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Abstract. For two positive integers m and n, we let Hn be the Siegel upper half
plane of degree n and let C(m,n) be the set of all m × n complex matrices. In this
article, we study differential operators on the Siegel-Jacobi space Hn ×C(m,n) that
are invariant under the natural action of the Jacobi group Sp(n,R) n H

(n,m)
R on

Hn × C(m,n), where H
(n,m)
R denotes the Heisenberg group. We give some explicit

invariant differential operators. We present important problems which are natural.
We give some partial solutions for these natural problems.

1. Introduction

For a given fixed positive integer n, we let

Hn = {Ω ∈ C(n,n) | Ω = tΩ, Im Ω > 0 }
be the Siegel upper half plane of degree n and let

Sp(n,R) = {M ∈ R(2n,2n) | tMJnM = Jn }
be the symplectic group of degree n, where F (k,l) denotes the set of all k× l matrices
with entries in a commutative ring F for two positive integers k and l, tM denotes
the transpose matrix of a matrix M and

Jn =

(
0 In

−In 0

)
.

Sp(n,R) acts on Hn transitively by

(1.1) M · Ω = (AΩ + B)(CΩ + D)−1,

where M =

(
A B
C D

)
∈ Sp(n,R) and Ω ∈ Hn.

For two positive integers m and n, we consider the Heisenberg group

H
(n,m)
R =

{
(λ, µ; κ) | λ, µ ∈ R(m,n), κ ∈ R(m,m), κ + µ tλ symmetric

}
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endowed with the following multiplication law
(
λ, µ; κ

) ◦ (
λ′, µ′; κ′

)
=

(
λ + λ′, µ + µ′; κ + κ′ + λ tµ′ − µ tλ′

)

with
(
λ, µ; κ

)
,
(
λ′, µ′; κ′

) ∈ H
(n,m)
R . We define the semidirect product of Sp(n,R) and

H
(n,m)
R

GJ = Sp(n,R)nH
(n,m)
R

endowed with the following multiplication law
(
M, (λ, µ; κ)

) · (M ′, (λ′, µ′; κ′ )
)

=
(
MM ′, (λ̃ + λ′, µ̃ + µ′; κ + κ′ + λ̃ tµ′ − µ̃ tλ′ )

)

with M, M ′ ∈ Sp(n,R), (λ, µ; κ), (λ′, µ′; κ′) ∈ H
(n,m)
R and (λ̃, µ̃) = (λ, µ)M ′. Then GJ

acts on Hn × C(m,n) transitively by

(1.2)
(
M, (λ, µ; κ)

) · (Ω, Z) =
(
M · Ω, (Z + λΩ + µ)(CΩ + D)−1

)
,

where M =

(
A B
C D

)
∈ Sp(n,R), (λ, µ; κ) ∈ H

(n,m)
R and (Ω, Z) ∈ Hn × C(m,n). We

note that the Jacobi group GJ is not a reductive Lie group and that the homogeneous
space Hn × C(m,n) is not a symmetric space. We refer to [1, 6, 22, 23, 24, 25, 27, 28,
29, 30, 31] about automorphic forms on GJ and topics related to the content of this
paper. From now on, for brevity we write Hn,m = Hn×C(m,n), called the Siegel-Jacobi
space of degree n and index m.

The aim of this paper is to study differential operators on Hn,m which are invari-
ant under the natural action (1.2) of GJ . The study of these invariant differential
operators on the Siegel-Jacobi space Hn,m is interesting and important in the aspects
of invariant theory, arithmetic and geometry. This article is organized as follows. In
Section 2, we review differential operators on Hn invariant under the action (1.1) of
Sp(n,R). We let D(Hn) denote the algebra of all differential operators on Hn that are
invariant under the action (1.1). According to the work of Harish-Chandra [7, 8], we
see that D(Hn) is a commutative algebra which is isomorphic to the center of the uni-
versal enveloping algebra of the complexification of the Lie algebra of Sp(n,R). We
briefly describe the work of Maass [14] about constructing explicit algebraically inde-
pendent generators of D(Hn) and Shimura’s construction [18] of canonically defined
algebraically independent generators of D(Hn). In Section 3, we study differential
operators on Hn,m invariant under the action (1.2) of GJ . For two positive integers
m and n, we let

Tn,m =
{

(ω, z) | ω = tω ∈ C(n,n), z ∈ C(m,n)
}

be the complex vector space of dimension n(n+1)
2

+ mn. From the adjoint action of
the Jacobi group GJ , we have the natural action of the unitary group U(n) on Tn,m

given by

(1.3) u · (ω, z) = (uω tu, z tu), u ∈ U(n), (ω, z) ∈ Tn,m.
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The action (1.3) of U(n) induces canonically the representation τ of U(n) on the
polynomial algebra Pol(Tn,m) consisting of complex valued polynomial functions on
Tn,m. Let Pol(Tn,m)U(n) denote the subalgebra of Pol(Tn,m) consisting of all polyno-
mials on Tn,m invariant under the representation τ of U(n), and D(Hn,m) denote the
algebra of all differential operators on Hn,m invariant under the action (1.2) of GJ . We
see that there is a canonically defined linear bijection of Pol(Tn,m)U(n) onto D(Hn,m)
which is not multiplicative. We will see that D(Hn,m) is not commutative. The main
important problem is to find explicit generators of Pol(Tn,m)U(n) and explicit gener-
ators of D(Hn,m). We propose several natural problems. We want to mention that
at this moment it is quite complicated and difficult to find the explicit generators of
D(Hn,m) and to express invariant differential operators on Hn,m explicitly. In Section
4, we gives some examples of explicit GJ -invariant differential operators on Hn,m that
are obtained by complicated calculations. In Section 5, we deal with the special case
n = m = 1 in detail. We give complete solutions of the problems that are proposed in
Section 3. In Section 6, we deal with the case that n = 1 and m is arbitrary. We give
some partial solutions for the problems proposed in Section 3. In the final section,
using these invariant differential operators on the Siegel-Jacobi space, we discuss a
notion of Maass-Jacobi forms.
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Institut für Mathematik in Bonn. I am very grateful for the hospitality and financial
support. I also thank the National Research Foundation of Korea for its financial
support. Finally I would like to give my hearty thanks to Don Zagier, Eberhard
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Notations: We denote by Q, R and C the field of rational numbers, the field of
real numbers and the field of complex numbers respectively. We denote by Z and Z+

the ring of integers and the set of all positive integers respectively. The symbol “:=”
means that the expression on the right is the definition of that on the left. For two
positive integers k and l, F (k,l) denotes the set of all k × l matrices with entries in a
commutative ring F . For a square matrix A ∈ F (k,k) of degree k, tr(A) denotes the
trace of A. For any M ∈ F (k,l), tM denotes the transpose matrix of M . In denotes
the identity matrix of degree n. For A ∈ F (k,l) and B ∈ F (k,k), we set B[A] = tABA.
For a complex matrix A, A denotes the complex conjugate of A. For A ∈ C(k,l) and
B ∈ C(k,k), we use the abbreviation B{A} = tABA. For a positive integer n, In

denotes the identity matrix of degree n. For a complex number z, |z| denotes the
absolute value of z. For a complex number z, Re z and Im z denote the real part of
z and the imaginary part of z respectively.
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2. Invariant Differential Operators on the Siegel Space

For a coordinate Ω = (ωij) ∈ Hn, we write Ω = X + i Y with X = (xij), Y = (yij)
real. We put dΩ =

(
dωij

)
and dΩ =

(
dωij

)
. We also put

∂

∂Ω
=

(
1 + δij

2

∂

∂ωij

)
and

∂

∂Ω
=

(
1 + δij

2

∂

∂ωij

)
.

Then for a positive real number A,

(2.1) ds2
n;A = A tr

(
Y −1dΩ Y −1dΩ

)

is a Sp(n,R)-invariant Kähler metric on Hn (cf. [19, 20]), where tr(M) denotes the
trace of a square matrix M . H. Maass [13] proved that the Laplacian of ds2

n;A is given
by

(2.2) ∆n;A =
4

A
tr

(
Y

t(
Y

∂

∂Ω

)
∂

∂Ω

)
.

And
dvn(Ω) = (det Y )−(n+1)

∏
1≤i≤j≤n

dxij

∏
1≤i≤j≤n

dyij

is a Sp(n,R)-invariant volume element on Hn (cf. [20, p. 130]).

For brevity, we write G = Sp(n,R). The isotropy subgroup K at iIn for the action
(1.1) is a maximal compact subgroup given by

K =

{(
A −B
B A

) ∣∣∣ A tA + B tB = In, A tB = B tA, A, B ∈ R(n,n)

}
.

Let k be the Lie algebra of K. Then the Lie algebra g of G has a Cartan decomposition
g = k⊕ p, where

g =

{(
X1 X2

X3 − tX1

) ∣∣∣ X1, X2, X3 ∈ R(n,n), X2 = tX2, X3 = tX3

}
,

k =

{(
X −Y
Y X

)
∈ R(2n,2n)

∣∣∣ tX + X = 0, Y = tY

}
,

p =

{(
X Y
Y −X

) ∣∣∣ X = tX, Y = tY, X, Y ∈ R(n,n)

}
.

The subspace p of g may be regarded as the tangent space of Hn at iIn. The adjoint
representation of G on g induces the action of K on p given by

(2.3) k · Z = kZ tk, k ∈ K, Z ∈ p.

Let Tn be the vector space of n×n symmetric complex matrices. We let Ψ : p −→ Tn

be the map defined by

(2.4) Ψ

((
X Y
Y −X

))
= X + i Y,

(
X Y
Y −X

)
∈ p.
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We let δ : K −→ U(n) be the isomorphism defined by

(2.5) δ

((
A −B
B A

))
= A + i B,

(
A −B
B A

)
∈ K,

where U(n) denotes the unitary group of degree n. We identify p (resp. K) with Tn

(resp. U(n)) through the map Ψ (resp. δ). We consider the action of U(n) on Tn

defined by

(2.6) h · ω = hω th, h ∈ U(n), ω ∈ Tn.

Then the adjoint action (2.3) of K on p is compatible with the action (2.6) of U(n)
on Tn through the map Ψ. Precisely for any k ∈ K and Z ∈ p, we get

(2.7) Ψ(k Z tk) = δ(k) Ψ(Z) tδ(k).

The action (2.6) induces the action of U(n) on the polynomial algebra Pol(Tn) and the

symmetric algebra S(Tn) respectively. We denote by Pol(Tn)U(n)
(
resp. S(Tn)U(n)

)

the subalgebra of Pol(Tn)
(
resp. S(Tn)

)
consisting of U(n)-invariants. The following

inner product ( , ) on Tn defined by

(Z, W ) = tr
(
Z W

)
, Z, W ∈ Tn

gives an isomorphism as vector spaces

(2.8) Tn
∼= T ∗

n , Z 7→ fZ , Z ∈ Tn,

where T ∗
n denotes the dual space of Tn and fZ is the linear functional on Tn defined

by
fZ(W ) = (W,Z), W ∈ Tn.

It is known that there is a canonical linear bijection of S(Tn)U(n) onto the algebra
D(Hn) of differential operators onHn invariant under the action (1.1) of G. Identifying
Tn with T ∗

n by the above isomorphism (2.8), we get a canonical linear bijection

(2.9) Θn : Pol(Tn)U(n) −→ D(Hn)

of Pol(Tn)U(n) onto D(Hn). The map Θn is described explicitly as follows. Similarly
the action (2.3) induces the action of K on the polynomial algebra Pol(p) and the
symmetric algebra S(p) respectively. Through the map Ψ, the subalgebra Pol(p)K of
Pol(p) consisting of K-invariants is isomorphic to Pol(Tn)U(n). We put N = n(n+1).
Let {ξα | 1 ≤ α ≤ N } be a basis of a real vector space p. If P ∈ Pol(p)K , then

(2.10)
(
Θn(P )f

)
(gK) =

[
P

(
∂

∂tα

)
f

(
g exp

(
N∑

α=1

tαξα

)
K

)]

(tα)=0

,

where f ∈ C∞(Hn). We refer to [9, 10] for more detail. In general, it is hard to
express Φ(P ) explicitly for a polynomial P ∈ Pol(p)K .

According to the work of Harish-Chandra [7, 8], the algebra D(Hn) is generated
by n algebraically independent generators and is isomorphic to the commutative ring
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C[x1, · · · , xn] with n indeterminates. We note that n is the real rank of G. Let gC be
the complexification of g. It is known that D(Hn) is isomorphic to the center of the
universal enveloping algebra of gC.

Using a classical invariant theory (cf. [11, 21], we can show that Pol(Tn)U(n) is
generated by the following algebraically independent polynomials

(2.11) qj(ω) = tr
((

ωω
)j

)
, ω ∈ Tn, j = 1, 2, · · · , n.

For each j with 1 ≤ j ≤ n, the image Θn(qj) of qj is an invariant differential
operator on Hn of degree 2j. The algebra D(Hn) is generated by n algebraically
independent generators Θn(q1), Θn(q2), · · · , Θn(qn). In particular,

(2.12) Θn(q1) = c1 tr

(
Y

t(
Y

∂

∂Ω

)
∂

∂Ω

)
for some constant c1.

We observe that if we take ω = x + i y ∈ Tn with real x, y, then q1(ω) = q1(x, y) =
tr

(
x2 + y2

)
and

q2(ω) = q2(x, y) = tr
((

x2 + y2
)2

+ 2 x
(
xy − yx)y

)
.

It is a natural question to express the images Θn(qj) explicitly for j = 2, 3, · · · , n.
We hope that the images Θn(qj) for j = 2, 3, · · · , n are expressed in the form of the
trace as Φ(q1).

H. Maass [14] found algebraically independent generators H1, H2, · · · , Hn of D(Hn).

We will describe H1, H2, · · · , Hn explicitly. For M =

(
A B
C D

)
∈ Sp(n,R) and Ω =

X + iY ∈ Hn with real X,Y , we set

Ω∗ = M ·Ω = X∗ + iY∗ with X∗, Y∗ real.

We set

K =
(
Ω− Ω

) ∂

∂Ω
= 2 i Y

∂

∂Ω
,

Λ =
(
Ω− Ω

) ∂

∂Ω
= 2 i Y

∂

∂Ω
,

K∗ =
(
Ω∗ − Ω∗

) ∂

∂Ω∗
= 2 i Y∗

∂

∂Ω∗
,

Λ∗ =
(
Ω∗ − Ω∗

) ∂

∂Ω∗
= 2 i Y∗

∂

∂Ω∗
.

Then it is easily seen that

(2.13) K∗ = t(CΩ + D)−1 t
{
(CΩ + D) tK

}
,

(2.14) Λ∗ = t(CΩ + D)−1 t
{
(CΩ + D) tΛ

}
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and

(2.15) t
{
(CΩ + D) tΛ

}
= Λ t(CΩ + D)− n + 1

2

(
Ω− Ω

)
tC.

Using Formulas (2.13), (2.14) and (2.15), we can show that

(2.16) Λ∗K∗ +
n + 1

2
K∗ = t(CΩ + D)−1

t{
(CΩ + D)

t(
ΛK +

n + 1

2
K

)}
.

Therefore we get

(2.17) tr

(
Λ∗K∗ +

n + 1

2
K∗

)
= tr

(
ΛK +

n + 1

2
K

)
.

We set

(2.18) A(1) = ΛK +
n + 1

2
K.

We define A(j) (j = 2, 3, · · · , n) recursively by

A(j) = A(1)A(j−1) − n + 1

2
Λ A(j−1) +

1

2
Λ tr

(
A(j−1)

)
(2.19)

+
1

2

(
Ω− Ω

) t{(
Ω− Ω

)−1 t
(

tΛ tA(j−1)
)}

.

We set

(2.20) Hj = tr
(
A(j)

)
, j = 1, 2, · · · , n.

As mentioned before, Maass proved that H1, H2, · · · , Hn are algebraically independent
generators of D(Hn).

In fact, we see that

(2.21) −H1 = ∆n;1 = 4 tr

(
Y

t(
Y

∂

∂Ω

)
∂

∂Ω

)
.

is the Laplacian for the invariant metric ds2
n;1 on Hn.

Conjecture. For j = 2, 3, · · · , n, Θn(qj) = cj Hj for a suitable constant cj.

Example 2.1. We consider the case n = 1. The algebra Pol(T1)
U(1) is generated by

the polynomial

q(ω) = ω ω, ω = x + iy ∈ C with x, y real.

Using Formula (2.10), we get

Θ1(q) = 4 y2

(
∂2

∂x2
+

∂2

∂y2

)
.

Therefore D(H1) = C
[
Θ1(q)

]
= C[H1].
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Example 2.2. We consider the case n = 2. The algebra Pol(T2)
U(2) is generated by

the polynomial

q1(ω) = tr
(
ω ω

)
, q2(ω) = tr

((
ω ω

)2
)
, ω ∈ T2.

Using Formula (2.10), we may express Θ2(q1) and Θ2(q2) explicitly. Θ2(q1) is
expressed by Formula (2.12). The computation of Θ2(q2) might be quite tedious. We
leave the detail to the reader. In this case, Θ2(q2) was essentially computed in [4],
Proposition 6. Therefore

D(H2) = C
[
Θ2(q1), Θ2(q2)

]
= C[H1, H2].

In fact, the center of the universal enveloping algebra U (gC) was computed in [4].

G. Shimura [18] found canonically defined algebraically independent generators
of D(Hn). We will describe his way of constructing those generators roughly. Let
KC, gC, kC, pC, · · · denote the complexication of K, g, k, p, · · · respectively. Then we
have the Cartan decomposition

gC = kC + pC, pC = p+
C + p−C

with the properties

[kC, p
±
C ] ⊂ p±C , [p+

C , p+
C ] = [p−C , p−C ] = {0}, [p+

C , p−C ] = kC,

where

gC =

{(
X1 X2

X3 − tX1

) ∣∣∣ X1, X2, X3 ∈ C(n,n), X2 = tX2, X3 = tX3

}
,

kC =

{(
A −B
B A

)
∈ C(2n,2n)

∣∣∣ tA + A = 0, B = tB

}
,

pC =

{(
X Y
Y −X

)
∈ C(2n,2n)

∣∣∣ X = tX, Y = tY

}
,

p+
C =

{(
Z iZ
iZ −Z

)
∈ C(2n,2n)

∣∣∣ Z = tZ ∈ C(n,n)

}
,

p−C =

{(
Z −iZ

−iZ −Z

)
∈ C(2n,2n)

∣∣∣ Z = tZ ∈ C(n,n)

}
.

For a complex vector space W and a nonnegative integer r, we denote by Polr(W )
the vector space of complex-valued homogeneous polynomial functions on W of degree
r. We put

Polr(W ) :=
r∑

s=0

Pols(W ).

Mlr(W ) denotes the vector space of all C-multilinear maps of W × · · ·×W (r copies)
into C. An element Q of Mlr(W ) is called symmetric if

Q(x1, · · · , xr) = Q(xπ(1), · · · , xπ(r))
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for each permutation π of {1, 2, · · · , r}. Given P ∈ Polr(W ), there is a unique element
symmetric element P∗ of Mlr(W ) such that

(2.22) P (x) = P∗(x, · · · , x) for all x ∈ W.

Moreover the map P 7→ P∗ is a C-linear bijection of Polr(W ) onto the set of all
symmetric elements of Mlr(W ). We let Sr(W ) denote the subspace consisting of all
homogeneous elements of degree r in the symmetric algebra S(W ). We note that
Polr(W ) and Sr(W ) are dual to each other with respect to the pairing

(2.23) 〈α, x1 · · · xr〉 = α∗(x1, · · · , xr) (xi ∈ W, α ∈ Polr(W )).

Let p∗C be the dual space of pC, that is, p∗C = Pol1(pC). Let {X1, · · · , XN} be a basis
of pC and {Y1, · · · , YN} be the basis of p∗C dual to {Xν}, where N = n(n + 1). We
note that Polr(pC) and Polr(p

∗
C) are dual to each other with respect to the pairing

(2.24) 〈α, β〉 =
∑

α∗(Xi1 , · · · , Xir) β∗(Yi1 , · · · , Yir),

where α ∈ Polr(pC), β ∈ Polr(p
∗
C) and (i1, · · · , ir) runs over {1, · · · , N}r. Let U (gC)

be the universal enveloping algebra of gC and U p(gC) its subspace spanned by the
elements of the form V1 · · ·Vs with Vi ∈ gC and s ≤ p. We recall that there is a C-linear
bijection ψ of the symmetric algebra S(gC) of gC onto U (gC) which is characterized
by the property that ψ(Xr) = Xr for all X ∈ gC. For each α ∈ Polr(p

∗
C) we define an

element ω(α) of U (gC) by

(2.25) ω(α) :=
∑

α∗(Yi1 , · · · , Yir) Xi1 · · ·Xir ,

where (i1, · · · , ir) runs over {1, · · · , N}r. If Y ∈ pC, then Y r as an element of Polr(p
∗
C)

is defined by
Y r(u) = Y (u)r for all u ∈ p∗C.

Hence (Y r)∗(u1, · · · , ur) = Y (u1) · · ·Y (ur). According to (2.25), we see that if α(
∑

tiYi) =
P (t1, · · · , tN) for ti ∈ C with a polynomial P , then

(2.26) ω(α) = ψ(P (X1, · · · , XN)).

Thus ω is a C-linear injection of Pol(p∗C) into U (gC) independent of the choice of
a basis. We observe that ω

(
Polr(p

∗
C)

)
= ψ(Sr(pC)). It is a well-known fact that if

α1, · · · , αm ∈ Polr(p
∗
C), then

(2.27) ω(α1 · · ·αm)− ω(αm) · · ·ω(α1) ∈ U r−1(gC).

We have a canonical pairing

(2.28) 〈 , 〉 : Polr(p
+
C)× Polr(p

−
C) −→ C

defined by

(2.29) 〈f, g〉 =
∑

f∗(X̃i1 , · · · , X̃ir)g∗(Ỹi1 , · · · , Ỹir),

where f∗ (resp. g∗) are the unique symmetric elements of Mlr(p
+
C) (resp. Mlr(p

−
C)),

and {X̃1, · · · , X̃Ñ} and {Ỹ1, · · · , ỸÑ} are dual bases of p+
C and p−C with respect to
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the Killing form B(X, Y ) = 2(n + 1) tr(XY ), Ñ = n(n+1)
2

, and (i1, · · · , ir) runs over{
1, · · · , Ñ

}r
.

The adjoint representation of KC on p±C induces the representation of KC on
Polr(p

±
C). Given a KC-irreducible subspace Z of Polr(p

+
C), we can find a unique

KC-irreducible subspace W of Polr(p
−
C) such that Polr(p

−
C) is the direct sum of W

and the annihilator of Z. Then Z and W are dual with respect to the pairing (2.28).
Take bases {ζ1, · · · , ζκ} of Z and {ξ1, · · · , ξκ} of W that are dual to each other. We
set

(2.30) fZ(x, y) =
κ∑

ν=1

ζν(x) ξν(y) (x ∈ p+
C , y ∈ p−C).

It is easily seen that fZ belongs to Pol2r(pC)
K and is independent of the choice of

dual bases {ζν} and {ξν}. Shimura [18] proved that there exists a canonically de-
fined set {Z1, · · · , Zn} with a KC-irreducible subspace Zr of Polr(p

+
C) (1 ≤ r ≤ n)

such that fZ1 , · · · , fZn are algebraically independent generators of Pol(pC)
K . We can

identify p+
C with Tn. We recall that Tn denotes the vector space of n × n symmet-

ric complex matrices. We can take Zr as the subspace of Polr(Tn) spanned by the
functions fa;r(Z) = detr(

taZa) for all a ∈ GL(n,C), where detr(x) denotes the de-
terminant of the upper left r × r submatrix of x. For every f ∈ Pol(pC)

K , we let
Ω(f) denote the element of D(Hn) represented by ω(f). Then D(Hn) is the polyno-
mial ring C[ω(fZ1), · · · , ω(fZn)] generated by n algebraically independent elements
ω(fZ1), · · · , ω(fZn).

3. Invariant Differential Operators on Siegel-Jacobi Space

The stabilizer KJ of GJ at (iIn, 0) is given by

KJ =
{(

k, (0, 0; κ)
) ∣∣ k ∈ K, κ = tκ ∈ R(m,m)

}
.

Therefore Hn,m
∼= GJ/KJ is a homogeneous space of non-reductive type. The Lie

algebra gJ of GJ has a decomposition

gJ = kJ + pJ ,

where

gJ =
{(

Z, (P,Q, R)
) ∣∣ Z ∈ g, P,Q ∈ R(m,n), R = tR ∈ R(m,m)

}
,

kJ =
{(

X, (0, 0, R)
) ∣∣ X ∈ k, R = tR ∈ R(m,m)

}
,

pJ =
{(

Y, (P,Q, 0)
) ∣∣ Y ∈ p, P,Q ∈ R(m,n)

}
.

Thus the tangent space of the homogeneous space Hn,m at (iIn, 0) is identified with
pJ .
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If α =

((
X1 Y1

Z1 −tX1

)
, (P1, Q1, R1)

)
and β =

((
X2 Y2

Z2 −tX2

)
, (P2, Q2, R2)

)
are

elements of gJ , then the Lie bracket [α, β] of α and β is given by

(3.1) [α, β] =

((
X∗ Y ∗

Z∗ −tX∗

)
, (P ∗, Q∗, R∗)

)
,

where

X∗ = X1X2 −X2X1 + Y1Z2 − Y2Z1,

Y ∗ = X1Y2 −X2Y1 + Y2
tX1 − Y1

tX2,

Z∗ = Z1X2 − Z2X1 + tX2Z1 − tX1Z2,

P ∗ = P1X2 − P2X1 + Q1Z2 −Q2Z1,

Q∗ = P1Y2 − P2Y1 + Q2
tX1 −Q1

tX2,

R∗ = P1
tQ2 − P2

tQ1 + Q2
tP1 −Q1

tP2

Lemma 3.1.

[kJ , kJ ] ⊂ kJ , [kJ , pJ ] ⊂ pJ .

Proof. The proof follows immediately from Formula (3.1). ¤

Lemma 3.2. Let

kJ =

((
A −B
B A

)
, (0, 0, κ)

)
∈ KJ

with

(
A −B
B A

)
∈ K, κ = tκ ∈ R(m,m) and

α =

((
X Y
Y −X

)
, (P,Q, 0)

)
∈ pJ

with X = tX, Y = tY ∈ R(n,n), P, Q ∈ R(m,n). Then the adjoint action of KJ on pJ

is given by

(3.2) Ad(kJ)α =

((
X∗ Y∗
Y∗ −X∗

)
, (P∗, Q∗, 0)

)
,

where

X∗ = AX tA− (
BX tB + BY tA + AY tB

)
,(3.3)

Y∗ =
(
AX tB + AY tA + BX tA

)−BY tB,(3.4)

P∗ = P tA−Q tB,(3.5)

Q∗ = P tB + Q tA.(3.6)

Proof. We leave the proof to the reader. ¤
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We recall that Tn denotes the vector space of all n×n symmetric complex matrices.
For brevity, we put Tn,m := Tn×C(m,n). We define the real linear map Φ : pJ −→ Tn,m

by

(3.7) Φ

((
X Y
Y −X

)
, (P,Q, 0)

)
=

(
X + i Y, P + iQ

)
,

where

(
X Y
Y −X

)
∈ p and P,Q ∈ R(m,n).

Let S(m,R) denote the additive group consisting of all m × m real symmetric
matrices. Now we define the isomorphism θ : KJ −→ U(n)× S(m,R) by

(3.8) θ(h, (0, 0, κ)) = (δ(h), κ), h ∈ K, κ ∈ S(m,R),

where δ : K −→ U(n) is the map defined by (2.5). Identifying R(m,n) × R(m,n) with
C(m,n), we can identify pJ with Tn × C(m,n).

Theorem 3.1. The adjoint representation of KJ on pJ is compatible with the natural
action of U(n)× S(m,R) on Tn,m defined by

(3.9) (h, κ) · (ω, z) := (hω th, z th), h ∈ U(n), κ ∈ S(m,R), (ω, z) ∈ Tn,m

through the maps Φ and θ. Precisely, if kJ ∈ KJ and α ∈ pJ , then we have the
following equality

(3.10) Φ
(
Ad

(
kJ

)
α
)

= θ
(
kJ

) · Φ(α).

Here we regard the complex vector space Tn,m as a real vector space.

Proof. Let

kJ =

((
A −B
B A

)
, (0, 0, κ)

)
∈ KJ

with

(
A −B
B A

)
∈ K, κ = tκ ∈ R(m,m) and

α =

((
X Y
Y −X

)
, (P,Q, 0)

)
∈ pJ

with X = tX, Y = tY ∈ R(n,n), P,Q ∈ R(m,n). Then we have

θ
(
kJ

) · Φ(α) =
(
A + i B, κ

) · (X + i Y, P + iQ
)

=
(
(A + iB)(X + iY ) t(A + iB), (P + iQ) t(A + iB)

)

=
(
X∗ + i Y∗, P∗ + iQ∗

)

= Φ

((
X∗ Y∗
Y∗ −X∗

)
, (P∗, Q∗, 0)

)

= Φ
(
Ad

(
kJ

)
α
)

(by Lemma 3.2),
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where X∗, Y∗, Z∗ and Q∗ are given by the formulas (3.3), (3.4), (3.5) and (3.6) respec-
tively. ¤

We now study the algebra D(Hn,m) of all differential operators on Hn,m invariant
under the natural action (1.2) of GJ . The action (3.9) induces the action of U(n) on

the polynomial algebra Poln,m := Pol (Tn,m). We denote by PolU(n)
n,m the subalgebra of

Poln,m consisting of all U(n)-invariants. Similarly the action (3.2) of K induces the
action of K on the polynomial algebra Pol

(
pJ

)
. We see that through the identification

of pJ with Tn,m, the algebra Pol
(
pJ

)
is isomorphic to Poln,m. The following U(n)-

invariant inner product ( , )∗ of the complex vector space Tn,m defined by
(
(ω, z), (ω′, z′)

)
∗ = tr

(
ωω′

)
+ tr

(
z tz′

)
, (ω, z), (ω′, z′) ∈ Tn,m

gives a canonical isomorphism

Tn,m
∼= T ∗

n,m, (ω, z) 7→ fω,z, (ω, z) ∈ Tn,m,

where fω,z is the linear functional on Tn,m defined by

fω,z

(
(ω′, z′ )

)
=

(
(ω′, z′), (ω, z)

)
∗, (ω′, z′ ) ∈ Tn,m.

According to Helgason ([10], p. 287), one gets a canonical linear bijection of S(Tn,m)U(n)

onto D(Hn,m). Identifying Tn,m with T ∗
n,m by the above isomorphism, one gets a nat-

ural linear bijection

Θn,m : PolU(n)
n,m −→ D(Hn,m)

of PolU(n)
n,m onto D(Hn,m). The map Θn,m is described explicitly as follows. We put

N? = n(n + 1) + 2mn. Let
{
ηα | 1 ≤ α ≤ N?

}
be a basis of pJ . If P ∈ Pol

(
pJ

)K
=

PolU(n)
n,m , then

(3.11)
(
Θn,m(P )f

)
(gKJ) =

[
P

(
∂

∂tα

)
f

(
g exp

(
N?∑
α=1

tαηα

)
KJ

)]

(tα)=0

,

where g ∈ GJ and f ∈ C∞(Hn,m). In general, it is hard to express Θn,m(P ) explicitly

for a polynomial P ∈ Pol
(
pJ

)K
. We refer to [10], p. 287.

We present the following basic U(n)-invariant polynomials in PolU(n)
n,m .

qj(ω, z) = tr
(
(ω ω)j+1

)
, 0 ≤ j ≤ n− 1,(3.12)

α
(j)
kp (ω, z) = Re

(
z (ωω)j tz

)
kp

, 0 ≤ j ≤ n− 1, 1 ≤ k ≤ p ≤ m,(3.13)

β
(j)
lq (ω, z) = Im

(
z (ωω)j tz

)
lq
, 0 ≤ j ≤ n− 1, 1 ≤ l < q ≤ m,(3.14)

f
(j)
kp (ω, z) = Re (z (ωω)j ω tz)kp, 0 ≤ j ≤ n− 1, 1 ≤ k ≤ p ≤ m,(3.15)

g
(j)
kp (ω, z) = Im (z (ωω)j ω tz )kp, 0 ≤ j ≤ n− 1, 1 ≤ k ≤ p ≤ m,(3.16)

where ω ∈ Tn and z ∈ C(m,n).
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We present some interesting U(n)-invariants. For an m ×m matrix S, we define

the following invariant polynomials in PolU(n)
n,m :

m
(1)
j;S(ω, z) = Re

(
tr

(
ωω + tzSz

)j
)
, 1 ≤ j ≤ n,(3.17)

m
(2)
j;S(ω, z) = Im

(
tr

(
ωω + tzSz

)j
)
, 1 ≤ j ≤ n,(3.18)

q
(1)
k;S(ω, z) = Re

(
tr

(
( tz S z)k

))
, 1 ≤ k ≤ m,(3.19)

q
(2)
k;S(ω, z) = Im

(
tr

(
( tz S z)k

))
, 1 ≤ k ≤ m,(3.20)

θ
(1)
i,k,j;S(ω, z) = Re

(
tr

(
(ωω)i ( tz S z)k (ωω + tz S z )j

))
,(3.21)

θ
(2)
i,k,j;S(ω, z) = Im

(
tr

(
(ωω)i ( tz S z)k (ωω + tz S z )j

))
,(3.22)

where 1 ≤ i, j ≤ n and 1 ≤ k ≤ m.

We define the following U(n)-invariant polynomials in PolU(n)
n,m .

r
(1)
jk (ω, z) = Re

(
det

(
(ωω)j ( tzz)k

))
, 1 ≤ j ≤ n, 1 ≤ k ≤ m,(3.23)

r
(2)
jk (ω, z) = Im

(
det

(
(ωω)j ( tzz)k

))
, 1 ≤ j ≤ n, 1 ≤ k ≤ m.(3.24)

We propose the following natural problems.

Problem 1. Find a complete list of explicit generators of PolU(n)
n,m .

Problem 2. Find all the relations among a set of generators of PolU(n)
n,m .

Problem 3. Find an easy or effective way to express the images of the above invariant
polynomials or generators of PolU(n)

n,m under the Helgason map Θn,m explicitly.

Problem 4. Decompose Poln,m into U(n)-irreducibles.

Problem 5. Find a complete list of explicit generators of the algebra D(Hn,m). Or
construct explicit GJ -invariant differential operators on Hn,m.

Problem 6. Find all the relations among a set of generators of D(Hn,m).

Problem 7. Is PolU(n)
n,m finitely generated ? Is D(Hn,m) finitely generated ?

Quite recently Minoru Itoh [12] solved Problem 1 and Problem 7.

Theorem 3.2. PolU(n)
n,m is generated by

qj(ω, z), α
(j)
kp (ω, z), β

(j)
lq (ω, z), f

(j)
kp (ω, z) and g

(j)
kp (ω, z),

where 0 ≤ j ≤ n− 1, 1 ≤ k ≤ p ≤ m and 1 ≤ l < q ≤ m.
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4. Examples of Explicit GJ-Invariant Differential Operators

In this section we give examples of explicit GJ -invariant differential operators on
the Siegel-Jacobi space and the Siegel-Jacobi disk.

For g =
(
M, (λ, µ; κ)

) ∈ GJ with M =

(
A B
C D

)
∈ Sp(n,R) and (Ω, Z) ∈ Hn,m,

we set

Ω∗ = M ·Ω = X∗ + i Y∗, X∗, Y∗ real,

Z∗ = (Z + λΩ + µ)(CΩ + D)−1 = U∗ + i V∗, U∗, V∗ real.

For a coordinate (Ω, Z) ∈ Hn,m with Ω = (ωµν) and Z = (zkl), we put dΩ, dΩ, ∂
∂Ω

, ∂
∂Ω

as before and set

Z = U + iV, U = (ukl), V = (vkl) real,

dZ = (dzkl), dZ = (dzkl),

∂

∂Z
=




∂
∂z11

. . . ∂
∂zm1

...
. . .

...
∂

∂z1n
. . . ∂

∂zmn


 ,

∂

∂Z
=




∂
∂z11

. . . ∂
∂zm1

...
. . .

...
∂

∂z1n
. . . ∂

∂zmn


 .

Then we can show that

dΩ∗ = t(CΩ + D)−1 dΩ(CΩ + D)−1,(4.1)

dZ∗ = dZ(CΩ + D)−1(4.2)

+
{
λ− (Z + λΩ + µ)(CΩ + D)−1C

}
dΩ(CΩ + D)−1,

∂

∂Ω∗
= (CΩ + D)

t{
(CΩ + D)

∂

∂Ω

}
(4.3)

+(CΩ + D)
t{(

C tZ + C tµ−D tλ
) t( ∂

∂Z

)}

and

(4.4)
∂

∂Z∗
= (CΩ + D)

∂

∂Z
.

From [14, p. 33] or [20, p. 128], we know that

(4.5) Y∗ = t(CΩ + D)−1Y (CΩ + D)−1 = t(CΩ + D)−1Y (CΩ + D)−1.
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Using Formulas (4.1), (4.2) and (4.5), the author [29] proved that for any two
positive real numbers A and B,

ds2
n,m;A,B = A tr

(
Y −1dΩ Y −1dΩ

)

+ B

{
tr

(
Y −1 tV V Y −1dΩ Y −1dΩ

)
+ tr

(
Y −1 t(dZ) dZ

)

−tr
(
V Y −1dΩ Y −1 t(dZ)

)
− tr

(
V Y −1dΩ Y −1 t(dZ)

)}

is a Riemannian metric on Hn,m which is invariant under the action (1.2) of GJ .

The following lemma is very useful for computing the invariant differential opera-
tors. H. Maass [13] observed the following useful fact.

Lemma 4.1. (a) Let A be an m×n matrix and B an n× l matrix. Assume that the
entries of A commute with the entries of B. Then t(AB) = tB tA.

(b) Let A, B and C be a k × l, an n×m and an m× l matrix respectively. Assume
that the entries of A commute with the entries of B. Then

t(A t(BC)) = B t(A tC).

Proof. The proof follows immediately from the direct computation. ¤

Using Formulas (4.3), (4.4), (4.5) and Lemma 4.1, the author [29] proved that the
following differential operators M1 and M2 on Hn,m defined by

(4.6) M1 = tr

(
Y

∂

∂Z

t( ∂

∂Z

))

and

M2 = tr

(
Y

t(
Y

∂

∂Ω

)
∂

∂Ω

)
+ tr

(
V Y −1 tV

t(
Y

∂

∂Z

)
∂

∂Z

)
(4.7)

+ tr

(
V

t(
Y

∂

∂Ω

)
∂

∂Z

)
+ tr

(
tV

t(
Y

∂

∂Z

)
∂

∂Ω

)

are invariant under the action (1.2) of GJ . The author [29] proved that for any two
positive real numbers A and B, the following differential operator

(4.8) ∆n,m;A,B =
4

A
M2 +

4

B
M1

is the Laplacian of the GJ -invariant Riemannian metric ds2
n,m;A,B.
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Proposition 4.1. The following differential operator K on Hn,m of degree 2n defined
by

(4.9) K = det(Y ) det

(
∂

∂Z

t( ∂

∂Z

))

is invariant under the action (1.2) of GJ .

Proof. Let KM,(λ,µ;κ) denote the image of K under the transformation

(Ω, Z) 7−→ (
(M ·Ω, (Z + λΩ + µ)(CΩ + D)−1

)

with M =

(
A B
C D

)
∈ Sp(n,R) and (λ, µ; κ) ∈ H

(n,m)
R . If f is a C∞ function on Hn,m,

using (4.4), (4.5) and Lemma 4.1, we have

KM,(λ,µ;κ)f = det(Y ) | det(CΩ + D)|−2 det

[
(CΩ + D)

∂

∂Z

t{
(CΩ + D)

∂f

∂Z

}]

= det(Y ) | det(CΩ + D)|−2 det

[
(CΩ + D)

t{
(CΩ + D)

t( ∂

∂Z

t( ∂f

∂Z

))}]

= det(Y ) | det(CΩ + D)|−2 det

[
(CΩ + D)

∂

∂Z

t( ∂f

∂Z

)
t(CΩ + D)

]

= det(Y ) det

(
∂

∂Z

t( ∂f

∂Z

))

= Kf.

Since M ∈ Sp(n,R) and (λ, µ; κ) ∈ H
(n,m)
R are arbitrary, K is invariant under the

action (1.2) of GJ . ¤

Proposition 4.2. The following matrix-valued differential operator T on Hn,m defined
by

(4.10) T =
t( ∂

∂Z

)
Y

∂

∂Z

is invariant under the action (1.2) of GJ .

Proof. Let TM,(λ,µ;κ) denote the image of K under the transformation

(Ω, Z) 7−→ (
(M ·Ω, (Z + λΩ + µ)(CΩ + D)−1

)
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with M =

(
A B
C D

)
∈ Sp(n,R) and (λ, µ; κ) ∈ H

(n,m)
R . If f is a C∞ function on Hn,m,

according to (4.4), (4.5) and Lemma 4.1, we have

TM,(λ,µ;κ)f =
t(

(CΩ + D)
∂

∂Z

)
t(CΩ + D)−1Y (CΩ + D)−1(CΩ + D)

∂f

∂Z

=
t( ∂

∂Z

)
Y

∂f

∂Z

= Tf.

Since M ∈ Sp(n,R) and (λ, µ; κ) ∈ H
(n,m)
R are arbitrary, T is invariant under the

action (1.2) of GJ . ¤

Corollary 4.1. Each (k, l)-entry Tkl of T given by

(4.11) Tkl =
n∑

i,j=1

yij
∂2

∂zki∂zlj

, 1 ≤ k, l ≤ m

is an element of D
(
Hn,m

)
.

Proof. It follows immediately from Proposition 4.2. ¤

Now we consider invariant differential operators on the Siegel-Jacobi disk. Let

Dn =
{
W ∈ C(n,n) | W = tW, In −WW > 0

}

be the generalized unit disk.

For brevity, we write Dn,m := Dn × C(m,n). For a coordinate (W, η) ∈ Dn,m with
W = (wµν) ∈ Dn and η = (ηkl) ∈ C(m,n), we put

dW = (dwµν), dW = (dwµν),

dη = (dηkl), dη = (dηkl)

and

∂

∂W
=

(
1 + δµν

2

∂

∂wµν

)
,

∂

∂W
=

(
1 + δµν

2

∂

∂wµν

)
,

∂

∂η
=




∂
∂η11

. . . ∂
∂ηm1

...
. . .

...
∂

∂η1n
. . . ∂

∂ηmn


 ,

∂

∂η
=




∂
∂η11

. . . ∂
∂ηm1

...
. . .

...
∂

∂η1n
. . . ∂

∂ηmn


 .
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We can identify an element g = (M, (λ, µ; κ)) of GJ , M =

(
A B
C D

)
∈ Sp(n,R)

with the element 


A 0 B A tµ−B tλ
λ Im µ κ
C 0 D C tµ−D tλ
0 0 0 Im




of Sp(m + n,R).

We set

T∗ =
1√
2

(
Im+n Im+n

iIm+n −iIm+n

)
.

We now consider the group GJ
∗ defined by

GJ
∗ := T−1

∗ GJT∗.

If g = (M, (λ, µ; κ)) ∈ GJ with M =

(
A B
C D

)
∈ Sp(n,R), then T−1

∗ gT∗ is given by

(4.12) T−1
∗ gT∗ =

(
P∗ Q∗
Q∗ P ∗

)
,

where

P∗ =

(
P 1

2
{Q t(λ + iµ)− P t(λ− iµ)}

1
2
(λ + iµ) Ih + iκ

2

)
,

Q∗ =

(
Q 1

2
{P t(λ− iµ)−Q t(λ + iµ)}

1
2
(λ− iµ) −iκ

2

)
,

and P, Q are given by the formulas

(4.13) P =
1

2
{(A + D) + i (B − C)}

and

(4.14) Q =
1

2
{(A−D)− i (B + C)} .

From now on, we write((
P Q
Q P

)
,

(
1

2
(λ + iµ),

1

2
(λ− iµ); −i

κ

2

))
:=

(
P∗ Q∗
Q∗ P ∗

)
.

In other words, we have the relation

T−1
∗

((
A B
C D

)
, (λ, µ; κ)

)
T∗ =

((
P Q
Q P

)
,

(
1

2
(λ + iµ),

1

2
(λ− iµ); −i

κ

2

))
.

Let
H

(n,m)
C :=

{
(ξ, η ; ζ) | ξ, η ∈ C(m,n), ζ ∈ C(m,m), ζ + η tξ symmetric

}

be the complex Heisenberg group endowed with the following multiplication

(ξ, η ; ζ) ◦ (ξ′, η′; ζ ′) := (ξ + ξ′, η + η′ ; ζ + ζ ′ + ξ tη′ − η tξ′)).
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We define the semidirect product

SL(2n,C)nH
(n,m)
C

endowed with the following multiplication
((

P Q
R S

)
, (ξ, η ; ζ)

)
·
((

P ′ Q′

R′ S ′

)
, (ξ′, η′; ζ ′)

)

=

((
P Q
R S

) (
P ′ Q′

R′ S ′

)
, (ξ̃ + ξ′, η̃ + η′; ζ + ζ ′ + ξ̃ tη′ − η̃ tξ′)

)
,

where ξ̃ = ξP ′ + ηR′ and η̃ = ξQ′ + ηS ′.

If we identify H
(n,m)
R with the subgroup

{
(ξ, ξ; iκ) | ξ ∈ C(m,n), κ ∈ R(m,m)

}

of H
(n,m)
C , we have the following inclusion

GJ
∗ ⊂ SU(n, n)nH

(n,m)
R ⊂ SL(2n,C)nH

(n,m)
C .

We define the mapping Θ : GJ −→ GJ
∗ by

(4.15) Θ

((
A B
C D

)
, (λ, µ; κ)

)
:=

((
P Q
Q P

)
,

(
1

2
(λ + iµ),

1

2
(λ− iµ); −i

κ

2

))
,

where P and Q are given by (4.13) and (4.14). We can see that if g1, g2 ∈ GJ , then
Θ(g1g2) = Θ(g1)Θ(g2).

According to [26, p. 250], GJ
∗ is of the Harish-Chandra type (cf. [17, p. 118]). Let

g∗ =

((
P Q
Q P

)
, (λ, µ; κ)

)

be an element of GJ
∗ . Since the Harish-Chandra decomposition of an element

(
P Q
R S

)

in SU(n, n) is given by
(

P Q
R S

)
=

(
In QS−1

0 In

)(
P −QS−1R 0

0 S

)(
In 0

S−1R In

)
,

the P+
∗ -component of the following element

g∗ ·
((

In W
0 In

)
, (0, η; 0)

)
, W ∈ Dn

of SL(2n,C)nH
(n,m)
C is given by

(4.16)

((
In (PW + Q)(QW + P )−1

0 In

)
,
(
0, (η + λW + µ)(QW + P )−1 ; 0

))
.
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We can identify Dn,m with the subset
{((

In W
0 In

)
, (0, η; 0)

) ∣∣∣ W ∈ Dn, η ∈ C(m,n)

}

of the complexification of GJ
∗ . Indeed, Dn,m is embedded into P+

∗ given by

P+
∗ =

{((
In W
0 In

)
, (0, η; 0)

) ∣∣∣ W = tW ∈ C(n,n), η ∈ C(m,n)

}
.

This is a generalization of the Harish-Chandra embedding (cf. [17, p. 119]). Then we
get the natural transitive action of GJ

∗ on Dn,m defined by
((

P Q
Q P

)
,
(
ξ, ξ; iκ

)) · (W, η)(4.17)

=
(
(PW + Q)(QW + P )−1, (η + ξW + ξ)(QW + P )−1

)
,

where

(
P Q
Q P

)
∈ G∗, ξ ∈ C(m,n), κ ∈ R(m,m) and (W, η) ∈ Dn,m.

The author [30] proved that the action (1.2) of GJ on Hn,m is compatible with the
action (4.17) of GJ

∗ on Dn,m through a partial Cayley transform Φ : Dn,m −→ Hn,m

defined by

(4.18) Φ(W, η) :=
(
i(In + W )(In −W )−1, 2 i η (In −W )−1

)
.

In other words, if g0 ∈ GJ and (W, η) ∈ Dn,m,

(4.19) g0 · Φ(W, η) = Φ(g∗ · (W, η)),

where g∗ = T−1
∗ g0T∗. Φ is a biholomorphic mapping of Dn,m onto Hn,m which gives

the partially bounded realization of Hn,m by Dn,m. The inverse of Φ is

Φ−1(Ω, Z) =
(
(Ω− iIn)(Ω + iIn)−1, Z(Ω + iIn)−1

)
.

For (W, η) ∈ Dn,m, we write

(Ω, Z) := Φ(W, η).

Thus

(4.20) Ω = i(In + W )(In −W )−1, Z = 2 i η (In −W )−1.

Since

d(In −W )−1 = (In −W )−1dW (In −W )−1

and

In + (In + W )(In −W )−1 = 2 (In −W )−1,

we get the following formulas from (4.20)
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Y =
1

2 i
(Ω− Ω ) = (In −W )−1(In −WW )(In −W )−1,(4.21)

V =
1

2 i
(Z − Z ) = η (In −W )−1 + η (In −W )−1,(4.22)

dΩ = 2 i (In −W )−1dW (In −W )−1,(4.23)

dZ = 2 i
{

dη + η (In −W )−1dW
}

(In −W )−1.(4.24)

Using Formulas (4.18), (4.20)-(4.24), the author [31] proved that for any two posi-
tive real numbers A and B, the following metric ds̃2

n,m;A,B defined by

ds2
Dn,m;A,B = 4 A tr

(
(In −WW )−1dW (In −WW )−1dW

)

+ 4 B

{
tr

(
(In −WW )−1 t(dη) β

)

+ tr
(
(ηW − η)(In −WW )−1dW (In −WW )−1 t(dη)

)

+ tr
(
(ηW − η)(In −WW )−1dW (In −WW )−1 t(dη)

)

− tr
(
(In −WW )−1 tη η (In −WW )−1WdW (In −WW )−1dW

)

− tr
(
W (In −WW )−1 tη η (In −WW )−1dW (In −WW )−1dW

)

+ tr
(
(In −WW )−1tη η (In −WW )−1dW (In −WW )−1dW

)

+ tr
(
(In −W )−1 tη η W (In −WW )−1dW (In −WW )−1dW

)

+ tr
(
(In −W )−1(In −W )(In −WW )−1 tη η (In −WW )−1

× (In −W )(In −W )−1dW (In −WW )−1dW
)

− tr
(
(In −WW )−1(In −W )(In −W )−1 tη η (In −W )−1

× dW (In −WW )−1dW
)}

is a Riemannian metric on Dn,m which is invariant under the action (4.17) of the
Jacobi group GJ

∗ .
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We note that if n = m = 1 and A = B = 1, we get

1

4
ds2
D1,1;1,1 =

dW dW

(1− |W |2)2
+

1

(1− |W |2) dη dη

+
(1 + |W |2)|η|2 −Wη2 −Wη2

(1− |W |2)3
dW dW

+
ηW − η

(1− |W |2)2
dWdη +

ηW − η

(1− |W |2)2
dWdη.

From the formulas (4.20), (4.23) and (4.24), we get

(4.25)
∂

∂Ω
=

1

2 i
(In −W )

[ t{
(In −W )

∂

∂W

}
−

t{
tη

t( ∂

∂η

)}]

and

(4.26)
∂

∂Z
=

1

2 i
(In −W )

∂

∂η
.

Using Formulas (4.20)-(4.22), (4.25), (4.26) and Lemma 4.1, the author [31] proved
that the following differential operators S1 and S2 on Dn,m defined by

S1 = σ

(
(In −WW )

∂

∂η

t( ∂

∂η

))

and

S2 = tr

(
(In −WW )

t(
(In −WW )

∂

∂W

)
∂

∂W

)

+ tr

(
t(η − η W )

t( ∂

∂η

)
(In −WW )

∂

∂W

)

+ tr

(
(η − η W )

t(
(In −WW )

∂

∂W

)
∂

∂η

)

− tr

(
ηW (In −WW )−1 tη

t( ∂

∂η

)
(In −WW )

∂

∂η

)

− tr

(
ηW (In −WW )−1 tη

t( ∂

∂η

)
(In −WW )

∂

∂η

)

+ tr

(
η(In −WW )−1tη

t( ∂

∂η

)
(In −WW )

∂

∂η

)

+ tr

(
η WW (In −WW )−1 tη

t( ∂

∂η

)
(In −WW )

∂

∂η

)
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are invariant under the action (4.17) of GJ
∗ . The author also proved that

(4.27) ∆Dn,m;A,B :=
1

A
S2 +

1

B
S1

is the Laplacian of the invariant metric ds2
Dn,m;A,B on Dn,m (cf. [31]).

Proposition 4.3. The following differential operator on Dn,m defined by

(4.28) KD = det(In −WW ) det

(
∂

∂η

t( ∂

∂η

))

is invariant under the action (4.17) of GJ
∗ on Dn,m.

Proof. It follows from Proposition 4.1, Formulas (4.21), (4.26) and the fact that the
action (1.2) of GJ on Hn,m is compatible with the action (4.17) of GJ

∗ on Dn,m via the
partial Cayley transform. ¤

Proposition 4.4. The following matrix-valued differential operator on Dn,m defined
by

(4.29) TD :=
t( ∂

∂η

)
(In −WW )

∂

∂η

is invariant under the action (4.17) of GJ
∗ on Dn,m.

Proof. It follows from Proposition 4.2, Formulas (4.21), (4.26) and the fact that the
action (1.2) of GJ on Hn,m is compatible with the action (4.17) of GJ

∗ on Dn,m via the
partial Cayley transform. ¤

Corollary 4.2. Each (k, l)-entry TDkl of TD given by

(4.30) TDkl =
n∑

i,j=1

(
δij −

n∑
r=1

wir wjr

)
∂2

∂ηki∂ηlj

, 1 ≤ k, l ≤ m

is a GJ
∗ -invariant differential operator on Dn,m.

Proof. It follows immediately from Proposition 4.4. ¤

For two differential operators D1 and D2 on Hn,m or Dn,m, we write

[D1, D2] := D1D2 −D2D1.

Then

(4.31) M3 = [M1,M2] = M1M2 −M2M1

is an invariant differential operator of degree three on Hn,m and

(4.32) Pkl = [K,Tkl] = KTkl − TklK, 1 ≤ k, l ≤ m

is an invariant differential operator of degree 2n + 1 on Hn,m.
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Similarly

(4.33) S3 = [S1,S2] = S1S2 − S2S1

is an invariant differential operator of degree three on Dn,m and

(4.34) Qkl = [KD,TDkl] = KDTDkl − TDklKD, 1 ≤ k, l ≤ m

is an invariant differential operator of degree 2n + 1 on Dn,m.

Indeed it is very complicated and difficult at this moment to express the generators
of the algebra of all GJ

∗ -invariant differential operators on Dn,m explicitly.

5. The Case n = m = 1

We consider the case n = m = 1. For a coordinate (w, ξ) in T1,1 = C×C, we write
w = r + i s, ξ = ζ + i η ∈ C, r, s, ζ, η real. The author [27] proved that the algebra

Pol
U(1)
1,1 is generated by

q(w, ξ) =
1

4
w w =

1

4

(
r2 + s2

)
,

α(w, ξ) = ξ ξ = ζ2 + η2,

φ(w, ξ) =
1

2
Re

(
ξ2w

)
=

1

2
r
(
ζ2 − η2

)
+ s ζη,

ψ(w, ξ) =
1

2
Im (ξ2w) =

1

2
s
(
η2 − ζ2

)
+ r ζη.

In [27], using Formula (3.11) the author calculated explicitly the images

D1 = Θ1,1(q), D2 = Θ1,1(α), D3 = Θ1,1(φ) and D4 = Θ1,1(ψ)

of q, ξ, φ and ψ under the Helgason map Θ1,1. We can show that the algebra D(H1,1)
is generated by the following differential operators

D1 =y2

(
∂2

∂x2
+

∂2

∂y2

)
+ v2

(
∂2

∂u2
+

∂2

∂v2

)

+ 2 y v

(
∂2

∂x∂u
+

∂2

∂y∂v

)
,

D2 = y

(
∂2

∂u2
+

∂2

∂v2

)
,

D3 = y2 ∂

∂y

(
∂2

∂u2
− ∂2

∂v2

)
− 2y2 ∂3

∂x∂u∂v

−
(

v
∂

∂v
+ 1

)
D2
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and

D4 = y2 ∂

∂x

(
∂2

∂v2
− ∂2

∂u2

)
− 2 y2 ∂3

∂y∂u∂v

− v
∂

∂u
D2,

where τ = x + iy and z = u + iv with real variables x, y, u, v. Moreover, we have

D1D2−D2D1 = 2 y2 ∂

∂y

(
∂2

∂u2
− ∂2

∂v2

)

− 4 y2 ∂3

∂x∂u∂v
− 2

(
v

∂

∂v
D2 + D2

)
.

In particular, the algebra D(H1,1) is not commutative. We refer to [1, 27] for more
detail.

Recently Hiroyuki Ochiai [15] (cf. [1]) proved the following results.

Theorem 5.1. We have the following relation

(5.1) φ2 + ψ2 = q α2.

This relation exhausts all the relations among the generators q, α, φ and ψ of Pol
U(1)
1,1 .

Theorem 5.2. We have the following relations

(a) [D1, D2] = 2D3

(b) [D1, D3] = 2D1D2 − 2D3

(c) [D2, D3] = −D2
2

(d) [D4, D1] = 0

(e) [D4, D2] = 0

(f) [D4, D3] = 0

(g) D2
3 + D2

4 = D2D1D2

These seven relations exhaust all the relations among the generators D1, D2, D3 and
D4 of D(H1,1).

We can prove the following

Theorem 5.3. The action of U(1) on Pol
U(1)
1,1 is not multiplicity-free.

Finally we see that for the case n = m = 1, the seven problems proposed in Section
3 are completely solved.
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Remark 5.1. According to Theorem 5.2, we see that D4 is a generator of the center
of D(H1,1). We observe that the Lapalcian

∆1,1;A,B =
4

A
D1 +

4

B
D2 (see (4.8))

of (H1,1, ds2
1,1;A,B) does not belong to the center of D(H1,1).

6. The Case n = 1 and m is arbitrary

Conley and Raum [5] found the 2m2 + m + 1 explicit generators of D(H1,m) and
the explicit one generator of the center of D(H1,m). They also found the generators
of the center of the universal enveloping algebra of U

(
gJ

)
of the Jacobi Lie algebra

gJ . The number of generators of the center of U
(
gJ

)
is 1 + m(m+1)

2
.

According to Theorem 3.2, Pol
U(1)
1,m is generated by

q(w, ξ) = tr
(
w w

)
,(6.1)

αkp(w, ξ) = Re
(
ξ tξ

)
kp

= Re (ξk ξp), 1 ≤ k ≤ p ≤ m,(6.2)

βlq(w, ξ) = Im
(
ξ tξ

)
lq

= Im (ξl ξq), 1 ≤ l < q ≤ m,(6.3)

fkp(w, ξ) = Re (w ξ tξ)kp = Re (w ξk ξp), 1 ≤ k ≤ p ≤ m,(6.4)

gkp(w, ξ) = Im (w ξ tξ)kp = Im (w ξk ξp), 1 ≤ k ≤ p ≤ m,(6.5)

where w ∈ C and ξ ∈ Cm.

We let

w = r + i s ∈ C and ξ = t(ξ1, · · · , ξm) ∈ Cm with ξk = ζk + i ηk, 1 ≤ k ≤ m,

where r, s, ζ1, η1, · · · , ζm, ηm are real. The invariants q, αkp, βlq, fkp and gkp are ex-
pressed in terms of r, s, ζk, ηl (1 ≤ k, l ≤ m) as follows:

q(w, ξ) = r2 + s2,

αkp(w, ξ) = ζkζp + ηkηp, 1 ≤ k ≤ p ≤ m,

βlq(w, ξ) = ζqηl − ζlηq, 1 ≤ l < q ≤ m,

fkp(w, ξ) = r(ζkζp − ηkηp) + s(ζkηp + ηkζp), 1 ≤ k ≤ p ≤ m,

gkp(w, ξ) = r(ζkηp + ηkζp)− s(ζkζp − ηkηp), 1 ≤ k ≤ p ≤ m.

Theorem 6.1. The m(m+1)
2

relations

(6.6) f 2
kp + g2

kp = q αkk αpp, 1 ≤ k ≤ p ≤ m

exhaust all the relations among a complete set of generators q, αkp, βlq, fkp and gkp

of Pol
U(1)
1,m with 1 ≤ k ≤ p ≤ m and 1 ≤ l < q ≤ m.
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Theorem 6.2. The action of U(1) on Pol1,m is not multiplicity-free. In fact, if

Pol1,m =
∑

σ∈Û(1)

mσ σ,

then mσ = ∞.

Problem 1, Problem 2, Problem 4, Problem 5 and Problem 7 were solved. Problem
3 can be handled. Finally Problem 6 is unsolved in the case that n = 1 and m is
arbitrary.

7. Final Remarks

Using GJ -invariant differential operators on the Siegel-Jacobi space, we introduce
a notion of Maass-Jacobi forms.

Definition 7.1. Let

Γn,m := Sp(n,Z)nH
(n,m)
Z

be the discrete subgroup of GJ , where

H
(n,m)
Z =

{
(λ, µ; κ) ∈ H

(n,m)
R | λ, µ, κ are integral

}
.

A smooth function f : Hn,m −→ C is called a Maass-Jacobi form on Hn,m if f satisfies
the following conditions (MJ1)-(MJ3) :

(MJ1) f is invariant under Γn,m.
(MJ2) f is an eigenfunction of the Laplacian ∆n,m;A,B (cf. Formula (4.8)).
(MJ3) f has a polynomial growth, that is, there exist a constant C > 0 and a

positive integer N such that

|f(X + iY, Z)| ≤ C |p(Y )|N as det Y −→∞,

where p(Y ) is a polynomial in Y = (yij).

Remark 7.1. Let D∗ be a commutative subalgebra of D(Hn,m) containing the Lapla-
cian ∆n,m;A,B. We say that a smooth function f : Hn,m −→ C is a Maass-Jacobi
form with respect to D∗ if f satisfies the conditions (MJ1), (MJ2)∗ and (MJ3) : the
condition (MJ2)∗ is given by

(MJ2)∗ f is an eigenfunction of any invariant differential operator in D∗.

It is natural to propose the following problems.

Problem A : Find all the eigenfunctions of ∆n,m;A,B.

Problem B : Construct Maass-Jacobi forms.
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If we find a nice eigenfunction φ of the Laplacian ∆n,m;A,B, we can construct a
Maass-Jacobi form fφ on Hn,m in the usual way defined by

(7.1) fφ(Ω, Z) :=
∑

γ∈Γ∞n,m\Γn,m

φ
(
γ · (Ω, Z)

)
,

where

Γ∞n,m =

{((
A B
C D

)
, (λ, µ; κ)

)
∈ Γn,m

∣∣∣ C = 0

}

is a subgroup of Γn,m.

We consider the simple case n = m = 1 and A = B = 1. A metric ds2
1,1;1,1 on H1,1

given by

ds2
1,1;1,1 =

y + v2

y3
( dx2 + dy2 ) +

1

y
( du2 + dv2 )

− 2v

y2
( dx du + dy dv )

is a GJ -invariant Kähler metric on H1,1. Its Laplacian ∆1,1;1,1 is given by

∆1,1;1,1 = y2

(
∂2

∂x2
+

∂2

∂y2

)

+ ( y + v2 )

(
∂2

∂u2
+

∂2

∂v2

)

+ 2 y v

(
∂2

∂x∂u
+

∂2

∂y∂v

)
.

We provide some examples of eigenfunctions of ∆1,1;1,1.

(1) h(x, y) = y
1
2 Ks− 1

2
(2π|a|y) e2πiax (s ∈ C, a 6= 0 ) with eigenvalue s(s− 1). Here

Ks(z) :=
1

2

∫ ∞

0

exp
{
−z

2
(t + t−1)

}
ts−1 dt,

where Re z > 0.
(2) ys, ysx, ysu (s ∈ C) with eigenvalue s(s− 1).
(3) ysv, ysuv, ysxv with eigenvalue s(s + 1).
(4) x, y, u, v, xv, uv with eigenvalue 0.
(5) All Maass wave forms.

Let ρ be a rational representation of GL(n,C) on a finite dimensional complex
vector space Vρ. Let M ∈ R(m,m) be a symmetric half-integral semi-positive definite
matrix of degree m. Let C∞(Hn,m, Vρ) be the algebra of all C∞ functions on Hn,m

with values in Vρ. We define the |ρ,M-slash action of GJ on C∞(Hn,m, Vρ) as follows:
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If f ∈ C∞(Hn,m, Vρ),

f |ρ,M[(M, (λ, µ; κ))](Ω, Z)

:= e−2πi tr(M[Z+λΩ+µ](CΩ+D)−1C) · e2πi tr(M(λΩ tλ +2λ tZ + κ + µ tλ))(7.2)

× ρ(CΩ + D)−1f(M · Ω, (Z + λΩ + µ)(CΩ + D)−1),

where

(
A B
C D

)
∈ Sp(n,R) and (λ, µ; κ) ∈ H

(n,m)
R . We recall the Siegel’s notation

α[β] = tβαβ for suitable matrices α and β. We define Dρ,M to be the algebra of all
differential operators D on Hn,m satisfying the following condition

(7.3) (Df)|ρ,M[g] = D(f |ρ,M[g])

for all f ∈ C∞(Hn,m, Vρ) and for all g ∈ GJ . We denote by Zρ,M the center of Dρ,M.

We define an another notion of Maass-Jacobi forms as follows.

Definition 7.2. A vector-valued smooth function φ : Hn,m −→ Vρ is called a Maass-
Jacobi form on Hn,m of type ρ and index M if it satisfies the following conditions
(MJ1)ρ,M, (MJ2)ρ,M and (MJ3)ρ,M :

(MJ1)ρ,M φ|ρ,M[γ] = φ for all γ ∈ Γn,m.
(MJ2)ρ,M f is an eigenfunction of all differential operators in the center Zρ,M

of Dρ,M.
(MJ3)ρ,M f has a growth condition

φ(Ω, Z) = O
(
ea det Y · e2πtr(M[V ]Y −1)

)

as det Y −→∞ for some a > 0.

The case n = 1, m = 1 and ρ = detk(k = 0, 1, 2, · · · ) was studied by R. Bendt
and R. Schmidt [1], A. Pitale [16] and K. Bringmann and O. Richter [3]. The case
n = 1, m =arbitrary and ρ = detk(k = 1, 2, · · · ) was dealt with by C. Conley and
M. Raum [5]. In [5] the authors proved that the center Zdetk,M of Ddetk,M is the

polynomial algebra with one generator Ck,M, the so-called Casimir operator which is
a |detk,M-slash invariant differential operator of degree three for the case n = m = 1 or
of degree four for the case n = 1, m ≥ 2. Bringmann and Richter [3] considered the

Poincaré series P(n,r)
k,M,s (the case n = m = 1) that is a harmonic Maass-Jacobi form

in the sense of Definition 7.2 and investigated its Fourier expansion and its Fourier

coefficients. Here the harmonicity of P(n,r)
k,M,s means that Ck,MP(n,r)

k,M,s = 0, i.e., P(n,r)
k,M,s

is an eigenfunction of Ck,M with zero eigenvalue. Conley and Raum [5] generalized
the results in [16] and [3] to the case n = 1 and m is arbitrary.

Remark 7.2. In [2], Bringmann, Conley and Richter proved that the center of the
algebra of differential operators invariant under the action of the Jacobi group over a
complex quadratic field is generated by two Casimir operators of degree three. They
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also introduce an analogue of Kohnen’s plus space for modular forms of half-integral
weight over K = Q(i), and provide a lift from it to the space of Jacobi forms over K.
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