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Abstract. Let Hg and Dg be the Siegel upper half plane and the gen-

eralized unit disk of degree g respectively. Let C(h,g) be the Euclidean
space of all h × g complex matrices. We present a partial Cayley trans-
form of the Siegel–Jacobi disk Dg × C(h,g) onto the Siegel–Jacobi space

Hg × C(h,g) which gives a partial bounded realization of Hg × C(h,g) by

Dg × C(h,g). We prove that the natural actions of the Jacobi group on

Dg×C(h,g) and Hg×C(h,g) are compatible via a partial Cayley transform.
A partial Cayley transform plays an important role in computing differ-
ential operators on the Siegel–Jacobi disk Dg×C(h,g) invariant under the

natural action of the Jacobi group on Dg × C(h,g) explicitly.

1. Introduction

For a given fixed positive integer g, we let

Hg =
{

Ω ∈ C(g,g)
∣∣ Ω = tΩ, Im Ω > 0

}

be the Siegel upper half plane of degree g and let

Sp(g,R) =
{

M ∈ R(2g,2g)
∣∣ tMJgM = Jg

}

be the symplectic group of degree g, where F (k,l) denotes the set of all k × l
matrices with entries in a commutative ring F for two positive integers k and
l, tM denotes the transpose matrix of a matrix M and

Jg =
(

0 Ig

−Ig 0

)
.

We see that Sp(g,R) acts on Hg transitively by

(1.1) M · Ω = (AΩ + B)(CΩ + D)−1,

where M =
(

A B
C D

)
∈ Sp(g,R) and Ω ∈ Hg.
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Let
Dg =

{
W ∈ C(g,g) | W = tW, Ig −WW > 0

}

be the generalized unit disk of degree g. The Cayley transform Φ : Dg −→ Hg

defined by

(1.2) Φ(W ) = i (Ig + W )(Ig −W )−1, W ∈ Dg

is a biholomorphic mapping of Dg onto Hg which gives the bounded realization
of Hg by Dg (cf. [8, pp. 281–283]). And the action (2.8) of the symplectic
group on Dg is compatible with the action (1.1) via the Cayley transform Φ.
A. Korányi and J. Wolf [4] gave a realization of a bounded symmetric domain as
a Siegel domain of the third kind investigating a generalized Cayley transform
of a bounded symmetric domain that generalizes the Cayley transform Φ of
Dg.

For two positive integers g and h, we consider the Heisenberg group

H
(g,h)
R =

{
(λ, µ;κ)

∣∣ λ, µ ∈ R(h,g), κ ∈ R(h,h), κ + µ tλ symmetric
}

endowed with the following multiplication law

(λ, µ;κ) ◦ (λ′, µ′; κ′) = (λ + λ′, µ + µ′; κ + κ′ + λ tµ′ − µ tλ′).

The Jacobi group GJ is defined as the semidirect product of Sp(g,R) and H
(g,h)
R

GJ = Sp(g,R)nH
(g,h)
R

endowed with the following multiplication law(
M, (λ, µ; κ)

)
·
(
M ′, (λ′, µ′;κ′)

)

=
(
MM ′, (λ̃ + λ′, µ̃ + µ′; κ + κ′ + λ̃ tµ′ − µ̃ tλ′)

)

with M, M ′ ∈ Sp(g,R), (λ, µ; κ), (λ′, µ′;κ′) ∈ H
(g,h)
R , and (λ̃, µ̃) = (λ, µ)M ′.

Then GJ acts on Hg × C(h,g) transitively by

(1.3)
(
M, (λ, µ; κ)

)
· (Ω, Z) =

(
M · Ω, (Z + λΩ + µ)(CΩ + D)−1

)
,

where M =
(

A B
C D

)
∈ Sp(g,R), (λ, µ; κ) ∈ H

(g,h)
R , and (Ω, Z) ∈ Hg × C(h,g).

In [11, p. 1331], the author presented the natural construction of the action
(1.3).

We mention that studying the Siegel–Jacobi space or the Siegel–Jacobi disk
associated with the Jacobi group is useful to the study of the universal family
of polarized abelian varieties (cf. [12], [14]). The aim of this paper is to present
a partial Cayley transform of the Siegel–Jacobi disk Dg×C(h,g) onto the Siegel–
Jacobi space Hg × C(h,g) which gives a partially bounded realization of Hg ×
C(h,g) by Dg×C(h,g) and to prove that the natural action of the Jacobi group on
Dg ×C(h,g) and Hg ×C(h,g) is compatible via a partial Cayley transform. The
main reason that we study a partial Cayley transform is that this transform is
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usefully applied to computing differential operators on the Siegel–Jacobi disk
Dg × C(h,g) invariant under the action (3.5) of the Jacobi group GJ

∗ (cf. (3.2))
explicitly.

This paper is organized as follows. In Section 2, we review the Cayley
transform of the generalized unit disk Dg onto the Siegel upper half plane Hg

which gives a bounded realization of Hg by Dg. In Section 3, we construct a
partial Cayley transform of the Siegel–Jacobi disk Dg ×C(h,g) onto the Siegel–
Jacobi space Hg × C(h,g) which gives a partially bounded realization of Hg ×
C(h,g) by Dg × C(h,g) (cf. (3.6)). We prove that the action (1.3) of the Jacobi
group GJ is compatible with the action (3.5) of the Jacobi group GJ

∗ through
a partial Cayley transform (cf. Theorem 3.1). In the final section, we present
the canonical automorphic factors of the Jacobi group GJ

∗ .

Notations : We denote by R and C the field of real numbers, and the field
of complex numbers respectively. For a square matrix A ∈ F (k,k) of degree k,
σ(A) denotes the trace of A. For Ω ∈ Hg, ReΩ (resp. ImΩ) denotes the real
(resp. imaginary) part of Ω. For a matrix A ∈ F (k,k) and B ∈ F (k,l), we write
A[B] = tBAB. In denotes the identity matrix of degree n.

2. The Cayley transform

Let

(2.1) T =
1√
2

(
Ig Ig

iIg −iIg

)

be the 2g × 2g matrix represented by Φ. Then

(2.2) T−1Sp(g,R) T =
{(

P Q
Q P

) ∣∣∣ tPP − tQQ = Ig,
tPQ = tQP

}
.

Indeed, if M =
(

A B
C D

)
∈ Sp(g,R), then

(2.3) T−1MT =
(

P Q
Q P

)
,

where

(2.4) P =
1
2

{
(A + D) + i (B − C)

}

and

(2.5) Q =
1
2

{
(A−D)− i (B + C)

}
.

For brevity, we set
G∗ = T−1Sp(g,R)T.

Then G∗ is a subgroup of SU(g, g), where

SU(g, g) =
{

h ∈ C(g,g)
∣∣ thIg,gh = Ig,g

}
, Ig,g =

(
Ig 0
0 −Ig

)
.
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In the case g = 1, we observe that

T−1Sp(1,R)T = T−1SL2(R)T = SU(1, 1).

If g > 1, then G∗ is a proper subgroup of SU(g, g). In fact, since tTJgT = − i Jg,
we get

(2.6) G∗ =
{

h ∈ SU(g, g)
∣∣ thJgh = Jg

}
= SU(g, g) ∩ Sp(g,C),

where
Sp(g,C) =

{
α ∈ C(2g,2g)

∣∣ tα Jg α = Jg

}
.

Let

P+ =
{(

Ig Z
0 Ig

) ∣∣∣ Z = tZ ∈ C(g,g)

}

be the P+-part of the complexification of G∗ ⊂ SU(g, g). We note that the

Harish–Chandra decomposition of an element
(

P Q
Q P

)
in G∗ is

(
P Q
Q P

)
=

(
Ig QP

−1

0 Ig

) (
P −QP

−1
Q 0

0 P

) (
Ig 0

P
−1

Q Ig

)
.

For more detail, we refer to [3, p. 155]. Thus the P+-component of the following
element (

P Q
Q P

)
·
(

Ig W
0 Ig

)
, W ∈ Dg

of the complexification of GJ
∗ is given by

(2.7)
(

Ig (PW + Q)(QW + P )−1

0 Ig

)
.

We note that QP
−1 ∈ Dg. We get the Harish-Chandra embedding of Dg into

P+ (cf. [3, p. 155] or [7, pp. 58–59]). Therefore we see that G∗ acts on Dg

transitively by

(2.8)
(

P Q
Q P

)
·W = (PW + Q)(QW + P )−1,

(
P Q
Q P

)
∈ G∗, W ∈ Dg.

The isotropy subgroup at the origin o is given by

K =
{(

P 0
0 P

) ∣∣∣ P ∈ U(g)
}

.

Thus G∗/K is biholomorphic to Dg. It is known that the action (1.1) is com-
patible with the action (2.8) via the Cayley transform Φ (cf. (1.2)). In other
words, if M ∈ Sp(g,R) and W ∈ Dg, then

(2.9) M · Φ(W ) = Φ(M∗ ·W ),

where M∗ = T−1MT ∈ G∗. For a proof of Formula (2.9), we refer to the proof
of Theorem 3.1.
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For Ω = (ωij) ∈ Hg, we write Ω = X + iY with X = (xij), Y = (yij) real
and dΩ = (dωij). We also put

∂

∂Ω
=

(
1 + δij

2
∂

∂ωij

)
and

∂

∂Ω
=

(
1 + δij

2
∂

∂ωij

)
.

Then

(2.10) ds2 = σ
(
Y −1dΩY −1dΩ

)

is a Sp(g,R)-invariant metric on Hg (cf. [8]). H. Maass [5] proved that its
Laplacian is given by

(2.11) ∆ = 4σ

(
Y t

(
Y

∂

∂Ω

)
∂

∂Ω

)
.

For W = (wij) ∈ Dg, we write dW = (dwij) and dW = (dwij). We put

∂

∂W
=

(
1 + δij

2
∂

∂wij

)
and

∂

∂W
=

(
1 + δij

2
∂

∂wij

)
.

Using the Cayley transform Φ : Dg −→ Hg, H. Maass proved (cf. [5]) that

(2.12) ds2
∗ = 4 σ

(
(Ig −WW )−1dW (Ig −WW )−1dW

)

is a G∗-invariant Riemannian metric on Dg and its Laplacian is given by

(2.13) ∆∗ = σ

(
(Ig −WW ) t

(
(Ig −WW )

∂

∂W

)
∂

∂W

)
.

3. A partial Cayley transform

In this section, we present a partial Cayley transform of Dg × C(h,g) onto
Hg ×C(h,g) and prove that the action (1.3) of GJ on Hg ×C(h,g) is compatible
with the natural action (cf. (3.5)) of the Jacobi group GJ

∗ on Dg × C(h,g) via a
partial Cayley transform.

From now on, for brevity we write Hg,h = Hg × C(h,g). We can identify an

element g =
(
M, (λ, µ;κ)

)
of GJ , M =

(
A B
C D

)
∈ Sp(g,R) with the element




A 0 B A tµ−B tλ
λ Ih µ κ
C 0 D C tµ−D tλ
0 0 0 Ih




of Sp(g + h,R). This subgroup plays an important role in investigating the
Fourier–Jacobi expansion of a Siegel modular form for Sp(g +h,R) (cf. [6]) and
studying the theory of Jacobi forms (cf. [1], [2], [9], [10], [11], [17]).

We set

T∗ =
1√
2

(
Ig+h Ig+h

iIg+h −iIg+h

)
.
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We now consider the group GJ
∗ defined by

GJ
∗ = T−1

∗ GJT∗.

If g = (M, (λ, µ; κ)) ∈ GJ with M =
(

A B
C D

)
∈ Sp(g,R), then T−1

∗ gT∗ is

given by

(3.1) T−1
∗ gT∗ =

(
P∗ Q∗
Q∗ P ∗

)
,

where

P∗ =

(
P 1

2

{
Q t(λ + iµ)− P t(λ− iµ)

}

1
2 (λ + iµ) Ih + iκ

2

)
,

Q∗ =

(
Q 1

2

{
P t(λ− iµ)−Q t(λ + iµ)

}

1
2 (λ− iµ) −iκ

2

)
,

and P, Q are given by Formulas (2.4) and (2.5). From now on, we write((
P Q
Q P

)
,

(
1
2
(λ + iµ),

1
2
(λ− iµ); −i

κ

2

))
=

(
P∗ Q∗
Q∗ P ∗

)
.

In other words, we have the relation

T−1
∗

((
A B
C D

)
, (λ, µ;κ)

)
T∗ =

((
P Q
Q P

)
,

(
1
2
(λ + iµ),

1
2
(λ− iµ); −i

κ

2

))
.

Let

H
(g,h)
C =

{
(ξ, η ; ζ) | ξ, η ∈ C(h,g), ζ ∈ C(h,h), ζ + η tξ symmetric

}

be the Heisenberg group endowed with the following multiplication

(ξ, η ; ζ) ◦ (ξ′, η′; ζ ′) = (ξ + ξ′, η + η′ ; ζ + ζ ′ + ξ tη′ − η tξ′)).

We define the semidirect product

SL(2g,C)nH
(g,h)
C

endowed with the following multiplication((
P Q
R S

)
, (ξ, η ; ζ)

)
·
((

P ′ Q′

R′ S′

)
, (ξ′, η′; ζ ′)

)

=
((

P Q
R S

) (
P ′ Q′

R′ S′

)
, (ξ̃ + ξ′, η̃ + η′; ζ + ζ ′ + ξ̃ tη′ − η̃ tξ′)

)
,

where ξ̃ = ξP ′ + ηR′ and η̃ = ξQ′ + ηS′.
If we identify H

(g,h)
R with the subgroup

{
(ξ, ξ; iκ) | ξ ∈ C(h,g), κ ∈ R(h,h)

}

of H
(g,h)
C , we have the following inclusion

GJ
∗ ⊂ SU(g, g)nH

(g,h)
R ⊂ SL(2g,C)nH

(g,h)
C .
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More precisely, if we recall G∗ = SU(g, g)∩Sp(g,C) (cf. (2.6)), we see that the
Jacobi group GJ

∗ is given by
(3.2)

GJ
∗ =

{((
P Q
Q P

)
, (ξ, ξ̄ ; iκ)

) ∣∣∣
(

P Q
Q P

)
∈ G∗, ξ ∈ C(m,n), κ ∈ R(m,m)

}
.

We define the mapping Θ : GJ −→ GJ
∗ by

(3.3)

Θ
((

A B
C D

)
, (λ, µ; κ)

)
=

((
P Q
Q P

)
,

(
1
2
(λ + iµ),

1
2
(λ− iµ) ; −i

κ

2

))
,

where P and Q are given by Formulas (2.4) and (2.5). We can see that if
g1, g2 ∈ GJ , then Θ(g1g2) = Θ(g1)Θ(g2).

According to [13, p. 250], GJ
∗ is of the Harish-Chandra type (cf. [7, p. 118]).

Let

g∗ =
((

P Q
Q P

)
, (λ, µ; κ)

)

be an element of GJ
∗ . Since the Harish-Chandra decomposition of an element(

P Q
R S

)
in SU(g, g) is given by

(
P Q
R S

)
=

(
Ig QS−1

0 Ig

)(
P −QS−1R 0

0 S

)(
Ig 0

S−1R Ig

)
,

the P+
∗ -component of the following element

g∗ ·
((

Ig W
0 Ig

)
, (0, η; 0)

)
, W ∈ Dg

of SL(2g,C)nH
(g,h)
C is given by

(3.4)((
Ig (PW + Q)(QW + P )−1

0 Ig

)
,
(
0, (η + λW + µ)(QW + P )−1 ; 0

))
.

We can identify Dg × C(h,g) with the subset
{((

Ig W
0 Ig

)
, (0, η; 0)

) ∣∣∣ W ∈ Dg, η ∈ C(h,g)

}

of the complexification of GJ
∗ . Indeed, Dg × C(h,g) is embedded into P+

∗ given
by

P+
∗ =

{ ((
Ig W
0 Ig

)
, (0, η; 0)

) ∣∣∣ W = tW ∈ C(g,g), η ∈ C(h,g)

}
.
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This is a generalization of the Harish-Chandra embedding (cf. [7, p. 119]).
Hence GJ

∗ acts on Dg × C(h,g) transitively by

(3.5)

((
P Q
Q P

)
, (λ, µ; κ)

)
· (W,η)

=
(
(PW + Q)(QW + P )−1, (η + λW + µ)(QW + P )−1

)
.

From now on, for brevity we write Dg,h = Dg × C(h,g). We define the map Φ∗
of Dg,h into Hg,h by

(3.6) Φ∗(W,η) =
(
i(Ig + W )(Ig −W )−1, 2 i η (Ig −W )−1

)
, (W,η) ∈ Dg,h.

We can show that Φ∗ is a biholomorphic map of Dg,h onto Hg,h which gives
a partial bounded realization of Hg,h by the Siegel–Jacobi disk Dg,h. We call
this map Φ∗ the partial Cayley transform of the Siegel–Jacobi disk Dg,h.

Theorem 3.1. The action (1.3) of GJ on Hg,h is compatible with the action
(3.5) of GJ

∗ on Dg,h through the partial Cayley transform Φ∗. In other words,
if g0 ∈ GJ and (W,η) ∈ Dg,h,

(3.7) g0 · Φ∗(W,η) = Φ∗(g∗ · (W,η)),

where g∗ = T−1
∗ g0T∗. We observe that Formula (3.7) generalizes Formula (2.9).

The inverse of Φ∗ is

(3.8) Φ−1
∗ (Ω, Z) =

(
(Ω− iIg)(Ω + iIg)−1, Z(Ω + iIg)−1

)
.

Proof. Let

g0 =
((

A B
C D

)
, (λ, µ;κ)

)

be an element of GJ and let g∗ = T−1
∗ g0T∗. Then

g∗ =
((

P Q
Q P

)
,

(
1
2
(λ + iµ),

1
2
(λ− iµ) ; −i

κ

2

))
,

where P and Q are given by Formulas (2.4) and (2.5).
For brevity, we write

(Ω, Z) = Φ∗(W,η) and (Ω∗, Z∗) = g0 · (Ω, Z).

That is,

Ω = i(Ig + W )(Ig −W )−1 and Z = 2 i η(Ig −W )−1.



A PARTIAL CAYLEY TRANSFORM OF SIEGEL–JACOBI DISK 789

Then we get

Ω∗ = (AΩ + B)(CΩ + D)−1

=
{

i A(Ig + W )(Ig −W )−1 + B
}{

i C(Ig + W )(Ig −W )−1 + D
}−1

=
{

i A(Ig + W ) + B(Ig −W )
}

(Ig −W )−1

×
[{

i C(Ig + W ) + D(Ig −W )
}

(Ig −W )−1
]−1

=
{

(i A−B)W + (i A + B)
}{

(i C −D)W + (i C + D)
}−1

and

Z∗ = (Z + λΩ + µ)(CΩ + D)−1

=
{

2 i η (Ig −W )−1 + i λ(Ig + W )(Ig −W )−1 + µ
}

×
{

i C(Ig + W )(Ig −W )−1 + D
}−1

=
{

2 i η + i λ (Ig + W ) + µ (Ig −W )
}

(Ig −W )−1

×
[{

i C(Ig + W ) + D(Ig −W )
}

(Ig −W )−1
]−1

=
{

2 i η + (λ i− µ)W + λ i + µ
}{

(i C −D)W + (i C + D)
}−1

.

On the other hand, we set

(W∗, η∗) = g∗ · (W,η) and (Ω̂, Ẑ) = Φ∗(W∗, η∗).

Then

W∗ = (PW + Q)(QW + P )−1 and η∗ = (η + λ∗W + µ∗)(QW + P )−1,

where λ∗ = 1
2 (λ + i µ) and µ∗ = 1

2 (λ− i µ).
According to Formulas (2.4) and (2.5), we get

Ω̂ = i (Ig + W∗)(Ig −W∗)−1

= i
{

Ig + (PW + Q)(QW + P )−1
}{

Ig − (PW + Q)(QW + P )−1
}−1

= i (QW + P + PW + Q)(QW + P )−1

×
{

(QW + P − PW −Q)(QW + P )−1
}−1

= i
{

(P + Q )W + P + Q
}{

(Q− P )W + P −Q
}−1

=
{

(i A−B)W + (i A + B)
}{

(i C −D)W + (i C + D)
}−1

.

Therefore Ω̂ = Ω∗. In fact, this result is the known fact (cf. Formula (2.9)) that
the action (1.1) is compatible with the action (2.8) via the Cayley transform
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Φ.

Ẑ = 2 i η∗(Ig −W∗)−1

= 2 i (η + λ∗W + µ∗)(QW + P )−1

×
{

Ig − (PW + Q)(QW + P )−1
}−1

= 2 i (η + λ∗W + µ∗)(QW + P )−1

×
{

(QW + P − PW −Q)(QW + P )−1
}−1

= 2 i (η + λ∗W + µ∗)
{

(Q− P )W + P −Q
}−1

.

Using Formulas (2.4) and (2.5), we obtain

Ẑ =
{

2 i η + (λ i− µ)W + λ i + µ
}{

(i C −D)W + i C + D
}−1

.

Hence Ẑ = Z∗. Consequently we get Formula (3.7). Formula (3.8) follows
immediately from a direct computation. ¤
Remark 3.1. R. Berndt and R. Schmidts (cf. [1, pp. 52–53]) investigated a par-
tial Cayley transform in the case g = h = 1.

For a coordinate (Ω, Z) ∈ Hg,h with Ω = (ωµν) ∈ Hg and Z = (zkl) ∈ C(h,g),
we put

Ω =X + iY, X = (xµν), Y = (yµν) real,

Z =U + iV, U = (ukl), V = (vkl) real,

dΩ =(dωµν), dX = (dxµν), dY = (dyµν),

dZ =(dzkl), dU = (dukl), dV = (dvkl),

dΩ = (dωµν), dZ = (dz̄kl),

∂

∂Ω
=

(
1 + δµν

2
∂

∂ωµν

)
,

∂

∂Ω
=

(
1 + δµν

2
∂

∂ωµν

)
,

∂

∂Z
=




∂
∂z11

. . . ∂
∂zh1

...
. . .

...
∂

∂z1g
. . . ∂

∂zhg


 ,

∂

∂Z
=




∂
∂z11

. . . ∂
∂zh1

...
. . .

...
∂

∂z1g
. . . ∂

∂zhg


 .

Remark 3.2. The author proved in [15] that for any two positive real numbers
A and B, the following metric

ds2
g,h;A,B = A σ

(
Y −1dΩ Y −1dΩ

)

+ B

{
σ
(
Y −1 tV V Y −1dΩY −1dΩ

)
+ σ

(
Y −1 t(dZ) dZ

)
(3.9)

−σ
(
V Y −1dΩ Y −1 t(dZ)

)
− σ

(
V Y −1dΩY −1 t(dZ)

)}
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is a Riemannian metric on Hg,h which is invariant under the action (1.3) of the
Jacobi group GJ and its Laplacian is given by

∆n,m;A,B =
4
A

{
σ

(
Y t

(
Y

∂

∂Ω

)
∂

∂Ω

)
+ σ

(
V Y −1 tV t

(
Y

∂

∂Z

)
∂

∂Z

)

+ σ

(
V t

(
Y

∂

∂Ω

)
∂

∂Z

)
+ σ

(
tV t

(
Y

∂

∂Z

)
∂

∂Ω

)}
(3.10)

+
4
B

σ

(
Y

∂

∂Z
t

(
∂

∂Z

))
.

We observe that Formulas (3.9) and (3.10) generalize Formulas (2.10) and
(2.11). The following differential form

dvg,h = ( det Y )−(g+h+1) [dX] ∧ [dY ] ∧ [dU ] ∧ [dV ]

is a GJ -invariant volume element on Hg,h, where

[dX] = ∧µ≤νdxµν , [dY ] = ∧µ≤νdyµν , [dU ] = ∧k,ldukl and [dV ] = ∧k,ldvkl.

Using the partial Cayley transform Φ∗ and Theorem 3.1, we can find a GJ
∗ -

invariant Riemannian metric on the Siegel–Jacobi disk Dg,h and its Laplacian
explicitly which generalize Formulas (2.12) and (2.13). For more detail, we
refer to [16].

4. The canonical automorphic factors

The isotropy subgroup KJ
∗ at (0, 0) under the action (3.5) is

(4.1) KJ
∗ =

{((
P 0
0 P

)
, (0, 0 ; κ)

) ∣∣∣ P ∈ U(g), κ ∈ R(h,h)

}
.

The complexification of KJ
∗ is given by

(4.2) KJ
∗,C =

{((
P 0
0 tP−1

)
, (0, 0 ; ζ)

) ∣∣∣ P ∈ GL(g,C), ζ ∈ C(h,h)

}
.

By a complicated computation, we can show that if

(4.3) g∗ =
((

P Q
Q P

)
, (λ, µ; κ)

)

is an element of GJ
∗ , then the KJ

∗,C-component of

g∗ ·
((

Ig W
0 Ig

)
, (0, η; 0)

)

is given by

(4.4)
((

P − (PW + Q)(QW + P )−1Q 0
0 QW + P

)
, (0, 0 ; κ∗)

)
,
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where

κ∗ = κ + λ tη + (η + λW + µ) tλ

− (η + λW + µ) tQ t(QW + P )−1 t(η + λW + µ)

= κ + λ tη + (η + λW + µ) tλ

− (η + λW + µ)(QW + P )−1Q t(η + λW + µ).

Here we used the fact that (QW + P )−1Q is symmetric.

For g∗ ∈ GJ
∗ given by (4.3) with g0 =

(
P Q
Q P

)
∈ G∗ and (W,η) ∈ Dg,h, we

write

(4.5) J(g∗, (W,η)) = a(g∗, (W,η)) b(g0,W ),

where

a(g∗, (W,η)) = (I2g, (0, 0; κ∗)), where κ∗ is given in (4.4)

and

b(g0,W ) =
((

P − (PW + Q)(QW + P )−1Q 0
0 QW + P

)
, (0, 0 ; 0)

)
.

Lemma 4.1. Let
ρ : GL(g,C) −→ GL(Vρ)

be a holomorphic representation of GL(g,C) on a finite dimensional complex
vector space Vρ and χ : C(h,h) −→ C× be a character of the additive group
C(h,h). Then the mapping

Jχ,ρ : GJ
∗ × Dg,h −→ GL(Vρ)

defined by
Jχ,ρ(g∗, (W,η)) = χ(a(g∗, (W,η))) ρ(b(g0,W ))

is an automorphic factor of GJ
∗ with respect to χ and ρ.

Proof. We observe that a(g∗, (W,η)) is a summand of automorphy, i.e.,

a(g1g2, (W,η)) = a(g1, g2 · (W,η)) + a(g2, (W,η)),

where g1, g2 ∈ GJ
∗ and (W,η) ∈ Dg,h. Together with this fact, the proof follows

from the fact that the mapping

Jρ : G∗ × Dg −→ GL(Vρ)

defined by
Jρ(g0,W ) := ρ(b(g0,W )), g0 ∈ G∗, W ∈ Dg

is an automorphic factor of G∗. ¤
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Example 4.1. Let M be a symmetric half-integral semi-positive definite ma-
trix of degree h and let ρ : GL(g,C) −→ GL(Vρ) be a holomorphic represen-
tation of GL(g,C) on a finite dimensional complex vector space Vρ. Then the
character

χM : C(h,h) −→ C×

defined by
χM(c) = e−2πiσ(Mc), c ∈ C(h,h)

provides the automorphic factor

JM,ρ : GJ
∗ × Dg,h −→ GL(Vρ)

defined by
JM,ρ(g∗, (W,η)) = e−2πiσ(Mκ∗)ρ(QW + P ),

where g∗ is an element in GJ
∗ given by (4.3) and κ∗ is given in (4.4). Using

JM,ρ, we can define the notion of Jacobi forms on Dg,h of index M with respect
to the Siegel modular group T−1Sp(g,Z)T (cf. [9], [10], [11]).

Remark 4.1. The P−∗ -component of

g∗ ·
((

Ig W
0 Ig

)
, (0, η; 0)

)

is given by

(4.6)
((

Ig 0
(QW + P )−1Q Ig

)
,
(
λ− (η + λW + µ)(QW + P )−1Q, 0 ; 0

))
,

where

P−∗ =
{((

Ig 0
W Ig

)
, (ξ, 0 ; 0)

) ∣∣∣ W = tW ∈ C(g,g), ξ ∈ C(h,g)

}
.
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