siegel-Jacobi space, we introduce a notion of Maass-Jacobi forms.

Definition 7.1. Let

$$\Gamma_{n,m} := Sp(n,\mathbb{Z}) \ltimes H^{(n,m)}_{\mathbb{Z}}$$

be the discrete subgroup of G^J , where

$$H_{\mathbb{Z}}^{(n,m)} = \left\{ (\lambda,\mu;\kappa) \in H_{\mathbb{R}}^{(n,m)} \mid \lambda,\mu,\kappa \text{ are integral } \right\}.$$

A smooth function $f : \mathbb{H}_{n,m} \longrightarrow \mathbb{C}$ is called a Maass-Jacobi form on $\mathbb{H}_{n,m}$ if f satisfies the following conditions (MJ1)-(MJ3):

- (MJ1) f is invariant under $\Gamma_{n,m}$.
- (MJ2) f is an eigenfunction of the Laplacian $\Delta_{n,m;A,B}$ (cf. Formula (4.8)).
- (MJ3) f has a polynomial growth, that is, there exist a constant C > 0 and a positive integer N such that

 $|f(X+iY,Z)| \le C |p(Y)|^N \quad as \ \det Y \longrightarrow \infty,$

where p(Y) is a polynomial in $Y = (y_{ij})$.

Remark 7.1. Let \mathbb{D}_* be a commutative subalgebra of $\mathbb{D}(\mathbb{H}_{n,m})$ containing the Laplacian $\Delta_{n,m;A,B}$. We say that a smooth function $f : \mathbb{H}_{n,m} \longrightarrow \mathbb{C}$ is a Maass-Jacobi form with respect to \mathbb{D}_* if f satisfies the conditions $(MJ1), (MJ2)_*$ and (MJ3): the condition $(MJ2)_*$ is given by

 $(MJ2)_*$ f is an eigenfunction of any invariant differential operator in \mathbb{D}_* .

It is natural to propose the following problems.

Problem A: Find all the eigenfunctions of $\Delta_{n,m;A,B}$.

Problem B: Construct Maass-Jacobi forms.

If we find a *nice* eigenfunction ϕ of the Laplacian $\Delta_{n,m;A,B}$, we can construct a Maass-Jacobi form f_{ϕ} on $\mathbb{H}_{n,m}$ in the usual way defined by

(7.1)
$$f_{\phi}(\Omega, Z) := \sum_{\gamma \in \Gamma_{n,m}^{\infty} \setminus \Gamma_{n,m}} \phi(\gamma \cdot (\Omega, Z)),$$

where

$$\Gamma_{n,m}^{\infty} = \left\{ \left(\begin{pmatrix} A & B \\ C & D \end{pmatrix}, (\lambda, \mu; \kappa) \right) \in \Gamma_{n,m} \mid C = 0 \right\}$$

is a subgroup of $\Gamma_{n,m}$.

We consider the simple case n = m = 1 and A = B = 1. A metric $ds_{1,1;1,1}^2$ on $\mathbb{H}_{1,1}$ given by

$$\begin{aligned} ds_{1,1;1,1}^2 = & \frac{y + v^2}{y^3} \left(\, dx^2 + dy^2 \, \right) \, + \, \frac{1}{y} \left(\, du^2 + \, dv^2 \, \right) \\ & - \, \frac{2v}{y^2} \left(\, dx \, du \, + \, dy \, dv \, \right) \end{aligned}$$

is a G^{J} -invariant Kähler metric on $\mathbb{H}_{1,1}$. Its Laplacian $\Delta_{1,1;1,1}$ is given by

$$\Delta_{1,1;1,1} = y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right) + (y + v^2) \left(\frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2} \right) + 2 y v \left(\frac{\partial^2}{\partial x \partial u} + \frac{\partial^2}{\partial y \partial v} \right).$$

We provide some examples of eigenfunctions of $\Delta_{1,1;1,1}$.

(1)
$$h(x,y) = y^{\frac{1}{2}} K_{s-\frac{1}{2}}(2\pi |a|y) e^{2\pi i a x}$$
 $(s \in \mathbb{C}, a \neq 0)$ with eigenvalue $s(s-1)$. Here
 $K_s(z) := \frac{1}{2} \int_0^\infty \exp\left\{-\frac{z}{2}(t+t^{-1})\right\} t^{s-1} dt,$

where $\operatorname{Re} z > 0$.

- (2) y^s , $y^s x$, $y^s u$ ($s \in \mathbb{C}$) with eigenvalue s(s-1).
- (3) $y^{s}v$, $y^{s}uv$, $y^{s}xv$ with eigenvalue s(s+1).
- (4) x, y, u, v, xv, uv with eigenvalue 0.
- (5) All Maass wave forms.

Let ρ be a rational representation of $GL(n, \mathbb{C})$ on a finite dimensional complex vector space V_{ρ} . Let $\mathcal{M} \in \mathbb{R}^{(m,m)}$ be a symmetric half-integral semi-positive definite matrix of degree m. Let $C^{\infty}(\mathbb{H}_{n,m}, V_{\rho})$ be the algebra of all C^{∞} functions on $\mathbb{H}_{n,m}$ with values in V_{ρ} . We define the $|_{\rho,\mathcal{M}}$ -slash action of G^{J} on $C^{\infty}(\mathbb{H}_{n,m}, V_{\rho})$ as follows: If $f \in C^{\infty}(\mathbb{H}_{n,m}, V_{\rho})$, $f|_{\rho,\mathcal{M}}[(M,(\lambda,\mu;\kappa))](\Omega,Z)$ $:= e^{-2\pi i \operatorname{tr}(\mathcal{M}[Z+\lambda\Omega+\mu](C\Omega+D)^{-1}C)} \cdot e^{2\pi i \operatorname{tr}(\mathcal{M}(\lambda\Omega^{t}\lambda+2\lambda^{t}Z+\kappa+\mu^{t}\lambda))}$ (7.2) $\times \rho(C\Omega + D)^{-1} f(M \cdot \Omega, (Z + \lambda\Omega + \mu)(C\Omega + D)^{-1}),$

where $\begin{pmatrix} A & B \\ C & D \end{pmatrix} \in Sp(n, \mathbb{R})$ and $(\lambda, \mu; \kappa) \in H^{(n,m)}_{\mathbb{R}}$. We recall the Siegel's notation $\alpha[\beta] = {}^t\beta\alpha\beta$ for suitable matrices α and β . We define $\mathbb{D}_{\rho,\mathcal{M}}$ to be the algebra of all differential operators D on $\mathbb{H}_{n,m}$ satisfying the following condition

(7.3)
$$(Df)|_{\rho,\mathcal{M}}[g] = D(f|_{\rho,\mathcal{M}}[g])$$

for all $f \in C^{\infty}(\mathbb{H}_{n,m}, V_{\rho})$ and for all $g \in G^{J}$. We denote by $\mathcal{Z}_{\rho,\mathcal{M}}$ the center of $\mathbb{D}_{\rho,\mathcal{M}}$.

We define an another notion of Maass-Jacobi forms as follows.

Definition 7.2. A vector-valued smooth function $\phi : \mathbb{H}_{n,m} \longrightarrow V_{\rho}$ is called a Maass-Jacobi form on $\mathbb{H}_{n,m}$ of type ρ and index \mathcal{M} if it satisfies the following conditions $(MJ1)_{\rho,\mathcal{M}}, (MJ2)_{\rho,\mathcal{M}} \text{ and } (MJ3)_{\rho,\mathcal{M}}:$

- $\begin{array}{ll} (MJ1)_{\rho,\mathcal{M}} & \phi|_{\rho,\mathcal{M}}[\gamma] = \phi \quad for \ all \ \gamma \in \Gamma_{n,m}. \\ (MJ2)_{\rho,\mathcal{M}} & f \ is \ an \ eigenfunction \ of \ all \ differential \ operators \ in \ the \ center \ \mathcal{Z}_{\rho,\mathcal{M}} \end{array}$ of $\mathbb{D}_{\rho,\mathcal{M}}$.

 $(MJ3)_{\rho,\mathcal{M}}$ f has a growth condition

$$\phi(\Omega, Z) = O\left(e^{a \det Y} \cdot e^{2\pi tr(\mathcal{M}[V]Y^{-1})}\right)$$

as det $Y \longrightarrow \infty$ for some $a > 0$.

The case n = 1, m = 1 and $\rho = \det^k (k = 0, 1, 2, \cdots)$ was studied by R. Bendt and R. Schmidt [1], A. Pitale [16] and K. Bringmann and O. Richter [3]. The case n = 1, m =arbitrary and $\rho = det^k (k = 1, 2, \cdots)$ was dealt with by C. Conley and M. Raum [5]. In [5] the authors proved that the center $\mathcal{Z}_{\det^k,\mathcal{M}}$ of $\mathbb{D}_{\det^k,\mathcal{M}}$ is the polynomial algebra with one generator $\mathcal{C}^{k,\mathcal{M}}$, the so-called *Casimir* operator which is a $|_{\det^k \mathcal{M}}$ -slash invariant differential operator of degree three for the case n = m = 1 or of degree four for the case $n = 1, m \ge 2$. Bringmann and Richter [3] considered the Poincaré series $\mathcal{P}_{k,\mathcal{M},s}^{(n,r)}$ (the case n = m = 1) that is a harmonic Maass-Jacobi form in the sense of Definition 7.2 and investigated its Fourier expansion and its Fourier coefficients. Here the harmonicity of $\mathcal{P}_{k,\mathcal{M},s}^{(n,r)}$ means that $\mathcal{C}^{k,\mathcal{M}}\mathcal{P}_{k,\mathcal{M},s}^{(n,r)} = 0$, i.e., $\mathcal{P}_{k,\mathcal{M},s}^{(n,r)}$ is an eigenfunction of $\mathcal{C}^{k,\mathcal{M}}$ with zero eigenvalue. Conley and Raum [5] generalized the results in [16] and [3] to the case n = 1 and m is arbitrary.

Remark 7.2. In [2], Bringmann, Conley and Richter proved that the center of the algebra of differential operators invariant under the action of the Jacobi group over a complex quadratic field is generated by two Casimir operators of degree three. They also introduce an analogue of Kohnen's plus space for modular forms of half-integral weight over $K = \mathbb{Q}(i)$, and provide a lift from it to the space of Jacobi forms over K.

References

- R. Berndt and R. Schmidt, *Elements of the Representation Theory of the Jacobi Group*, Progress in Mathematics, 163, Birkhäuser, Basel, 1998.
- [2] K. Bringmann, C. Conley and O. K. Richter, *Jacobi forms over complex quadratic fields via the cubic Casimier operators*, preprint.
- [3] K. Bringmann and O. K. Richter, Zagier-type dualities and lifting maps for harmonic Maass-Jacobi forms, Advances in Math. 225 (2010), 2298-2315.
- [4] D. Bump and Y. J. Choie, Derivatives of modular forms of negative weight, Pure Appl. Math. Q. 2 (2006), no. 1, 111-133.
- [5] C. Conley and M. Raum, Harmonic Maass-Jacobi forms of degree 1 with higher rank indices, arXiv:1012.289/v1 [math.NT] 13 Dec 2010.
- [6] M. Eichler and D. Zagier, *The Theory of Jacobi Forms*, Progress in Mathematics, 55, Birkhäuser, Boston, Basel and Stuttgart, 1985.
- [7] Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I., Trans. Amer. Math. Soc. 75 (1953), 185-243.
- [8] Harish-Chandra, The characters of semisimple Lie groups, Trans. Amer. Math. Soc. 83 (1956), 98-163.
- [9] S. Helgason, Differential operators on homogeneous spaces, Acta Math. 102 (1959), 239-299.
- [10] S. Helgason, *Groups and geometric analysis*, Academic Press, New York (1984).
- [11] R. Howe, Perspectives on invariant theory: Schur duality, multiplicity-free actions and beyond, The Schur lectures (1992) (Tel Aviv), Israel Math. Conf. Proceedings, vol. 8 (1995), 1-182.
- [12] M. Itoh, On the Yang Problem, preprint (2011).
- [13] H. Maass, Die Differentialgleichungen in der Theorie der Siegelschen Modulfunktionen, Math. Ann. 126 (1953), 44–68.
- [14] H. Maass, Siegel modular forms and Dirichlet series, Lecture Notes in Math., vol. 216, Springer-Verlag, Berlin-Heidelberg-New York (1971).
- [15] H. Ochiai, A remark on the generators of invariant differential operators on Siegel-Jacobi space of the smallest size, preprint (2011).
- [16] A. Pitale, Jacobi Maass forms, Abh. Math. Sem. Univ. Hamburg 79 (2009), 87-111.
- [17] I. Satake, Algebraic Structures of Symmetric Domains, Kano Memorial Lectures 4, Iwanami Shoton, Publishers and Princeton University Press (1980).
- [18] G. Shimura, Invariant differential operators on hermitian symmetric spaces, Ann. Math. 132 (1990), 237-272.
- [19] C. L. Siegel, Symplectic Geometry, Amer. J. Math. 65 (1943), 1-86; Academic Press, New York and London (1964); Gesammelte Abhandlungen, no. 41, vol. II, Springer-Verlag (1966), 274-359.
- [20] C. L. Siegel, Topics in Complex Function Theory: Abelian Functions and Modular Functions of Several Variables, vol. III, Wiley-Interscience, 1973.
- [21] H. Weyl, The classical groups: Their invariants and representations, Princeton Univ. Press, Princeton, New Jersey, second edition (1946).
- [22] J.-H. Yang, The Siegel-Jacobi Operator, Abh. Math. Sem. Univ. Hamburg 63 (1993), 135–146.
- [23] J.-H. Yang, Singular Jacobi Forms, Trans. Amer. Math. Soc. 347 (6) (1995), 2041-2049.
- [24] J.-H. Yang, Construction of vector valued modular forms from Jacobi forms, Canad. J. Math. 47 (6) (1995), 1329-1339 or arXiv:math.NT/0612502.

- [25] J.-H. Yang, A geometrical theory of Jacobi forms of higher degree, Proceedings of Symposium on Hodge Theory and Algebraic Geometry (edited by Tadao Oda), Sendai, Japan (1996), 125-147 or Kyungpook Math. J. 40 (2) (2000), 209-237 or arXiv:math.NT/0602267.
- [26] J.-H. Yang, The Method of Orbits for Real Lie Groups, Kyungpook Math. J. 42 (2) (2002), 199-272 or arXiv:math.RT/0602056.
- [27] J.-H. Yang, A note on Maass-Jacobi forms, Kyungpook Math. J. 43 (4) (2003), 547–566 or arXiv:math.NT/0612387.
- [28] J.-H. Yang, A note on a fundamental domain for Siegel-Jacobi space, Houston J. Math. 32 (3) (2006), 701–712 or arXiv:math.NT/0507218.
- [29] J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi space, Journal of Number Theory 127 (2007), 83–102 or arXiv:math.NT/0507215.
- [30] J.-H. Yang, A partial Cayley transform for Siegel-Jacobi disk, J. Korean Math. Soc. 45, No. 3 (2008), 781-794 or arXiv:math.NT/0507216.
- [31] J.-H. Yang, Invariant metrics and Laplacians on Siegel-Jacobi disk, Chinese Annals of Mathematics, Vol. 31B(1), 2010, 85-100 or arXiv:math.NT/0507217.

DEPARTMENT OF MATHEMATICS, INHA UNIVERSITY, INCHEON 402-751, KOREA *E-mail address*: jhyang@inha.ac.kr