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To the memory of my parents

Abstract. Functoriality conjecture is one of the central and influential subjects of the

present day mathematics. Functoriality is the profound lifting problem formulated by

Robert Langlands in the late 1960s in order to establish nonabelian class field theory.

In this expository article, I describe the Langlands-Shahidi method, the local and global

Langlands conjectures and the converse theorems which are powerful tools for the estab-

lishment of functoriality of some important cases, and survey the interesting results related

to functoriality conjecture.

1. Introduction

Functoriality Conjecture or the Principle of Functoriality is the profound ques-
tion that was raised and formulated by Robert P. Langlands in the late 1960s to
establish nonabelian class field theory and its reciprocity law. Functoriality conjec-
ture describes deep relationships among automorphic representations on different
groups. This conjecture can be described in a rough form as follows: To every
L-homomorphism ϕ : LH −→ LG between the L-groups of H and G that are
quasi-split reductive groups, there exists a natural lifting or transfer of automorphic
representations of H to those of G. In 1978, Gelbart and Jacquet [22] established an
example of the functoriality for the symmetric square Sym2 of GL(2) using the con-
verse theorem on GL(3). In 2002 after 24 years, Kim and Shahidi [46] established
the functoriality for the symmetric cube Sym3 of GL(2) and thereafter Kim [43]
proved the validity of the functoriality for the symmetric fourth Sym4 of GL(2).
These results have led to breakthroughs toward certain important conjectures in
number theory, those of Ramanujan, Selberg and Sato-Tate conjectures. We refer
to [81] for more detail on applications to the progress made toward to the conjec-
tures just mentioned. Recently the Sato-Tate conjecture for an important class of
cases related to elliptic curves has been verified by Clozel, Harris, Shepherd-Barron
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and Taylor [11], [27], [69], [83]. Past ten years the functoriality for the tensor
product GL(2) × GL(2) −→ GL(4) by Ramakrishnan [71], for the tensor product
GL(2) × GL(3) −→ GL(6) by Kim and Shahidi [46], for the exterior square of
GL(4) by Kim [43] and the weak functoriality to GL(N) for generic cuspidal rep-
resentations of split classical groups SO(2n + 1), Sp(2n) and SO(2n) by Cogdell,
Kim, Piatetski-Shapiro and Shahidi [13], [14] were established by applying appro-
priate converse theorems of Cogdell and Piatetski-Shapiro [15], [16] to analytical
properties of certain automorphic L-functions arising from the Langlands-Shahidi
method. In fact, the Langlands functoriality was established only for very special
L-homomorphisms between the L-groups. It is natural to ask how to find a larger
class of certain L-homomorphisms for which the functoriality is valid. It is still very
difficult to answer this question.

The Arthur-Selberg trace formula has also provided some instances of Lang-
lands functoriality (see [4], [6], [61], [62]). In a certain sense, it seems that the
trace formula is a useful and powerful tool to tackle the functoriality conjecture.
Nevertheless the incredible power of Langlands functoriality seems beyond present
technology and knowledge. We refer the reader to [66] for Langlands’ comments
on the limitations of the trace formula. Special cases of functoriality arises natu-
rally from the conjectural theory of endoscopy (cf. [50]), in which a comparison
of trace formulas would be used to characterize the internal structure of automor-
phic representations of a given group. I shall not deal with the trace formula, the
base change and the theory of endoscopy in this article. Nowadays local and global
Langlands conjectures are believed to be encompassed in the functoriality (cf. [65],
[66]). Quite recently Khare, Larsen and Savin [41], [42] made a use of the functorial
lifting from SO(2n+ 1) to GL(2n), from Sp(2n) to GL(2n+ 1) and the theta lift-
ing of the exceptional group G2 to Sp(6) to prove that certain finite simple groups
PSpn(F`k), G2(F`k) and SO2n+1(F`k) with some mild restrictions appear as Galois
groups over Q.

This paper is organized as follows. In Section 2, we review the notion of au-
tomorphic L-functions and survey the Langlands-Shahidi method briefly following
closely the article of Shahidi [77]. I would like to recommend to the reader two
lecture notes which were very nicely written by Cogdell [12] and Kim [44] for more
information on automorphic L-functions. In Section 3, we review the Weil-Deligne
group briefly and formulate the local Langlands conjecture. We describe the recent
results about the local Langlands conjecture for GL(n) and SO(2n+1). In Section
4, we discuss the global Langlands conjecture which is still not well formulated in
the number field case. The work on the global Langlands conjecture for GL(2) over
a function field done by Drinfeld was extended by Lafforgue ten years ago to give
a proof of the global Langlands conjecture for GL(n) over a function field. We will
not deal with the function field case in this article. We refer to [52] for more detail.
Unfortunately there is very little known of the global Langlands conjecture in the
number field case. I have an audacity to mention the Langlands hypothetical group
and the hypothetical motivic Galois group following the line of Arthur’s argument
in [3]. In Section 5, I formulate the Langlands functoriality conjecture in several



Langlands Functoriality Conjecture 357

ways and describe the striking examples of Langlands functoriality established past
ten years. I want to mention that there is a descent method of studying the opposite
direction of the lift initiated by Ginzburg, Rallis and Soudry (see [25], [39]). I shall
not deal with the descent method here. In the appendix, I describe a brief history
of the converse theorems obtained by Hamburger, Hecke, Weil, Cogdell, Piatetski-
Shapiro, Jinag and Soudry. I present the more or less exact formulations of the
converse theorems. As mentioned earlier, the converse theorems play a crucial role
in establishing the functoriality for the examples discussed in Section 5.

Notations: We denote by Q, R and C the field of rational numbers, the field of
real numbers and the field of complex numbers respectively. We denote by R∗

+ the
multiplicative group of positive real numbers. C∗ (resp. R∗) denotes the multiplica-
tive group of nonzero complex(resp. real) numbers. We denote by Z and Z+ the
ring of integers and the set of all positive integers respectively. For a number field
F , we denote by AF and A∗

F the ring of adeles of F and the multiplicative group of
ideles of F respectively. If there is no confusion, we write simply A and A∗ instead
of AF and A∗

F . For a field k we denote by Γk the Galois group Gal(k/k), where k
is a separable algebraic closure of k. We denote by Gm the multiplicative group in
one variable. Ga denotes the additive group in one variable.

2. Automorphic L-functions

Let G be a connected, quasi-split reductive group over a number field F . For
each place v of F , we let Fv be the completion of F , ov the rings of integers of Fv,
pv the maximal ideal of ov, and let qv be the order of the residue field kv = ov/pv.
We denote by A = AF the ring of adeles of F . We fix a Borel subgroup B of
G over F . Write B = TU , where T is a maximal torus and U is the unipotent
radical, both over F . Let P be a parabolic subgroup of G. Assume P ⊃ B. Let
P = MN be a Levi decomposition of P with Levi factor M and its unipotent
radical N . Then N ⊂ U. For each place v of F , we let Gv = G(Fv). Similarly we
use Bv, Tv, Uv, Pv,Mv and Nv to denote the corresponding groups of Fv-rational
points. Let G(A), B(A), · · · , N(A) be the corresponding adelic groups for the sub-
groups defined before. When G is unramified over a place v in the sense that G
is quasi-split over Fv and that G is split over a finite unramified extension of Fv,
we let Kv = G(ov). Otherwise we shall fix a special maximal compact subgroup
Kv ⊂ Gv. We set KA = ⊗vKv. Then G(A) = P (A)KA.

Let Π = ⊗vΠv be a cuspidal automorphic representation of G(A). We refer to
[36], [37], [59] for the notion of automorphic representations. Let S be a finite set
of places including all archimedean ones such that both Πv and Gv are unramified
for any place v /∈ S. Then for each v /∈ S, Πv determines uniquely a semi-simple
conjugacy class c(Πv) in the L-group LGv of Gv as a group defined over Fv. We
refer to [9], [48] for the definition and construction of the L-group. We note that
there exists a natural homomorphism ξv : LGv −→ LG. For a finite dimensional rep-
resentation r of LG, putting rv = r ◦ ξv, the local Langlands L-function L(s,Πv, rv)
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associated to Πv and rv is defined to be (cf. [9], [54])

(2.1) L(s,Πv, rv) = det
(
I − rv

(
c(Πv)

)
q−s
v

)−1

.

We set

(2.2) LS(s,Π, r) =
∏
v/∈S

L(s,Πv, rv).

Langlands (cf. [54]) proved that LS(s,Π, r) converges absolutely for sufficiently
large Re(s) > 0 and defines a holomorphic function there. Furthermore he proposed
the following question.

Conjecture A(Langlands, [54]). LS(s,Π, r) has a meromorphic continuation to
the whole complex plane and satisfies a standard functional equation.

F. Shahidi (cf. [77], [78]) gave a partial answer to the above conjecture using
the so-called Langlands-Shahidi method. I shall describe Shahidi’s results briefly
following his article [77].

Let P be a maximal parabolic subgroup of G and P = MN its Levi decompo-
sition with its Levi factor M and its unipotent radical N . Let A be the split torus
in the center of M . For every group H defined over F , we let X(H)F be the group
of F -rational characters of H. We set

a = Hom
(
X(M)F ,R

)
.

Then
a∗ = X(M)F ⊗Z R ∼= X(A)F ⊗Z R.

We set a∗C := a∗ ⊗R C. Let z be the real Lie algebra of the split torus in the center
C(G) of G. Then z ⊂ a and a/z is of dimension 1. The imbedding X(M)F ↪→
X(M)Fv

induces an imbedding av ↪→ a, where av = Hom
(
X(M)Fv

,R
)
. The Harish-

Chandra homomorphism HP : M(A) −→ a is defined by

exp〈χ,HP (m)〉 =
∏
v

|χ(mv)|v, χ ∈ X(M)F , m = ⊗vmv ∈M(A).

We may extend HP to G(A) by letting it trivial on N(A) and KA. We define
HPv : Mv −→ av by

q
〈χv,HPv (m)〉
v = |χv(mv)|v, χv ∈ X(M)Fv , mv ∈Mv

for a finite place v, and define

exp 〈χv,HPv (m)〉 = |χv(mv)|v, χv ∈ X(M)Fv , mv ∈Mv
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for an infinite place v. Then we have

(2.3) exp〈χ,HP (m)〉 =
∏

v=∞
exp 〈χ,HPv

(m)〉 ·
∏

v<∞
q
〈χ,HPv (m)〉
v ,

where χ ∈ X(M)F and m = ⊗vmv ∈ M(A). We observe that the product in (2.3)
is finite.

Let A0 be the maximal F -split torus in T . We denote by Φ the set of roots of
A0. Then Φ = Φ+ ∪Φ−, where Φ+ is the set of roots generating U and Φ− = −Φ+.
Let ∆ ⊂ Φ+ be the set of simple roots. The unique reduced root of A in N can be
identified by an element α ∈ ∆. Let ρP be half the sum of roots generating N . We
set

α̃ = 〈ρP , α〉−1ρP .

Here, for any pair of roots α and β in Φ+, the pairing 〈α, β〉 is defined as follows.
Let Φ̃+ be the set of non-restricted roots of T in U . We see that the set of simple
roots ∆̃ in Φ̃+ restricts to ∆. Identifying α and β with roots in Φ̃+, we set

〈α, β〉 =
2(α, β)
(β, β)

,

where ( , ) is the standard inner product on Rl with l = |∆̃|.
Let π = ⊗vπv be a cuspidal automorphic representation of M(A). Given a

KA ∩M(A)-finite function φ in the representation space Vπ of π, we may extend
φ to a function φ̃ on G(A) (cf. [75]). Then the Eisenstein series E(s, φ̃, g, P ) is
defined by

(2.4) E(s, φ̃, g, P ) =
∑

γ∈P (F )\G(F )

φ̃(γg) exp〈sα̃+ ρP ,HP (γg)〉, g ∈ G(A).

The Eisensetein series E(s, φ̃, g, P ) converges absolutely for sufficiently large
Re(s) � 0 and extends to a meromorphic function of s on C, with a finite number
of poles in the plane Re(s) > 0, all simple and on the real axis (See [58]).

LetW be the Weyl group of A0 in G. We denote the subset of ∆ which generates
M by θ. Then ∆ = θ ∪ {α}. Then there exists a unique element w̃ ∈ W such that
w̃(θ) ⊂ ∆ and w̃(α) ∈ Φ−. Fix a representative w ∈ KA ∩ G(F ) for w̃. We shall
also denote every component of w by w again.

Let
I(s, π) = IndG(A)

M(A)N(A)π ⊗ exp〈sα̃,HP ( · )〉 ⊗ 1

be the representation of G(A) induced from P (A). Then I(s, π) = ⊗vI(s, πv) with

I(s, πv) = IndGv

MvNv
πv ⊗ q〈sα̃,HP ( · )〉

v ⊗ 1,

where qv should be replaced by exp if v is archimedean. We letM ′ be the subgroup of
G generated by w̃(θ). Then there is a parabolic subgroup P ′ ⊃ B with P ′ = M ′N ′.
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Here M ′ is a Levi factor of P ′ and N ′ is the unipotent radical of P ′. For f ∈ I(s, π)
and sufficiently large Re(s) � 0, we define

(2.5) M(s, π)f(g) =
∫

N ′(A)

f(w−1ng)dn, g ∈ G(A).

At each place v, for sufficiently large Re(s) � 0, we define a local intertwining
operator by

(2.6) A(s, πv, w)fv(g) =
∫

N ′
v

fv(w−1ng)dn, g ∈ Gv,

where fv ∈ I(s, πv). Then

(2.7) M(s, π) = ⊗vA(s, πv, w).

It follows from the theory of Eisenstein series that for Re(s) � 0, M(s, π) extends
to a meromorphic function of s ∈ C with only a finite number of simple poles (cf.
[58]).

Let LM and LN be the Levi factor and the unipotent radical of the parabolic
subgroup LP = LMLN of the L-group LG. Then we have the representation r :
LM −→ End

(
Ln

)
given by the adjoint action of LM on the Lie algebra Ln of LN.

Let
r = r1 ⊕ r2 ⊕ · · · ⊕ rm

be the decomposition of r into irreducible constituents. Each irreducible constituent
(ri, Vi) with 1 ≤ i ≤ m is characterized by

Vi =
{
Xβ∨ ∈ Ln | 〈α̃, β〉 = i

}
, i = 1, · · · ,m.

We refer to [55] and [77, Proposition 4.1] for more detail.
According to [53] and [55], one has

(2.8) M(s, π)f =
(
⊗v∈S A(s, πv, w)fv

) ⊗ (
⊗v/∈S f̃v

)
×

m∏
i=1

LS(is, π, ri)
LS(1 + is, π, ri)

,

where f = ⊗vfv is an element in I(s, π) such that for each v /∈ S, fv is the unique
Kv-fixed vector with fv(ev) = 1, f̃v is the Kv-fixed vector in I(−s, w̃(πv)) with
f̃v(ev) = 1, and r̃i denotes the contragredient of ri (1 ≤ i ≤ m).

For every archimedean place v of F , let ϕv : WFv
−→ LMv be the corresponding

homomorphism (cf. [63]) attached to πv. One has a natural homomorphism ηv :
LMv −→ LM. We put

ri,v = ri ◦ ηv, i = 1, 2, · · · ,m.
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Then ri,v ◦ϕv = ri ◦ ηv ◦ϕv is a finite dimensional representation of the Weil group
WFv

on Vi. Let L(s, ri,v ◦ ϕv) be the corresponding Artin L-function attached to
ri,v ◦ ϕv (cf. [57]). We set

(2.9) LS(s, π, ri) =
∏

v=∞
L(s, ri,v ◦ ϕv) ·

∏
v /∈S
v<∞

L(s, πv, ri ◦ ηv).

Let ρ : M(A) −→M(A) be the projection of M(A) onto its adjoint group.
Shahidi showed the following.

Theorem 2.1(Shahidi [77]). Let π = ⊗vπv be a cuspidal automorphic represen-
tation of M(A). Then every L-function LS(s, π, ri ◦ Lρ), 1 ≤ i ≤ m, extends to a
meromorphic function of s to the whole complex plane. Moreover, if π is generic,
then each LS(s, π, ri ◦ Lρ) satisfies a standard functional equation, that is,

LS(s, π, ri ◦ Lρ) = εS(s, π, ri ◦ Lρ)LS(1− s, ˜π, ri ◦ Lρ),

where εS(1s, π, ri ◦ Lρ) is the root number attached to π and ri ◦ Lρ, and τ̃ denotes
the contragredient of a representation τ .

Furthermore, for a given generic cuspidal automorphic representation π = ⊗vπv

of M(A), Shahidi defined the local L-functions L(s, πv, ri) and the local root num-
bers ε(s, πv, ri, ψ) with 1 ≤ i ≤ m at bad places v so that the completed L-function
L(s, π, ri) and the completed root number ε(s, π, ri) defined by

L(s, π, ri) =
∏
all v

L(s, πv, ri), ε(s, π, ri) =
∏
all v

ε(s, πv, ri, ψ), i = 1, · · · ,m

satisfy a standard functional equation

(2.10) L(s, π, ri) = ε(s, π, ri)L(1− s, π, r̃i), i = 1, · · · ,m.

Example 2.2(Kim-Shahidi [45]). Let F be a number field and let G be a simply
connected semisimple split group of type G2 over F . We set A∞ =

∏
v=∞ Fv. Let

K∞ be the standard maximal compact subgroup of G(A∞) and Kv = G(ov) for
a finite place v. Then KA = K∞ ×

∏
v<∞Kv is a maximal compact subgroup of

G(A). Fix a split maximal torus T in G and let B = TU be a Borel subgroup of G.
In what follows the roots are those of T in U . Let ∆ = {β1, β6} be a basis of the
root system Φ with respect to (T,B) with the long simple root β1 and the short
one β6. Then the other roots are given by

β2 = β1 + β6, β3 = 2β1 + 3β6, β4 = β1 + 2β6, β5 = β1 + 3β6.

Let P be the maximal parabolic subgroup of G generated by β1 with Levi decom-
position P = MN , where M ' GL(2). See [80, Lemma 2.1]. Thus one has

a∗ = Rβ4, a = Rβ∨4 and ρP =
5
2
β4.
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Let α̃ = β4. Then sα̃ (s ∈ C) corresponds to the character |det(m)|s. We note
that A∗ = A∗

1 · R∗
+, where A∗

1 is the group of ideles of norm 1. Let π = ⊗vπv be a
cuspidal automorphic representation of M(A) = GL(2,A). We may and will assume
that the central character ωπ of π is trivial on R∗

+. For a K-finite function ϕ in the
representation space of π, the Eisenstein series E(s, ϕ̃, g) = E(s, ϕ̃, g, P ) defined by
Formula (2.4) converges absolutely for sufficiently large Re(s) � 0 and extends to a
meromorphic function of s on C, with a finite number of poles in the plane Re(s) > 0,
all simple and on the real axis. The discrete spectrum L2

disc

(
G(F )\G(A)

)
(M,π)

is
spanned by the residues of Eisenstein series for Re(s) > 0 (See [58]). We know
that the poles of Eisenstein series coincide with those of its constant terms. So it
is enough to consider term along P . For each f ∈ I(s, π), the constant term of
E(s, f, g) along P is given by

E0(s, f, g) =
∑
w∈Ω

M(s, π, w)f(g), Ω = {1, s6s1s6s1s6},

where si is the reflection along βi defined by

si(β) = β − 2(βi, β)
(βi, βi)

βi, 1 ≤ i ≤ 6, β ∈ Φ.

Weyl group representatives are all chosen to lie in KA ∩G(F ). Here

M(s, π, w)f(g) =
∫

N−
w (A)

f(w−1ng)dn =
∏
v

∫
N−

w (Fv)

fv(w−1
v nvgv)dnv,

where g = ⊗vgv ∈ G(A), f = ⊗vfv is an element of I(s, π) such that fv is the
unique Kv-fixed function normalized by fv(ev) = 1 for almost all v, and

N−
w =

∏
α>0

w−1α<0

Uα, Uα = the one parameter unipotent subgroup.

Let St : GL(2,C) −→ GL(2,C) be the standard representation of GL(2,C) and

Sym3 : GL(2,C) = LM −→ GL(4,C)

be the third symmetric power representation of GL(2,C). Let(
Sym3

)0 = Sym3
⊗ (

∧2 St
)−1

be the adjoint cube representation of GL(2,C) (cf. [80, p. 249]). Then the adjoint
representation r of LM = GL(2,C) on the Lie algebra Ln of LN is given by

r =
(
Sym3

)0 ⊕ ∧2St.
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According to Formula (2.8), one obtain, for w = s6s1s6s1s6, the formula

M(s, π)f =
(
⊗v∈S M(s, πv, w)fv

) ⊗ (
⊗v/∈S f̃v

)
×LS

(
s, π̃, (Sym3)0

)
LS

(
2s, π̃,∧2St

)
×LS

(
1 + s, π̃, (Sym3)0

)−1
LS

(
1 + 2s, π̃,∧2St

)−1
,

where S is a finite set of places of F including all the archimedean places such
that πv is unramifies for every v /∈ S. Here LS

(
s, π,∧2St

)
is the partial Hecke

L-function. Kim and Shahidi [45] proved that if π is a non-monomial cuspidal
representation of M(A) = GL(2,A) in the sense that π 6∼= π ⊗ η for any nontrivial
grossencharacter η of F ∗\A+

F , the symmetric cube L-function L
(
s, π,Sym3

)
and the

adjoint cube L-function L
(
s, π, (Sym3)0

)
are both entire and satisfy the standard

functional equations

L
(
s, π,Sym3

)
= ε

(
s, π,Sym3

)
L

(
1− s, π̃,Sym3

)
and

L
(
s, π, (Sym3)0

)
= ε

(
s, π, (Sym3)0

)
L

(
1− s, π̃, (Sym3)0

)
.

It follows from this fact that if π is not monomial, the partial Rankin triple L-
function LS(s, π × π × π) is entire. Ikeda [32] calculated the poles of the Rankin
triple L-function LS(s, π × π × π) for GL(2). And we have the following relations

(2.11) LS(s, π × π × π) = L
(
s, π,Sym3

) (
LS(s, π ⊗ ωπ)

)2

and

(2.12) L
(
s, π,Sym3

)
= LS

(
s, π ⊗ ωπ, (Sym3)0

)
.

According to Formula (2.10), LS(s, π × π × π) could have double zeros at s = 1/2.

In [47], Kim and Shahidi studied the cuspidality of the symmetric fourth power
Sym4(π) of a cuspidal representation π of GL(2,A) and the partial symmetric m-th
power L-functions LS

(
s, π,Symm

)
(1 ≤ m ≤ 9). For the definition of Symm(π), we

refer to Example 5.6 in this article. We summarize their results.

Theorem 2.3(Kim-Shahidi [47]). Let π be a cuspidal automorphic representation
of GL(2,A) with ωπ its central character. Then Sym4(π) ⊗ ω−1

π is a cuspidal rep-
resentation of GL(5,A) except for the following three cases:
(1) π is monomial in the sense that π ∼= π⊗η for some nontrivial Grössencharacter
η of F .
(2) π is not monomial and Sym3(π)⊗ ω−1

π is not cuspidal.
(3) Sym3(π) ⊗ ω−1

π is cuspidal and there exists a nontrivial quadratic character χ
such that
Sym3(π)⊗ ω−1

π
∼= Sym3(π)⊗ ω−1

π ⊗ χ.



364 Jae-Hyun Yang

As applications of Theorem 2.3, they obtained the following.

Proposition 2.4(Kim-Shahidi [47]). Let π be a cuspidal automorphic representa-
tion of GL(2,A) with ωπ its central character such that Sym3(π) is cuspidal. Then
the following statements hold:
(a) Each partial symmetric m-th power L-functions LS

(
s, π,Symm

)
(m = 6, 7, 8, 9)

has a meromorphic continuation and satisfies a standard functional equation.
(b) LS

(
s, π,Sym5

)
and LS

(
s, π,Sym7

)
are holomorphic and nonzero for Re(s) ≥ 1.

(c) If ω3
π = 1, LS

(
s, π,Sym6

)
is holomorphic and nonzero for Re(s) ≥ 1.

(d) If Sym4(π) is cuspidal, LS

(
s, π,Sym6

)
is holomorphic and nonzero for Re(s) ≥

1.
(e) If Sym4(π) is cuspidal and ω4

π = 1, LS

(
s, π,Sym8

)
is holomorphic and nonzero

for Re(s) ≥ 1.
(f) If Sym4(π) is cuspidal, LS

(
s, π,Sym9

)
has a most a simple pole or a simple zero

at s = 1.
(g) If Sym4(π) is not cuspidal, LS

(
s, π,Sym9

)
is holomorphic and nonzero for

Re(s) ≥ 1.

Proposition 2.5(Kim-Shahidi [47]). Let π = ⊗vπv be a cuspidal automorphic
representation of GL(2,A) such that Sym3(π) is cuspidal. Let diag(αv, βv) be the
Satake parameter for πv. Then |αv|, |βv| < q

1/9
v . If Sym4(π) is not cuspidal, then

|αv| = |βv| = 1, that is, the full Ramanujan conjecture holds.

Proposition 2.6(Kim-Shahidi [47]). Let π = ⊗vπv be a nonmonomial cuspidal
automorphic representation of GL(2,A) with a trivial central character. Suppose
m ≤ 9. Then the following statements hold:
(1) Suppose Sym3(π) is not cuspidal. Then LS

(
s, π,Symm

)
is holomorphic and

nonzero at s = 1, except for m = 6, 8 ; the L-functions LS

(
s, π,Sym6

)
and

LS

(
s, π,Sym8

)
each have a simple pole at s = 1.

(2) Suppose Sym3(π) is cuspidal but Sym4(π) is not cuspidal. Then LS

(
s, π,Symm

)
is holo-morphic and nonzero at s = 1 for m = 1, · · · , 7 and m = 9 ; the L-function
LS

(
s, π,Sym8

)
has a simple pole at s = 1.

We are still far from solving Conjecture A. We have two known methods to
study analytic properties of automorphic L-functions. The first is the method of
constructing explicit zeta integrals that is called the Rankin-Selberg method. The
second is the so-called Langlands-Shahidi method I just described briefly. In the
late 1960s Langlands [55] recognized that many automorphic L-functions occur in
the constant terms of the Eisenstein series associated to cuspidal automorphic rep-
resentations of the Levi subgroups of maximal parabolic subgroups of split reductive
groups through his intensively deep work on the theory of Eisenstein series. He ob-
tained some analytic properties of certain automorphic L-functions using the mero-
morphic continuation and the functional equation of Eisenstein series. As mentioned
above, he proved the meromorphic continuation of certain class of L-functions but
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did not gave an answer to the functional equation. Shahidi [77] generalized Lang-
lands’ recognition to quasi-split groups, and calculated non-constant terms of the
Eisenstein series and hence obtained the functional equations of a more broader class
of many automorphic L-functions. In fact, those L-functions dealt with by Shahidi
include most of the L-functions studied by other mathematicians (cf. [23], [24]). The
first method has some advantage to provide more precise information on the loca-
tion of poles and the special values of automorphic L-functions. On the other hand,
the Langlands-Shahidi method has been applied to a large class of automorphic
L-functions, and is likely to be more suited to the theory of harmonic analysis on
a reductive group. Moreover the second method plays an important role in inves-
tigating the non-vanishing of automorphic L-functions on the line Re(s) = 1. One
of the main contributions of Shahidi to the Langlands-Shahidi method is to define
local L-functions even at bad places in such a way that the completed L-function
satisfies the functional equation. We are in need of new methods to have more
knowledge on the analytic and arithmetic properties of automorphic L-functions.

3. Local Langlands conjecture

Let k be a local field and let Wk be its Weil group. We review the definition of
the Weil group Wk following the article of Tate (cf. [82]). If k = C, then WC = C×.
If k = R, then

WR = C∗ ∪ τC∗, τzτ−1 = z,

where z 7→ z is the nontrivial element of Gal(C/R). Then W ab
R = R∗. Here if Y c

denotes the closure of the commutator subgroup of a topological group Y , we set
Y ab = Y/Y c.

Suppose k is a nonarchimedean local field and k a separable algebraic closure
of k. Let q be the order of the residue field κ of k. We set Γk = Gal

(
k/k

)
and

Γκ = Gal
(
κ/κ

)
. Let Φκ : x 7→ xq be the Frobenius automorphism in Γκ. We set

〈Φκ〉 = {Φn
κ | n ∈ Z }. Let ϕ : Γk −→ Γκ be the canonical surjective homomorphism

given by σ 7→ σ|κ. The Weil group Wk is defined to be the set Wk = ϕ−1
(
〈Φκ〉

)
.

Obviously one has an exact sequence

1 −→ Ik −→Wk −→ 〈Φκ〉 −→ 1,

where Ik = kerϕ is the inertia group of k. We recall that Wk is topologized such
that Ik has the induced topology from Γk, Ik is open in Γk and multiplication by Φ
is a homeomorphism. Here Φ denotes a choice of a geometric Frobenius element in
ϕ−1(Φκ

)
⊂ Γk. We note that we have a continuous homomorphism Wk −→ Γk with

dense image. According to the local class field theory, one has the isomorphism

(3.1) k∗ ∼= W ab
k .

In order to generalize the isomorphism (3.1) for GL(1) to GL(2), P. Deligne [18]
introduced the so-called Weil-Deligne group W ′

k. It is defined to be the group
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scheme over Q which is the semidirect product of Wk by the additive group Ga on
which Wk acts by the rule wxw−1 = ||w||x. We refer to [82, p. 19] for the definition
of ||w||. Namely, W ′

k = Wk nGa is the group scheme over Q with the multiplication

(w1, a1)(w2, a2) = (w1w2, a1 + ||w1|| a2), w1, w2 ∈Wk, a1, a2 ∈ Ga.

Definition 3.1(Deligne [19]). Let E be field of characteristic 0. A representation
of W ′

k over E is a pair ρ′ = (ρ,N) consisting of
(a) A finite dimensional vector space V over E and a homomorphism ρ : Wk −→
GL(V ) whose kernel contains an open subgroup of Ik, i.e., which is continuous for
the discrete topology on GL(V ).
(b) A nilpotent endomorphism N of V such that

ρ(w)Nρ(w)−1 = ||w||N, w ∈Wk.

We see that a homomorphism of group schemes over E

ρ′ : Wk ×Q E −→ GL(V )

determines, and is determined by a pair (ρ,N) as in Definition 3.1 such that

ρ′((w, a)) = exp(aN) ρ(w), w ∈Wk, a ∈ Ga.

Let ρ′ = (ρ,N) be a representation of W ′
k over E. Define ν : Wk −→ Z by

||w|| = q−ν(w), w ∈ Wk. Then according to [19, (8.5)], there is a unique unipotent
automorphism u of V such that

uN = Nu, uρ(w) = ρ(w)u, w ∈Wk

and such that
exp(aN) ρ(w)u−ν(w)

is a semisimple automorphism of V for all a ∈ E and w ∈ Wk − Ik. Then ρ′ =
(ρu−ν , N) is called the Φ-semisimplication of ρ′. And ρ′ is called Φ-semisimple if
and only if ρ′ = ρ′ss, u = 1, i.e., the Frobeniuses acts semisimply.

Let ρ′ = (ρ,N, V ) be a representation of W ′
k over E. We let V I

N := (kerN)Ik

be the subspace of Ik-invariants in kerN. We define a local L-factor by

(3.2) Z(t, V ) = det
(
1− t ρ(Φ)

∣∣
V I

N

)−1

, and L(s, V ) = Z(q−s, V ), when E ⊂ C.

We note that if ρ′ = (ρ,N) is a representation of W ′
k, then ρ′ is irreducible if and

only if N = 0 and ρ is irreducible.
Let G be a connected reductive group over a local field. A homomorphism

α : W ′
k −→ LG is said to be admissible [9, p. 40] if the following conditions (i)-(iii)
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are satisfied
(i) α is a homomorphism over Γk, i.e., the following diagram is commutative:

W ′
k

α−→ LG
↘ ↙

Γk

(ii) α is continuous, α(Ga) are unipotent in LG0, and α maps semisimple elements
into semisimple elements in LG. Here an element x is said to be semisimple if
x ∈ Ik, and an element g ∈ LG is called semisimple if r(g) is semisimple for any
finite dimensional representation r of LG.
(iii) If α(W ′

k) is contained in a Levi subgroup of a proper parabolic subgroup P of
LG, then P is relevant. See [9, p. 32].

Let Gk(G) be the set of all admissible homomorphisms φ : W ′
k −→ LG modulo

inner automorphisms by elements of LG0. We observe that we can associate canon-
ically to φ ∈ Gk(G) a character χφ of the center C(G) of G (cf. [9, p. 43], [63]).
Let Z0

L = C(LG0) be the center of LG0. Following [9, pp. 43-44] and [63], we can
construct a character ωα of G(k) associated to a cohomology class α ∈ H1(W ′

k, Z
0
L).

If we write φ ∈ Gk(G) as φ = (φ1, φ2) with φ : W ′
k −→ LG0 and φ : W ′

k −→ Γk,
then φ1 defines a cocycle of W ′

k in LG0, and the map φ 7→ φ1 yields an embedding
Gk(G) ↪→ H1(W ′

k,
LG0). Then H1(W ′

k, Z
0
L) acts on H1(W ′

k,
LG0) and this action

leaves Gk(G) stable [9, p. 40].
Let

∏
(G(k)) be the set of all equivalence classes of irreducible admissible rep-

resentations of G(k). The following conjecture gives an arithmetic parametrization
of irreducible admissible representations of G(k).

Local Langlands Conjecture[LLC]. Let k be a local field. Let Gk(G) and∏
(G(k)) be as above. Then there is a surjective map

∏
(G(k)) −→ Gk(G) with

finite fibres which partitions
∏

(G(k)) into disjoint finite sets
∏

φ(G(k)), simply
∏

φ

called L-packets satisfying the following (i)-(v):
(i) If π ∈

∏
φ, then the central character χπ of π is equal to χφ.

(ii) If α ∈ H1(W ′
k, Z

0
L) and ωα is its associated character of G(k), then∏

α·φ =
{
πωα | π ∈

∏
φ

}
.

(iii) One element of
∏

φ is square integrable modulo the center C(G) of G if and
only if all elements are square integrable modulo the center C(G) of G if and only
if φ(W ′

k) is not contained in any proper Levi subgroup of LG.
(iv) One element of

∏
φ is tempered if and only if all elements of

∏
φ are tempered

if and only if φ(Wk) is bounded.
(v) If H is a connected reductive group over k and η : H(k) −→ G(k) is a k-
morphism with commutative kernel and cokernel, then there is a required com-
patibilty between decompositions for G(k) and H(k). More precisely, η induces a
canonical map Lη : LG −→ LH, and if we set φ′ = Lη ◦ φ for φ ∈ Gk(G), then any
π ∈

∏
φ(G(k)), viewed as an H(k)-module, decomposes into a direct sum of finitely
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many irreducible admissible representations belonging to
∏

φ′(H(k)).

Remark 3.2. (a) If k is archimedean, i.e., k = R or C, [LLC] was solved by Lang-
lands [63]. We also refer the reader to [1], [2], [49].
(b) In case k is non-archimedean, Kazhdan and Lusztig [40] had shown how to
parametrize those irreducible admissible representations of G(k) having an Iwahori
fixed vector in terms of admissible homomorphisms of W ′

k.
(c) For a local field k of positive characteristic p > 0, [LLC] was established by
Laumon, Rapoport and Stuhler [67].
(d) In case G = GL(n) for a non-archimedean local field k, [LLC] was established
by Harris and Taylor [28], and by Henniart [31]. In both cases, the correspondence
was established at the level of a correspondence between irreducible Galois repre-
sentations and supercuspidal representations.
(e) Let k be a a non-archimedean local field of characteristic 0 and let G =
SO(2n + 1) the split special orthogonal group over k. In this case, Jiang and
Soudry [38], [39] gave a parametrization of generic supercuspidal representations
of SO(2n + 1) in terms of admissible homomorphisms of W ′

k. More precisely,
there is a unique bijection of the set of conjugacy classes of all admissible, com-
pletely reducible, multiplicity-free, symplectic complex representations φ : W ′

k −→
LSO(2n+1) = Sp(2n,C) onto the set of all equivalence classes of irreducible generic
supercuspidal representations of SO(2n+ 1, k).

For π ∈
∏

φ(G) with φ ∈ Gk(G), if r is a finite dimensional complex representa-
tion of LG, we define the L- and ε-factors

(3.3) L(s, π, r) = L(s, r ◦ φ) and ε(s, π, r, ψ) = ε(s, r ◦ φ, ψ),

where L(s, r ◦ φ) is the Artin-Weil L-function.

Remark 3.3. For a non-archimedean local field k, Deligne [18] gave the complete
formulation of [LLC] for GL(2). In [18], he utilized for the first time the Weil-
Deligne group W ′

k, which was introduced by him in [19], in the context of `-adic
representations, in order to obtain a correct formulation in the case of GL(2) over
a non-archimedean local field.

Remark 3.4. The representations in the L-packet
∏

φ are parametrized by the
component group

Cφ := Sφ/ZLS
0
φ,

where Sφ is the centralizer of the image of φ in LG, S0
φ is the identity component of

Sφ, and ZL is the center of LG. We refer the reader to [5], [51] for more information
on the L-packets.

Example 3.5. Let π be a spherical or unramified representation of G(k) with a
non-archimedean local field k. It is known that π ↪→ I(χ) for a unique unramified
quasi-character χ of a maximal torus T (k) of G(k). Then π determines a semi-simple
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conjugate class c(π) = {tπ} ⊂ LT ⊂ LG. Then the Langlands’ parameter φπ for π
is

φπ : k∗ −→ LT ⊂ LG, φπ(ω̃) = tπ

such that
φπ(ω̃) = tπ and φπ is trivial on O∗,

where ω̃ denotes a uniformizer in k.
If π = π(µ1, · · · , µn) is a spherical representation of GLn(k) with unramified char-
acters µi (i = 1, · · · , n) of k∗, the semi-simple conjugacy class c(π) is given by

c(π) = {diag(µ1(ω̃), · · · , µn(ω̃))}

and the Langlands’ parameter φπ for π is

φπ : k∗ −→ LT ⊂ LG = GL(n,C), φπ(ω̃) = diag(µ1(ω̃), · · · , µn(ω̃)).

4. Global Langlands conjecture

Let k be a global field and A its ring of adeles. This section is based on Arthur’s
article [3].

As in the local case of Section 3, the global Langlands conjecture should be
a nonabelian generalization of abelian global class field theory. When Deligne [19]
recognized the need to introduce the Weil-Deligne group W ′

k for the local Langlands
correspondence for GL(2), it was realized that there seemed to be no natural global
version ofW ′

k. In fact, Γk, Wk andW ′
k are too small to parameterize all automorphic

representations of a reductive group. Thus in the 1970s Langlands [60] attempted to
discover a hypothetical group Lk to replace the Weil-Deligne group W ′

k. Nowadays it
is believed by experts that this group Lk should be related to the equally hypothetical
motivic Galois group Mk of k. The group Lk is often called the hypothetical (or
conjectual) Langlands group or the automorphic Langlands group. The notion of
Lk and Mk is still not clear.

The global Langlands conjecture can be written as follows.

Global Langlands Conjecture[GLC]. Automorphic representations of G(A) can
be parametrized by admissible homomorphisms φ : Lk −→ LG required to have the
following properties (1)-(4):
(1) There is an L-packet

∏
φ which consists of automorphic representations of G(A)

attached to φ.
(2) Each L-packet

∏
φ is a finite set.

(3) Any automorphic representation of G(A) belongs to
∏

φ for a unique homomor-
phism φ.
(4) The

∏
φ’s are disjoint.

We first consider the case that k is a function field. Drinfeld [21] formulated a
version of the global Langlands conjecture for function fields relating the irreducible
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two dimensional representations of the Galois group Γk with irreducible cuspidal
representations of GL(2,A), and established the global Langlands conjecture. In
the early 2000s Lafforgue [52] had extended the work of Drinfeld mentioned above to
GL(n) to give a proof of the global Langlands conjecture for GL(n) over a function
field. The formulation of the global Langlands conjecture made by Drinfeld and
Lafforgue is essentially the same as that in the local non-archimedean case discussed
in Section 3 with a few modification. So we omit the details for the global Langlands
conjecture over a function field here. We refer to [20], [21], [52] for more detail.

Next we consider the case k is a number field. We first recall that according to
the global class field theory, for n = 1, there is a canonical bijection between the
continuous characters of Γk and characters of finite order of the idele group k∗\A∗.
We should replace Γk by the Weil group Wk in order to obtain all the characters of
k∗\A∗. For n ≥ 2, by analogy with the local Langlands conjecture, we need a global
analogue of the Weil-Deligne group W ′

k. However no such analogue is available at
this moment. We hope that the hypothetical Langlands group Lk plays a role as
W ′

k and fits into an exact sequence

(4.1) 1 −→ Lc
k −→ Lk −→ Γk −→ 1,

where Lc
k is a complex pro-reductive group. Lk should be a locally compact group

equipped with an embedding iv : Lkv −→ Lk for each completion kv of k. Let G be
a connected, quasi-split reductive group over k. We set Gv := G(kv) for every place
v of k. Let Lk(G) be the set of all equivalence classes of continuous, completely
reducible homomorphisms φ of Lk into LG, and Ak(G) the set of equivalence classes
of all automorphic representations of G(A). For each place v of k, let Lkv

(G) be
the set of equivalence classes of continuous, completely reducible homomorphisms
φv : Lkv −→ LGv and Akv (G) the set of continuous irreducible admissible repre-
sentations of Gv. We would hope to have a bijection

(4.2) Lk(G) −→ Ak(G), φ 7→ πφ.

Moreover the set L0
k(G) of equivalence classes of irreducible representations in Lk(G)

should be in bijective correspondence with the setA0
k(G) of all cuspidal automorphic

representations in Ak(G). This would be supplemented by local bijection

(4.3) Lkv
(G) −→ Akv

(G) for any place v of k.

The local and global bijections should be compatible in the sense that for any φ :
Lk −→ LG, there is an automorphic representation πφ = ⊗vπφ,v of G(A) with the
correspondence φ 7→ πφ such that for each place v of k, the restriction φv = φ ◦ iv
of φ to Lkv

corresponds to the local component πφ,v of πφ. Of course, one expects
that all of these correspondences (4.2) and (4.3) would satisfy properties similar to
those in the local Langlands conjecture, e.g., the preservation of L- and ε-factors
with twists, etc.



Langlands Functoriality Conjecture 371

The local Langlands groups are elementary. They are given by

Lkv =

{
Wkv

if v is archimedean,
Wkv

× SU(2,R) if v is nonarchimedean,

where Wkv
is again the Weil group of kv. Thus the local Langlands group Lkv

is a
split extension ofWkv by compact simply connected Lie group. But the hypothetical
Langlands group will be much larger. It would be an infinite fibre product of nonsplit
extension

(4.4) 1 −→ Kc −→ Lc −→Wk −→ 1

of the Weil group Wk by a compact, semsimple, simply connected Lie group Kc.
However one would have to establish something in order to show that Lk has all
the desired properties.

Grothendieck’s conjectural theory of motives introduces the so-called motivic
Galois group Mk, which is a reductive proalgebraic group over C and comes with
a proalgebraic projection Mk −→ Γk. A motive of rank n is to be defined as a
proalgebraic representation

M : Mk −→ GL(n,C).

We observe that any continuous representation of Γk pulls back to Mk and can
be viewed as a motive in the above sense. It is conjectured that the arithmetic
information in any motive M is directly related to analytic information from some
automorphic representations ofG(A). The conjectural theory of motives also applies
to any completion kv of k. It produces a proalgebraic group Mkv over C that fits
into a commutative diagram

Mkv
−→ Mky y

Γkv
↪→ Γk

of proalgebraic homomorphisms.
In 1979, Langlands [60] speculated the following:

Conjecture B(Langlands [60, Section 2]). There is a commutative diagram

Lk
φ−→ Mk

↘ ↙
Γk

together with a compatible commutative diagram

Lkv

φv−→ Mkv

↘ ↙
Γk
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for each completion kv of k, in which φ and φv are continuous homeomorphisms.
There should be the analogue of the notion of admissibility of the maps φ and φv

as in the local case (cf. [9, p. 40]).
The above conjecture implies that we can attach to any proalgebraic homo-

morphism µ from Mk to LG over Γk, its associated automorphic representation
of G(A). In particular, if we take G = GL(n), it means that we can attach
to any motive M of rank n, an automorphic representation πM = ⊗vπM,v of
GL(n,A) with the following property: The family of semi-simple conjugacy classes
c(πM) = {c(πM,v)} in GL(n,C) associated to πM is equal to the family of con-
jugacy classes c(M) = {cv(M)} obtained from M, and the local homomorphism
Mkv

−→Mk at places v that are unramified for M. In fact, cv(M) is the image of
the Frobenius class Frv under a different kind of Γk, namely a compatible family

Γk −→
∏

`/∈S(M)∪{v}

GL(n,Q`)

of `-adic representations attached to M. Our task now is to find some natural ways
to construct an explicit candidate for Mk and then to clarify the structure of Mk.
It is suggested by experts [70] that Mk be a proalgebraic fibre product of certain
extensions

(4.5) 1 −→ Dc −→Mc −→ Tk −→ 1

of a fixed group Tk by complex, semisimple, simply connected algebraic groups Dc.
The group Tk is an extension

(4.6) 1 −→ Sk −→ Tk −→ Γk −→ 1

of Γk by a complex proalgebraic torus Sk (cf. [73, Chapter II], [60, Section 5], [74,
Section 7]). The contribution to Mk of any Mc is required to match the contribu-
tion to Lk of a corresponding Lc, in which Kc is a compact real form of Dc. This
construction should have to come with the following diagram

1 −→ Lc
k −→ Lk −→ Γk −→ 1y y y

1 −→ Mc
k −→ Mk −→ Γk −→ 1

where Mc
k is a complex pro-reductive group.

Let Ψk(G) be the set of equivalence classes of continuous, completely reducible
homomorphisms of Mk into LG, and for each place v of k, let Ψkv (G) be the set
of equivalence classes of continuous, completely reducible homomorphisms of Mkv

into LGv. Then one should have to obtain a bijective correspondence

(4.7) Ψk(G) −→ Ak(G).

This would be supplemented by local bijective correspondences

(4.8) Mkv (G) −→ Akv (G)
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for all places v of k.

5. Langlands functoriality

As we see in section 2, Shahidi [77] gave a partially affirmative answer to Con-
jecture A, which is a question raised by Langlands for a larger class of automorphic
L-functions L(s, π, r) obtained from cuspidal automorphic representations π of a
Levi subgroup M of a quasi-split reductive group and the adjoint representation of
LM on the real Lie algebra Ln of LN . This suggest trying, given a L-function and a
quasi-split reductive group G, to see whether G has an automorphic representation
with the given L-function. Many instances of such questions can be regarded as
special cases of the lifting problem, nowadays called the Principle of Functoriality,
with respect to morphisms of L-groups. The motivation of this problem stems from
a global side. There is also a local version for this problem. These questions were
raised and also formulated by Langlands [54] in the late 1960s. Roughly speaking,
the principle of functoriality describes profound relationships among automorphic
forms on different groups.

Let k be a local or global field, and let H,G two connected reductive groups
defined over k. A homomorphism σ : LH −→ LG is said to an L-homomorphism if
it satisfies the following conditions (1)-(3):
(1) σ is a homomorphism over the absolute Galois group Γk, namely, the following
diagram is commutative;

LH
σ−→ LG

↘ ↙
Γk

(2) σ is continuous;
(3) The restriction of σ to LH0 is a complex analytic homomorphism of LH0 into
LG0.

Let Gk(H) (resp. Gk(G)) be the set of all admissible homomorphisms φ : W ′
k −→

LH (resp. LG) modulo inner automorphisms by elements of LH0 (resp. LG0). Sup-
pose G is quasi-split. Given a fixed L-homomorphism σ : LH −→ LG, if φ is any
element in Gk(H), then the composition σ ◦ φ is an element in Gk(G). It is easily
seen that the correspondence φ 7→ σ ◦ φ yields the canonical map

Gk(σ) : Gk(H) −→ Gk(G).

If k is a global field and v is a place of k, then LGv can be viewed as a subgroup
of LG because Γkv is regarded as a subgroup of Γk. Therefore σ induces the L-
homomorphism σv : LHv −→ LGv and hence a local map

Gk(σv) : Gk(Hv) −→ Gk(Gv).

We refer to [9, pp. 54-58] for more detail on these stuffs.

Langlands Functoriality Conjecture(Langlands [54]). Let k be a global field,
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and let H,G two connected reductive groups over k with G quasi-split. Suppose
σ : LH −→ LG is an L-homomorphism. Then for any automorphic representation
π = ⊗vπv of H(A), there exists an automorphic representation Π = ⊗vΠv of G(A)
such that

(5.1) c(Πv) = σ(c(πv)), v /∈ S(π) ∪ S(Π),

where S(π) (resp. S(Π)) denotes a finite set of ramified places of k for π (resp. Π)
so that πv (resp. Πv) is unramified for every place v /∈ S(π) (resp. v /∈ S(Π)). We
note that the condition (5.1) is equivalent to the condition

(5.2) LS(s,Π, r) = LS(s, π, r ◦ σ), S = S(π) ∪ S(Π)

for every finite dimensional complex representation r of LG.

Remark 5.1. For a nonarchimedean local field k, we can formulate a local version
of Langlands Functoriality Conjecture replacing the word “automorphic” by “ad-
missible” and modifying some facts of an L-homomorphism.

Remark 5.2. Suppose k is a nonarchimedean local field with the ring of integers
O. Suppose H and G are quasi-split and there is a finite extension E of k such that
both H and G split over E, and have an O-structure so that both H(O) and G(O)
are special maximal compact subgroups. Let π be an unramified representation of
H(k) in the sense that π has a nonzero H(O)-fixed vector, and let φ = φπ ∈ Gk(H)
be the unramified parameter of π. Then for any L-homomorphism σ : LH −→ LG,
the parameter φ̃ = σ ◦ φ is unramified and defines an L-packet

∏
φ̃(G) which con-

tains exactly one unramified representation Π of G(k) to be called the natural lift
of π (cf. [9, p. 55]).

If we assume that the Local Langlands Conjecture, briefly [LLC] is valid, we
can reformulate the Langlands Functoriality Conjecture using [LLC] in the following
way. Let π = ⊗vπv be an automorphic representation of H(A). According to [LLC],
we can attach to each πv, an element φv : W ′

k −→ LHv in Gkv
(H). The composition

σ ◦ φv is an element in Gkv
(G). By [LLC] again, one has an irreducible admissible

representation Πv of Gv attached to σ ◦ φv. Then Π = ⊗vΠv is an irreducible
admissible representation of G(A). Therefore Langlands Functoriality Conjecture
is equivalent to the statement that Π must be an automorphic representation of
G(A).

If we assume that Global Langlands Conjecture, briefly [GLC] is valid, we
can also reformulate Langlands Functoriality Conjecture using [GLC] as follows:
Given an automorphic representation π of H(A) with its associated parameter
φπ : Lk −→ LH, there must be an L-packet Πσ◦φπ (G) attached to σ ◦ φπ.

Example 5.3. Suppose H = {1} and G = GL(n). Clearly an automorphic repre-
sentation π of H(A) is trivial. The choice of σ amounts to that of an admissible
homomorphism

σ : Gal(E/k) −→ GL(n,C) = LG
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for a finite Galois extension E of k. Therefore Langlands Functoriality Conjecture
reduces to the following assertion.

Strong Artin Conjecture(Langlands [54]). Let k be a number field. For an
n-dimensional complex representation σ of Gal(E/k), there is an automorphic rep-
resentation π of GL(n,A) such that

c(πv) = σ(Frv), v /∈ S(E),

where S(E) is a finite set of places including all the ramified places of E. The above
conjecture was established partially but remains unsettled for the most part. We
summarize the cases that have been established until now chronically. (a) The case
n = 1 : This is the Artin reciprocity law, namely, k∗ ∼= W ab

k , which is the essential
part of abelian class field theory. The image of σ is of cyclic type or of dihedral
type.
(b) The case where n = 2 and Gal(E/k) is solvable : The conjecture was solved
by Langlands [61] when the image of σ in PSL(2,C) is of tetrahedral type, that
is, isomorphic to A4, and by Tunnell [84] when the image of σ in PSL(2,C) is of
octahedral type, i.e., isomorphic to S4. It is a consequence of cyclic base change
for GL(2). These cases were used by A. Wiles [86] in his proof of Fermat’s Last
Theorem.
(c) The case where n is arbitrary and Gal(E/k) is nilpotent : The conjecture was
established by Arthur and Clozel [6] as an application of cyclic base change for
GL(n).
(d) The case where n = 2 and the image of σ is of icosahedral type : Partial results
were obtained by Taylor et al. (cf. [10]) C. Khare proved this case.
(e) The case where n = 4 and Gal(E/k) is solvable : The conjecture was established
by Ramakrishnan [72] for representations σ that factor through the group GO(4,C)
of orthogonal similitudes.

Example 5.4. Let k be a number field. Let H = Sp(2n), SO(2n+ 1), SO(2n) be
the split form, and G = GL(N), where N = 2n+1 or 2n. Then LSp(2n) = SO(2n+
1,C), LSO(2n+ 1) = Sp(2n,C), LSO(2n) = SO(2n,C) and LGL(N) = GL(N,C).
As an L-homomorphism σ : LH −→ LG, we take the embeddings

LSp(2n) ↪→ GL(2n+1,C), LSO(2n+1) ↪→ GL(2n,C), LSO(2n) ↪→ GL(2n,C).

In each of these cases, the Langlands weak functorial lift for irreducible generic
cuspidal automorphic representations of H(A) was established by Cogdell, Kim,
Piateski-Shapiro and Shahidi [13], [14]. Here the notion of “weak” automorphy
means that an automorphic representation of GL(n) exists whose automorphic L-
function matches the desired Euler product except for a finite number of factors.
The proof is based on the converse theorems for GL(n) established by Cogdell and
Piateski-Shapiro [15], [16]. It is still an open problem to establish the Langlands
functorial lift from irreducible non-generic cuspidal automorphic representations of
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H(A) to G(A). Let H = GSpinm be the general spin group of semisimple rank [
m

2
],

i.e., a group whose derived group is Spinm. Then the L-group of G is given by

LGSpinm =

{
GSOm if m is even;
GSp2[ m

2 ] if m is odd.

In each case we have an embedding

(5.3) i : LH0 ↪→ GL(N,C), N = m or 2
[m

2

]
.

Asgari and Shahidi [7], [8] proved that if π is a generic cuspidal representation of
GSpinm, then the functoriality is valid for the embedding (5.3).
If H = SO(2n + 1), for generic cuspidal representations, Jiang and Soudry [38]
proved that the Langlands functorial lift from SO(2n+1) to GL(2n) is injective up
to isomorphism. Using the functorial lifting from SO(2n + 1) to GL(2n), Khare,
Larsen and Savin [41] proved that for any prime ` and any even positive integer n,
there are infinitely many exponents k for which the finite simple group PSpn(F`k)
appears as a Galois group over Q. Furthermore, in their recent paper [42] they
extended their earlier work to prove that for a positive integer t, assuming that t is
even if ` = 3 in the first case (1) below, the following statements (1)-(3) hold:
(1) Let ` be a prime. Then there exists an integer k divisible by t such that the
simple group G2(F`k) appears as a Galois group over Q.
(2) Let ` be an odd prime. Then there exists an integer k divisible by t such that
the simple finite group SO2n+1(F`k)der or the finite classical group SO2n+1(F`k)
appears as a Galois group over Q.
(3) If ` ≡ 3, 5 (mod 8) and ` is a prime, then there exists an integer k divisible by
t such that the simple finite group SO2n+1(F`k)der appears as a Galois group over
Q. The construction of Galois groups in (1)-(3) is based on the functorial lift from
Sp(2n) to GL(2n + 1), and the backward lift from GL(2n+ 1) to Sp(2n) plus the
theta lift from G2 to Sp(6).

Example 5.5. Let k be a number field. For two positive integers m and n, we let

H = GL(m)×GL(n) and G = GL(mn).

Then LH = GL(m,C) × GL(n,C) and LG = GL(mn,C). We take the L-
homomorphism

σ : GL(m)×GL(n) −→ GL(mn,C)

given by the tensor product. Suppose π = ⊗vπv and τ = ⊗vτv are two cuspidal
automorphic representations of GL(m,A) and GL(n,A) respectively. By [LLC] for
GL(N) [28], [31], [63], one has the parametrizations

φv : W ′
k −→ GL(m,C) and ψv : W ′

k −→ GL(n,C).

Let
[φv, ψv] : W ′

k −→ GL(m,C)×GL(n,C) ↪→ GL(mn,C) = LG
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be the admissible homomorphism of W ′
k into LH defined by

[φv, ψv](w) =
(
φv(w), ψv(w)

)
, w ∈W ′

k.

The composition θv = σ ◦ [φv, ψv] is an admissible homomorphism of W ′
k into LG.

According to [LLC] for GL(N), one has an irreducible admissible representation of
GL(mn, kv) attached to θv, denoted by πv � τv. We set

π � τ =
⊗

v

πv � τv.

The validity of the Langlands Functoriality Conjecture for the L-homomorphism
σ : LH −→ LG implies that π � τ is an automorphic representation of GL(mn,A).
Ramakrishnan [71] used the converse theorem for GL(4) of Cogdell and Piatetski-
Shapiro to establish the functoriality for GL(2) × GL(2). Kim and Shahidi [46]
established the functoriality for GL(2)×GL(3).

Example 5.6. Let H = GL(2). For a positive integer m ≥ 2, let G = GL(m+ 1).
Suppose π = ⊗vπv is an automorphic representation of H(A). According to [LLC]
for GL(n) [28], [31], [63], for each place v of k, we have a semisimple conjugacy
class c(πv) = {diag(αv, βv)} ⊂ GL(2,C). By [LLC] for GL(n) again, for each place
v of k, there is an irreducible admissible representation of GL(m+ 1, kv), denoted
by Symm(πv) attached to the semisimple conjugacy class{

diag
(
αm

v , α
m−1
v βv, · · · , βm

v

)}
⊂ GL(m+ 1,C).

We set
Symm(π) :=

⊗
v

Symm(πv).

Then Symm(π) is an irreducible admissible representation of GL(m+1,A). The va-
lidity of the Langlands Functoriality Conjecture for the L-homomorphism Symm :
GL(2,C) −→ GL(m + 1,C) implies that Symm(π) is an automorphic representa-
tion of GL(m + 1,A). As a consequence, we obtain a complete resolution of the
Ramanujan-Petersson conjecture for Maass forms, the Selberg conjecture for eigen-
values and the Sato-Tate conjecture. In 1978, Gelbart and Jacquet [22] established
the functoriality for Sym2 using the converse theorem on GL(3). In 2002, Kim
and Shahidi [46] established the functoriality for Sym3 using the functoriality for
GL(2) × GL(3). Thereafter Kim [43] established the functoriality for Sym4. The
proof is based on the converse theorems for GL(n) established by Cogdell and
Piateski-Shapiro [15, 16]. We refer to [47] for more results on this topic.

Example 5.7. For a positive integer n ≥ 2, we let

H = GL(n) and G = GL(N), N =
(n− 1)n

2
.

Let
∧2 : LH = GL(n,C) −→ LG = GL(N,C)
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be the L-homomorphism of LH into LG given by the exterior square. Suppose
π = ⊗vπv is a cuspidal automorphic representation of GL(n,A). According to
[LLC] for GL(m), for each place v of k, one has the admissible homomorphism

φv : W ′
k −→ LH = GL(n,C)

parameterizing πv. The composition ψv = ∧2 ◦ φv again yields an irreducible ad-
missible representation ∧2πv of GL(N, kv) for every unramified representation πv.
We set

∧2π =
⊗

v

∧2πv.

Then ∧2π is an irreducible admissible representation of GL(N,A). The validity
of the Langlands functoriality implies that ∧2π is an automorphic representation
of GL(N,A). Kim [43] established the functoriality for the case n = 4, that is a
functorial lift from GL(4) to GL(6).

Remark 5.8. As we see in Example 5.3, 5.4 and 5.5, the converse theorem for
GL(n) obtained by Cogdell and Piateski-Shapiro plays a crucial role in establishing
the functoriality for GL(2) × GL(3), Sym3 and Sym4. There are widely known
three methods in establishing the Langlands functoriality which are based on the
theory of the Selberg-Arthur trace formula [4], [6], [61], [62], the converse theorems
for GL(n) [15], [16], [22] and the theta correspondence or theta lifting method (R.
Howe, J. -S. Li, S. Kudla et al.).

According to the above examples and the converse theorems for GL(n), we see
that the importance of the Langlands Functoriality Conjecture is that automor-
phic L-functions of any automorphic representations of any group should be the
L-functions of automorphic representations of GL(n,A). In this sense we can say
that GL(n,A) is speculated to be the mother of all automorphic representations,
and their offspring L-functions are already supposed to have meromorphic contin-
uations and the standard functional equation.

Appendix : Converse theorems

We have seen that the converse theorems have been effectively applied to the
establishment of the Langlands functoriality in certain special interesting cases (cf.
Example 5.4, 5.5, 5.6 and 5.7). We understand that the converse theorems give a
criterion for a given irreducible representation of GL(n,A) to be automorphic in
terms of the analytic properties of its associated automorphic L-functions. In this
appendix, we give a brief survey of the history of the converse theorems and survey
the recent results in the local converse theorems.

The first converse theorem was established by Hamburger [26] in 1921. This
theorem states that any Dirichlet series satisfying the functional equation of the
Riemann zeta function ζ(s) and suitable regularity conditions must be a multiple
of ζ(s). More precisely, this theorem can be formulated:
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Theorem A(Hamburger [26], 1921). Let two Dirichlet series g(s) =
∑

n≥1 ann
−s

and h(s) =
∑

n≥1 bnn
−s converge absolutely for Re(s) > 1. Suppose that both (s −

1)h(s) and (s − 1)g(s) are entire functions of finite order. Assume we have the
following functional equation:

π−
s
2 Γ(s/2)h(s) = π−

1−s
2 Γ((1− s)/2) g(1− s).

Then g(s) = h(s) = a1ζ(s). Here Γ(s) is the usual Gamma function, and an entire
function f(s) is said to be of order ρ if

f(s) = O
(
|s|ρ+ε

)
for any ε > 0.

Unfortunately Hamburger’s converse theorem was not well recognized until the
generalization to L-functions attached to holomorphic modular forms was done
by Hecke [29] in 1936. Hecke proved his converse theorem connecting certain L-
functions which satisfy a certain functional equation with holomorphic modular
forms with respect to the full modular group SL(2,Z). For a good understanding
of Hecke’s converse theorem, we need to describe Hecke’s idea and argument roughly.
Let

f(τ) =
∑
n≥1

ane
2πinτ

be a holomorphic modular form of weight d with respect to SL(2,Z). To such a
function f Hecke attached an L-function L(s, f) via the Mellin transform

(2π)−s Γ(s)L(s, f) =
∫ ∞

0

f(iy) ys dy

y

and derived the functional equation for L(s, f). He inverted this process by taking
a Dirichlet series

D(s) =
∑
n≥1

an

ns

and assuming that it converges absolutely in some half plane, has an analytic con-
tinuation to an entire function of finite order, and satisfies the same functional
equation as L(s, f). In his masterpiece [29], he could reconstruct a holomorphic
modular form from D(s) by Mellin inversion

f(iy) =
∑
n≥1

ane
−2πny =

1
2πi

∫ 2+i∞

2−i∞
(2π)−s Γ(s)D(y) ys ds

and obtain the modular transformation law for f(τ) under τ 7→ −τ−1 from the
functional equation for D(s) under s 7→ d − s. This is Hecke’s converse theorem !
You might agree that Hecke’s original idea and argument are remarkably beautiful.
In 1949, in his seminal paper [68], Maass, a student of Hecke, extended Hecke’s



380 Jae-Hyun Yang

method to non-holomorphic forms for SL(2,Z). In 1967, the next very important
step was made by Weil in his paper [85] dedicated to C. L. Siegel (1896-1981)
celebrating Siegel’s seventieth birthday. Weil showed how to work with Dirichlet
series attached to holomorphic modular forms with respect to congruence subgroups
of SL(2,Z). He proved that if a Dirichlet series together with a sufficient number
of twists satisfies nice analytic properties and functional equations with reasonably
suitable regularity, then it stems from a holomorphic modular form with respect
to a congruence subgroup of SL(2,Z). More precisely his converse theorem can be
formulated as follows.

Theorem B(Weil [85], 1967). Fix two positive integers d and N . Suppose the
Dirichlet series

D(s) =
∑
n≥1

an

ns

satisfies the following properties:
(W1) D(s) converges absolutely for sufficiently large Re(s) � 0 ;
(W2) For every primitive character χ of modulus r with (r,N) = 1, the function

Λ(s, χ) := (2π)−s Γ(s)
∑
n≥1

anχ(n)
ns

has an analytic continuation to an entire function of s to the whole complex plane,
and is bounded in vertical strips of finite width;
(W3) Every such a function Λ(s, χ) satisfies the functional equation

Λ(s, χ) = wχ r
−1 (r2N)

d

2
−s

Λ(d− s, χ),

where
wχ = id χ(N) g(χ)2

and
g(χ) =

∑
n (mod r)

χ(n) e2πin/r.

Then the function

f(τ) =
∑
n≥1

ane
2πinτ , τ ∈ H = {τ ∈ C | Im τ > 0 }

is a holomorphic cusp form of weight d with respect to the congruence subgroup
Γ0(N), where

Γ0(N) =
{(

a b
c d

)
∈ SL(2,Z)

∣∣∣ c ≡ 0 (mod N)
}
.
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Weil’s proof follows closely Hecke’s idea and argument. We see that his converse
theorem provides a condition for modularity of the Dirichlet series D(s) under
Γ0(N) in terms of the functional equations of Dirichlet series twisted by primitive
characters. In fact, Weil’s converse theorem influenced the complete proof of the
Shimura-Taniyama conjecture given by Wiles [86], Taylor et al. So we can say
that the work of Weil marks the beginning of the modern era in the study of the
connection between L-functions and automorphic forms.

In 1970 Jacquet and Langlands [33] established the converse theorem for GL(2)
in the adelic context of automorphic representations of GL(2,A) based on Hecke’s
original idea. In 1979 Jacquet, Piatetski-Shapiro and Shalika [34] established the
converse theorem for GL(3) in the adelic context. Finally in 1994, generalizing the
work on the converse theorems on GL(2) and GL(3), Cogdell and Piatetski-Shapiro
[12], [15], [16] proved the converse theorem for GL(n) with arbitrary n ≥ 1 in the
context of automorphic representations. The idea and technique in the proof of
Cogdell and Piatetski-Shapiro are surprisingly almost the same as Hecke’s. We now
describe the converse theorems formulated and proved by them.

Let k be a global field, A its adele ring, and let ψ be a fixed nontrivial continuous
additive character of A which is trivial on k. Let π = ⊗vπv be an irreducible
admissible representation of GL(n,A), and let τ = ⊗vτv be a cuspidal automorphic
representation of GL(m,A) with m < n. We define formally

L(s, π × τ) =
∏
v

L(s, πv × τv) and ε(s, π × τ) =
∏
v

ε(s, πv × τv, ψv).

We say that L(s, π × τ) is nice if it satisfies the following properties :
(N1) L(s, π × τ) and L(s, π̃ × τ̃) have analytic continuations to entire functions,
where π̃ (resp. τ̃) denotes the contragredient of π (resp. τ);
(N2) L(s, π × τ) and L(s, π̃ × τ̃) are bounded in vertical strips of finite width;
(N3) These entire functions satisfy the standard functional equation

L(s, π × τ) = ε(s, π × τ)L(1− s, π̃ × τ̃).

Theorem C(Cogdell and Piatetski [15], [16], 1994). Let π be an irreducible ad-
missible representation of GL(n,A) whose central character is trivial on k∗ and
whose L-function L(s, π) converges absolutely in some half plane. Assume that
L(s, π× τ) is nice for every cuspidal automorphic representation τ of GL(m,A) for
1 ≤ m ≤ n− 2. Then π is a cuspidal automorphic repesentation of GL(n,A).

Furthermore they proved the following theorem.

Theorem D(Cogdell and Piatetski [16], 1999). Let π be an irreducible admissible
representation of GL(n,A) whose central character is trivial on k∗ and whose L-
function L(s, π) converges absolutely in some half plane. Let S be a finite set of finite
places. Assume that L(s, π×τ) is nice for every cuspidal automorphic representation
τ of GL(m,A) for 1 ≤ m ≤ n− 2, which is unramified at the places in S. Then π
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is quasi-automorphic in the sense that there is an automorphic representation π′ of
GL(n,A) such that πv

∼= π′v for all v /∈ S.

The local converse theorem for GL(n) was first formulated by Piatetski-Shapiro
in his unpublished Maryland notes (1976) with his idea of deducing the local con-
verse theorem from his global converse theorem. It was proved by Henniart [30]
using a local approach. The local converse theorem is a basic ingredient in the
proof of [LCC] for GL(n) by Harris and Taylor [28] and by Henniart [31].

The local converse theorem for GL(n) can be formulated as follows.

Theorem E(Henniart [30], 1993). Let k be a nonarchimedean local field of charac-
teristic 0. Let τ and τ ′ be irreducible admissible generic representations of GL(n, k)
with the same central character. Assume the twisted local gamma factors (cf. [35])
are the same, i.e.,

γ(s, τ × ρ, ψ) = γ(s, τ ′ × ρ, ψ)

for all irreducible supercuspidal representations ρ of GL(m, k) with 1 ≤ m ≤ n− 1.
Then τ is isomorphic to τ ′.

Remark 1. It is known that the twisting condition on m reduces from n − 1 to
n − 2. It is expected as a conjecture of H. Jacquet [16, Conjecture 8.1] that the
twisting condition on m should be reduced from n− 1 to [

n

2
].

Remark 2. The local converse theorem for generic representations of U(2, 1) and
for GSp(4) was established by E. M. Baruch in his Ph. D. thesis (Yale Univ., 1995).

Jiang and Soudry [38] proved the local converse theorem for irreducible admis-
sible generic representations of SO(2n+ 1, k).

Theorem F(Jiang and Soudry [38], 2003). Let σ and σ′ be irreducible admissible
generic representations of SO(2n + 1, k). Assume the twisted local gamma factors
are the same, i.e.

γ(s, σ × ρ, ψ) = γ(s, σ′ × ρ, ψ)

for all irreducible supercuspidal representations ρ of GL(m, k) with 1 ≤ m ≤ 2n−1.
Then σ is isomorphic to σ′.

I shall give a brief sketch of the idea of their proof. They first reduce the proof
of Theorem F to the case where both σ and σ′ are supercuspidal by studying the
existence of poles of twisted local gamma factors and related properties. Developing
the explicit local Howe duality for irreducible admissible generic representations of
SO(2n + 1, k) and the metaplectic group S̃p(2n, k), and using the global weak
Langlands functorial lifting form SO(2n+1) to GL(2n) (cf. Example 5.4, [13], [14])
and the local backward lifting from GL(2n, k) to S̃p(2n, k), they relate the local
converse theorem for SO(2n+ 1) with that for GL(2n) which is well known now.

As an application of Theorem F, I repeat again that Jiang and Soudry [38], [39]
proved the Local Langlands Reciprocity Law for SO(2n+ 1). More precisely, there
exists a unique bijective correspondence between the set of conjugacy classes of all
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2n-dimensional, admissible, completely reducible, multiplicity-free, symplectic com-
plex representations of the Weil group Wk and the set of all equivalence classes of
irreducible generic supercuspidal representations of SO(2n+ 1, k), which preserves
the relevant local factors. As an application of Theorem F to the global theory, they
proved that the weak Langlands functorial lifting from irreducible generic cuspidal
automorphic representations of SO(2n+ 1) to irreducible automorphic representa-
tions of GL(2n) is injective up to isomorphism. It is still an open problem to estab-
lish the Langlands functorial lift from irreducible non-generic cuspidal automorphic
representations of SO(2n+1) to GL(2n). As another application to the global the-
ory, they proved the rigidity theorem in the sense that if π = ⊗vπv and τ = ⊗vτv
are irreducible generic cuspidal automorphic representations of SO(2n+ 1,A) such
that πv is isomorphic to τv for almost all local places v, then π is isomorphic to τ.
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and GL(3), Ann. Scient. Éc. Normale Sup., 11(1978), 471-552.

[23] S. Gelbart and F. Shahidi, Analytic Properties of Automorphic L-Functions, Perspec-
tive in Mathematics, 6(1988), Academic Press.

[24] S. Gelbart, I. Piatetski-Shapiro and S. Rallis, Explicit Constructions of Automorphic
L-Functions, Lecture Notes in Math. 1254, Springer-Verlag, New York, 1987.

[25] D. Ginzburg, S. Rallis and D. Soudry, Generic automorphic forms on SO(2n + 1):
functorial lift on GL(2n), endoscopy, and the base change, Internat. Math. Res. No-
tices, no. 14(2001), 729-764.
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