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Abstract. This article is a continuation of the paper [21]. In this paper we deal with

Maass-Jacobi forms on the Siegel-Jacobi space H × Cm, where H denotes the Poincaré

upper half plane and m is any positive integer.

1. Introduction

This article is a continuation of the paper [21]. Recently A. Pitale [14], K.
Bringmann and O. Richter [4], and C. Conley and M. Raum [5] defined another
notion of Maass-Jacobi forms and studied some properties of Maass-Jacobi forms.
In [4], [14] and [21], the authors considered the case n = m = 1 and in [5], the
authors dealt with the case n = 1 and m is arbitrary. In this paper, we consider
mainly the case n = 1 and m is an arbitrary positive integer.

This paper is organized as follows. In Section 2, we give some useful geometric
properties of the Siegel-Jacobi space H×Cm. We study the invariant metrics, their
Laplacians, a fundamental domain, geodesics, the scalar curvature and invariant
differential forms on H × Cm. In Section 3 we describe the center of the universal
enveloping algebra of the complexfied Jacobi Lie algebra. This work is due to Conley
and Raum [5]. In Section 4, we present some interesting and important results on
invariant differential operators on the Siegel-Jacobi space H × Cm. In Section 5,
we discuss the notion of Maass-Jacobi forms introduced by J.-H. Yang [21]. Maass-
Jacobi forms play an important role in the spectral theory of the Laplace operator
on a fundamental domain for the Siegel-Jacobi space H × Cm. In Section 6, we
discuss the notion of Maass-Jacobi forms introduced by A. Pitale [14], Bringman-
Richter [4] and Conley-Raum [5]. We describe the results obtained in [4] and [5].
More precisely the authors of [4] and [5] obtained an explicit Fourier expansion of
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the Poincaré series that is an example of harmonic Maass-Jacobi form. In Section 7,
we discuss skew-holomorphic Jacobi forms introduced by N.-P. Skoruppa [18]. We
describe the relation between cuspidal harmonic Maass-Jacobi forms and cuspidal

skew-holomorphic Jacobi forms via the lowering operator D
(M)
− (cf. (7.3)) In Section

8, we briefly review some results on covariant differential operators on the Siegel-
Jacobi space H×Cm obtained by Conley and Raum [5]. In the final section we briefly
mention two notions of Maass-Jacobi forms on the Siegel-Jacobi space Hn×C(m,n)

for the general case n > 1 and m > 1. Here Hn denotes the Siegel upper half plane
of degree n. We present some natural problems related to the study of Maass-Jacobi
forms.

Notations: We denote by Q, R and C the field of rational numbers, the field of
real numbers and the field of complex numbers respectively. We denote by Z and
Z+ the ring of integers and the set of all positive integers respectively. R× denotes
the set of all nonzero real numbers. The symbol “:=” means that the expression
on the right is the definition of that on the left. For two positive integers k and l,
F (k,l) denotes the set of all k × l matrices with entries in a commutative ring F .
For a square matrix A ∈ F (k,k) of degree k, tr(A) denotes the trace of A. For any
M ∈ F (k,l), tM denotes the transpose matrix of M . For A ∈ F (k,l) and B ∈ F (k,k),
we set B[A] = tABA. For a complex matrix A, A denotes the complex conjugate
of A. For A ∈ C(k,l) and B ∈ C(k,k), we use the abbreviation B{A} = tABA.
For a positive integer n, In denotes the identity matrix of degree n. For a positive
integer m and a commutative ring F , we denote by S(m,F ) the space of all m×m
symmetric matrices with entries in F . For a complex number z, |z| denotes the
absolute value of z. For a complex number z, Re z and Im z denote the real part of
z and the imaginary part of z respectively.

2. Geometric properties of the Siegel-Jacobi space H× Cm

We fix a positive integer m throughout this paper and let

H = { τ ∈ C | Im τ > 0 }

be the Poincaré upper half plane. Let G = SL2(R) be the special linear group of
degree 2 and let

H
(m)
R =

{
(λ, µ;κ) | λ, µ ∈ Rm, κ ∈ R(m,m), κ+ µ tλ symmetric

}
be the Heisenberg group endowed with the following multiplication law(

λ, µ;κ
)
◦
(
λ′, µ′;κ′

)
=
(
λ+ λ′, µ+ µ′;κ+ κ′ + λ tµ′ − µ tλ′

)
with

(
λ, µ;κ

)
,
(
λ′, µ′;κ′

)
∈ H(m)

R . We define the semidirect product of SL2(R) and

H
(m)
R

GJ = SL2(R) nH
(m)
R
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endowed with the following multiplication law(
M, (λ, µ;κ)

)
·
(
M ′, (λ′, µ′;κ′ )

)
=
(
MM ′, (λ̃+ λ′, µ̃+ µ′;κ+ κ′ + λ̃ tµ′ − µ̃ tλ′ )

)
with M,M ′ ∈ SL2(R), (λ, µ;κ), (λ′, µ′;κ′) ∈ H(m)

R and (λ̃, µ̃) = (λ, µ)M ′. Then GJ

acts on the Siegel-Jacobi space H× Cm of degree 1 and index m transitively by

(2.1)
(
M, (λ, µ;κ)

)
· (τ, z) =

(
(aτ + b)(cτ + d)−1, (z + λτ + µ)(cτ + d)−1

)
,

where M =

(
a b
c d

)
∈ SL2(R), (λ, µ;κ) ∈ H(m)

R , τ ∈ H and z = t(z1, z2, · · · , zm) ∈

Cm with zi ∈ C (1 ≤ i ≤ m). We note that the Jacobi group GJ is not a reductive
Lie group and that the homogeneous space H× Cm is not a symmetric space.

For a coordinate (τ, z) ∈ H × Cn, we write τ = x + i y with x real and y > 0,
and

z = t(z1, z2, · · · , zm), zj = uj + i vj , uj , vj real, i = 1, 2, · · · ,m.

According to [23], for any two positive real numbers A and B, the following
metric given by

ds2
m;A,B =

1

y3

Ay + B

m∑
j=1

v2
j

 dτdτ(2.2)

+
B

y2

y
m∑
j=1

dzjdzj −
m∑
j=1

vj(dτdzj + dτdzj)


=

1

y3

Ay + B

m∑
j=1

v2
j

 (dx2 + dy2)

+
B

y2

y
m∑
j=1

(du2
j + dv2

j )− 2

m∑
j=1

vj(dxduj + dydvj)


is a Kähler metric on H× Cm invariant under the action (2.1) of GJ .

We put

(2.3) M1 := tr

(
y
∂

∂z

t(∂
∂z

))
= y

m∑
j=1

∂2

∂zj∂zj
=
y

4

(
∂

∂u2
j

+
∂

∂v2
j

)
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and

M2 : = y2 ∂
2

∂τ∂τ
+

m∑
a,b=1

vavb
∂2

∂za∂zb
+ y

m∑
j=1

vj

(
∂2

∂τ∂zj
+

∂2

∂τ∂zj

)
(2.4)

=
1

4

{
y2

(
∂2

∂x2
+
∂2

∂y2

)
+

m∑
a=1

v2
a

(
∂2

∂u2
a

+
∂2

∂v2
a

)}

+
1

2

∑
1≤a<b≤m

vavb

(
∂2

∂ua∂ub
+

∂2

∂va∂vb

)
.

+
y

2

m∑
j=1

vj

(
∂2

∂x∂uj
+

∂2

∂y∂vj

)
.

Then M1 and M2 are differential operators on H × Cm invariant under the action
(2.1). The author [23] proved that

(2.5) ∆m;A,B :=
4

B
M1 +

4

A
M2

is the Laplacian of (H×Cm, ds2
m;A,B). Furthermore the following 2(m+1)-differential

form

(2.6) dv = dx ∧ dy ∧ du1 ∧ · · · ∧ dum ∧ dv1 ∧ · · · ∧ dvm
is a GJ -invariant volume element on the Siegel-Jacobi space H× Cm.

Let KJ be the stabilizer of GJ at (i, 0). Then

KJ =

{((
a −b
b a

)
, (0, 0, R)

) ∣∣∣ a2 + b2 = 1, a, b ∈ R, R = tR ∈ R(m,m)

}
.

Thus GJ/KJ is diffeomorphic to H× Cm via

gKJ 7−→ g · (i, 0) =

(
a i+ b

c i+ d
,
λ i+ µ

c i+ d

)
,

where

(
a b
c d

)
∈ SL2(R) and (λ, µ;κ) ∈ H

(m)
R . The Siegel-Jacobi space H × Cm

is a homogeneous space which is not symmetric. Let kJ be the Lie algebra of KJ .
Then the Lie algebra gJ of GJ has the Cartan decomposition

(2.7) gJ = kJ + pJ ,

where

gJ =

{((
x y
z −x

)
, (P,Q,R)

) ∣∣∣ x, y, z ∈ R, P,Q ∈ Rm, R = tR ∈ R(m,m)

}
,

kJ =

{((
0 x
−x 0

)
, (0, 0, R)

) ∣∣∣ x ∈ R, R = tR ∈ R(m,m)

}
,

pJ =

{((
x y
y −x

)
, (P,Q, 0)

) ∣∣∣ x, y ∈ R, P,Q ∈ Rm
}
.
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Lemma 2.1. We have the relations

(2.8) [kJ , kJ ] ⊂ kJ and [kJ , pJ ] ⊂ pJ .

Proof. The Lie bracket operation on gJ is given by

(2.9) [(X1, (P1, Q1, R1)), (X2, (P2, Q2, R2))] = (X∗, (P ∗, Q∗, R∗)),

where X1, X2 ∈ sl2(R), P1, Q1, P2, Q2 ∈ Rm, R1 = tR1, R2 = tR2 ∈ R(m,m),

X∗ = [X1, X2] = X1X2 −X2X1,

(P ∗, Q∗) = (P1, Q1)X2 − (P2, Q2)X1,

R∗ = P1
tQ2 − P2

tQ1 +Q2
tP1 −Q1

tP2.

The relations (2.8) follow immediately from Formula (2.9). �

Remark 2.1. The relation
[pJ , pJ ] ⊂ kJ

does not hold.

The vector space pJ can be regarded as the tangent space of the Siegel-Jacobi
space H×Cm ∼= GJ/KJ at (i, 0). We define a complex structure IJ on the tangent
space pJ of H× Cm ∼= GJ/KJ at (i, 0) by

(2.10) IJ
((

x y
y −x

)
, (P,Q, 0)

)
=

((
y −x
−x −y

)
, (Q,−P, 0)

)
.

Let

p =

{(
x y
y −x

)
∈ R(2,2)

∣∣∣ x, y ∈ R
}

be the real vector space of dimension 2. Identifying p with C via(
x y
y −x

)
7−→ x+ i y ∈ C

and identifying Rm × Rm with Cm via

(P,Q) 7−→ Q+ i P, P,Q ∈ Rm,

we may regard the complex structure IJ as a real linear map on C×Cm defined by

(2.11) IJ(x+ i y,Q+ i P ) = (−y + i x,−P + iQ), x+ i y ∈ C, Q+ i P ∈ Cm.

Clearly IJ extends complex linearly on the complexification pJC = pJ ⊗R C of pJ .
Then pJC has a decomposition

(2.12) pJC = pJ+ ⊕ pJ−,
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where pJ+ (resp. pJ−) denotes the (+i)-eigenspace (resp. (−i)-eigenspace) of IJ .
Precisely, both pJ+ and pJ− are given by

pJ+ =

{((
x i x
i x −x

)
, (P, iP, 0)

) ∣∣∣ x ∈ C, P ∈ Cm
}

and

pJ− =

{((
x −i x
−i x −x

)
, (P,−iP, 0)

) ∣∣∣ x ∈ C, P ∈ Cm
}
.

Proposition 2.1. Fix an element g =
(
M, (λ, µ;κ)

)
∈ GJ with M =

(
a b
c d

)
∈

SL2(R) and (λ, µ;κ) ∈ H(m)
R . We let (τ∗, z∗) = g · (τ, z). Let

Fg : H× Cm −→ H× Cm

be the biholomorphic mapping defined by the action (2.1) of g. Then the differential
mapping

dFg : T(τ,z)

(
H× Cm

)
−→ T(τ∗,z∗)

(
H× Cm

)
is given by

(2.13) (w, ξ) 7−→
(
w(g), ξ(g)

)
, w ∈ C, ξ ∈ Cm

with

w(g) =
w

(c τ + d)2
and ξ(g) =

ξ

c τ + d
+
w(d λ− c µ− c z)

(c τ + d)2
.

Here we identified pJ with C× Cm.
Proof. Let α(t) =

(
τ(t), z(t)

)
(−ε < t < ε, ε > 0) be a smooth curve in H × Cm

passing through α(0) = (τ, z) with α′(0) = (w, ξ) ∈ T(τ,z)

(
H× Cm

)
. Then

χ(t) : = g · α(t) =
(
τ(g; t), z(g; t)

)
=

(
a τ(t) + b

c τ(t) + d
,
z(t) + λ τ(t) + µ

c τ(t) + d

)
is a smooth curve in H × Cm passing through χ(0) = (τ∗, z∗). Then by an easy
computation, we see that

τ ′(g; 0) =
∂

∂t

∣∣∣
t=0

τ(g; t) =
τ ′(0)

(c τ + d)2
=

w

(c τ + d)2

and

z′(g; 0) =
∂

∂t

∣∣∣
t=0

z(g; t) =
ξ

c τ + d
+
w(d λ− c µ− c z)

(c τ + d)2
.
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�

Let Γ1 := SL2(Z) be the elliptic modular group. We let

Γ1,m := Γ1 nH
(m)
Z

be the arithmetic subgroup of GJ , where

H
(m)
Z :=

{
(λ, µ;κ) ∈ H(m)

R | λ, µ, κ are integral
}

is a discrete subgroup of H
(m)
R . Let Ek := t(0, · · · , 1, 0, · · · , 0) (1 ≤ k ≤ m) be the

m× 1 matrix with the (k, 1)-th entry 1 and other entries 0. For an element τ ∈ H,
we set for brevity

Fk(τ) := τ Ek, 1 ≤ k ≤ m.

Let
F :=

{
τ ∈ H

∣∣ |τ | ≥ 1, |Re τ | ≤ 1/2
}

be a fundamental domain for Γ1\H. We refer to [16], pp. 78-79 for more detail. For
each τ ∈ F, we define the subset Pτ of Cm by

Pτ :=

{
m∑
k=1

λkEk +

m∑
k=1

µkFk(τ)
∣∣∣ 0 ≤ λk, µk ≤ 1

}
.

For each τ ∈ F, we define the subset Dτ of H× Cm by

Dτ := { (τ, z) ∈ H× Cm | z ∈ Pτ } .

Theorem 2.1. The following subset

(2.14) F[m] :=
⋃
τ∈F

Dτ

is a fundamental domain for Γ1,m\(H× Cm) with respect to the action (2.1).

Proof. Let (τ∗, z∗) be an arbitrary element of H × Cm. We must find an element
(τ, z) of F[m] and γ∗ = (γ, (λ, µ;κ)) ∈ Γ1,m with γ ∈ Γ1 = SL2(Z) such that
γ∗ · (τ, z) = (τ∗, z∗). Since F is a fundamental domain for Γ1\H, there is an element
γ of Γ1 and an element τ ∈ F such that τ∗ = γ · τ . Here τ is unique up to the
boundary of F. We write

γ =

(
a b
c d

)
∈ Γ1 = SL2(Z).

We can find λ, µ ∈ Zm and z ∈ Pτ satisfying the equation

z + λ τ + µ = z∗(x τ + d).
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If we take γ∗ = (γ, (λ, µ; 0)) ∈ Γ1,m, we see that γ∗ · (τ, z) = (τ∗, z∗). Therefore

H× Cm =
⋃

γ∗∈Γ1,m

γ∗ · F[m].

Let (τ, z) and γ∗ · (τ, z) be two elements of F[m] with γ∗ = (γ, (λ, µ;κ)) ∈ Γ1,m with
γ ∈ Γ1. Then both τ and γ · τ lie in F. Therefore both of them either lie in the
boundary of F or γ = ±I2. In the case that both τ and γ · τ lie in the boundary of
F, both (τ, z) and γ∗ · (τ, z) lie in the boundary of F[m]. If γ = ±I2, we get

(2.15) z ∈ Pτ and ± (z + λ τ + µ) ∈ Pτ .

From the definition of Pτ and (2.16), we see that either λ = µ = 0, γ 6= −I2 or both
z and ±(z + λ τ + µ) lie on the boundary of the parallelepiped Pτ . Hence either
both (τ, z) and γ∗ · (τ, z) lie in the boundary of F[m] or γ∗ = (I2, (0, 0;κ)) ∈ Γ1,m.
Consequently F[m] is a fundamental domain for Γ1,m\(H×Cm) with respect to the
action (2.1). �

Now we consider the Siegel-Jacobi space H1,1 := H × C endowed with the
Riemannian metric (cf. (2.2))

ds2
1;1,1 =

y + v2

y3
(dx2 + dy2) +

1

y
(du2 + dv2)− 2v

y2
(dx du + dy dv),

where τ = x + i y with x, y > 0 real and z = u + i v with u, v real are coordinates
in H1,1. Then

E1 :=
∂

∂x
, E2 :=

∂

∂y
, E3 :=

∂

∂u
, E4 :=

∂

∂v

form a local frame field on H1,1. Let Γkij (i, j, k = 1, 2, 3, 4) be the Christoffel symbols
for the Riemannian connection ∇ determined uniquely by the Riemannian metric
ds2

1;1,1. That is,

∇EiEj =

4∑
k=1

Γkij Ek, i, j = 1, 2, 3, 4.

Lemma 2.2. For all i, j, k = 1, 2, 3, 4, Γkij = Γkji. The Christoffel symbols Γkij’s
(1 ≤ i, j, k ≤ 4) are given by

Γ2
11 =

2 y + y2

2 y2
, Γ1

12 = Γ2
22 = − 2 y + v2

2 y2
,

Γ4
11 =

v3

2 y3
, Γ3

12 = Γ4
22 = − v3

2 y3
,

Γ1
14 = Γ1

23 = Γ2
24 = Γ4

33 =
v

2 y
,

Γ2
13 = Γ3

34 = Γ4
44 = − v

2 y
, Γ4

13 =
y − v2

2 y2
,

Γ3
14 = Γ3

23 = Γ4
24 = − y − v2

2 y2
, Γ2

33 =
1

2
, Γ1

34 = Γ2
44 = − 1

2
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and all other Γkij = 0.

Proof. It is easy to prove the above lemma. We leave the proof to the reader. �

Proposition 2.2. Let γ(t) =
(
x(t) + i y(t), u(t) + i v(t)

)
be a smooth curve in H1,1.

For brevity we write

ẍ =
d2x

dt2
, ÿ =

d2y

dt2
, ü =

d2u

dt2
, v̈ =

d2v

dt2
,

ẋ =
dx

dt
, ẏ =

dy

dt
, u̇ =

du

dt
, v̇ =

dv

dt
.

Then the curve γ(t) is a geodesic in H1,1 with respect to the metric ds2
1;1,1 if and

only if it satisfies the following four differential equations

(2.16) ẍ− 2 y + y2

2 y2
ẋ ẏ +

v

y
ẋ v̇ +

v

y
ẏ u̇− u̇ v̇ = 0

(2.17) ÿ +
2 y + y2

2 y2
ẋ2 − 2 y + y2

2 y2
ẏ2 +

1

2
u̇2 − 1

2
v̇2 − v

y
ẋ u̇+

v

y
ẏ v̇ = 0

(2.18) ü− v3

y3
ẋ ẏ − y − v2

y2
ẋ v̇ − y − v2

y2
ẏ u̇− v

y
u̇ v̇ = 0

(2.19) v̈ +
v3

2y3
ẋ2 − v3

2y3
ẏ2 +

v

2y
u̇2 − v

2y
v̇2 +

y − v2

y2
ẋ u̇− y − v2

y2
ẏ v̇ = 0

Proof. Using Lemma 2.2 and the geodesic equations, we obtain the above
equations. �

Remark 2.2. If u = v = 0, the equations (2.16)-(2.19) reduce to the following two
equations

(2.20) ẍ− 2

y
ẋ ẏ = 0

and

(2.21) ÿ +
1

y
ẋ2 − 1

y
ẏ2 = 0.

Thus these two equations (2.20) and (2.21) give geodesics in the Poincaré upper half
plane H which are circles perpendicular to the x-axis or straight lines perpendicular
to the x-axis. Therefore the curve γ(t) =

(
x(t) + i y(t), 0

)
(−∞ < t < ∞) such

that α(t) = x(t) + i y(t) is a geodesic in H is a geodesic in H1,1 with respect to the
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metric ds2
1;1,1.

Proposition 2.3. Let γ(t) be a geodesic in H1,1 joining two points γ(0) = (τ1, 0)
and γ(1) = (τ2, 0) such that γ(t) is contained in the subset {(τ, 0) ∈ H1,1 | τ ∈ H }.
Then the length ρ of the geodesic segment between γ(0) = (τ1, 0) and γ(1) = (τ2, 0)
is given by

(2.22) ρ = log
1 +R1/2

1−R1/2
,

where R := R(τ1, τ2) is the cross-ratio of τ1 and τ2 defined by

R(τ1, τ2) :=
τ1 − τ2
τ1 − τ2

· τ1 − τ2

τ1 − τ2
.

Proof. By remark 2.2, the length ρ is equal to the length ρ0 of the geodesic in H
joining τ1 and τ2 with respect to the Poincaré metric

ds2 =
dx2 + dy2

y2
.

It is well known that ρ0 is given by the formula (2.22). We refer to [17] for the
general case. �

Proposition 2.4. Let (τ1, z1) and (τ2, z2) be two points in the Siegel-Jacobi space

H× Cm. Then there exists an element g =

((
a b
c d

)
, (λ, µ;κ)

)
∈ GJ such that

g · (τ1, z1) = (i, 0) and g · (τ2, z2) =

(
i δ,

z2 + λ τ2 + µ

c τ2 + d

)
with δ > 0. Therefore the length of the geodesic joining (τ1, z1) to (τ2, z2) with
respect to the Riemannian metric ds2

m;A,B is equal to that of the geodesic joining

(i, 0) to
(
i δ, z2+λ τ2+µ

c τ2+d

)
with respect to the metric ds2

m;A,B.

Proof. We see that there is an element h =

(
a b
c d

)
∈ SL2(R) such that

h · τ1 =
a τ1 + b

c τ1 + d
= i and h · τ2 =

a τ2 + b

c τ2 + d
= i δ

with δ > 0. We take

λ = − Im z1

Im τ1
and µ = −Re z1 +

Re τ1 · Im z1

Im τ1

We easily see that the element

g =

((
a b
c d

)
, (λ, µ;κ)

)
∈ GJ
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satisfies the condition

g · (τ1, z1) = (i, 0) and g · (τ2, z2) =

(
i δ,

z2 + λ τ2 + µ

c τ2 + d

)
with δ > 0.

For each fixed element g ∈ GJ , according to the GJ -invariance of the metric
ds2
m;A,B , the map Fg of H × Cm defined by the action (2.1) of g is an isometry of

H × Cm with respect to the metric ds2
m;A,B . Consequently we obtain the second

statement. �

Proposition 2.5. The scalar curvature r(p) of the Siegel-Jacobi space
(
H1,1, ds

2
1;1,1

)
is −3 for each point p of H1,1.

Proof. Using Lemma 2.2, we obtain the scalar curvature r(p) = −3 for each point
p of H1,1 by a tedious computation. �

Now we study differential forms on H× Cm invariant under the action (2.1) of
Γ1,m.

Proposition 2.6. (a) Assume that

α = f(τ, z) dτ +

m∑
k=1

φk(τ, z) dzk

is a differential 1-form on H× Cm invariant under the action (2.1) of Γ1,m. Then
the functions f and φk (k = 1, 2, · · · ,m) satisfy the following conditions

(2.23) f(γ · (τ, z)) = (c τ + d)2f(τ, z) + (c τ + d)

m∑
k=1

(c zk + c µk − d λk)φk(τ, z)

and

(2.24) φk(γ · (τ, z)) = (c τ + d)φk(τ, z), k = 1, 2, · · · ,m

for all γ =

((
a b
c d

)
, (λ, µ;κ)

)
∈ Γ1,m with λ = t(λ1, · · · , λm) ∈ Zm and µ =

t(µ1, · · · , µm) ∈ Zm.

(b) Let
η = dτ ∧ dz1 ∧ dz2 ∧ · · · ∧ dzm

be a differential (m+ 1)-form on H× Cm. Assume that

θ = g(τ, z) η⊗`, ` = 1, 2, 3, · · · ,

is a differential `(m+ 1)-form on H×Cm invariant under the action (2.1) of Γ1,m.
Then the function g satisfies the following condition

(2.25) g(γ · (τ, z)) = (c τ + d)`(m+2)g(τ, z)
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for all γ =

((
a b
c d

)
, (λ, µ;κ)

)
∈ Γ1,m.

(c) For k = 1, 2, · · · ,m, we let

ω̃k = (−1)m−k dτ ∧ dz1 ∧ · · · ∧ dzk−1 ∧ d̂zk ∧ dzk+1 ∧ · · · ∧ dzm

be a differential m-form on H× Cm. Assume that

β =

m∑
k=1

ak(τ, z) ω̃k + (−1)m b(τ, z) dz1 ∧ · · · ∧ dzm

is a differential m-form on H×Cm invariant under the action (2.1) of Γ1,m. Then
the functions a(τ, z) and bk (k = 1, 2, · · · ,m) satisfy the following conditions

(2.26) ak(γ · (τ, z)) = (c τ + d)m+1 ak(τ, z)− (c τ + d)m(c zk + c µk − d λk) b(τ, z)

for k − 1, 2, · · · ,m and

(2.27) b(γ · (τ, z)) = (c τ + d)m b(τ, z)

for all γ =

((
a b
c d

)
, (λ, µ;κ)

)
∈ Γ1,m with λ = t(λ1, · · · , λm) ∈ Zm and µ =

t(µ1, · · · , µm) ∈ Zm.

Proof. For γ =

((
a b
c d

)
, (λ, µ;κ)

)
∈ Γ1,m with λ = t(λ1, · · · , λm) ∈ Zm and

µ = t(µ1, · · · , µm) ∈ Zm and (τ, z) ∈ H×Cm with z = t(z1, · · · , zm) ∈ Cm, we set
(τ∗, z∗) = γ · (τ, z). In other words,

τ∗ =
a τ + b

c τ + d
, z∗k =

zk + λk τ + µk
c τ + d

, k = 1, 2, · · · ,m.

Then we have

(2.28) dτ∗ =
dτ

(c τ + d)2

and

(2.29) dz∗k =

{
λk

c τ + d
− c (zk + λk τ + µk)

(c τ + d)2

}
dτ +

dzk
c τ + d

, k = 1, 2, · · · ,m.

Using the formulas (2.28) and (2.29), we obtain the desired results (a), (b) and
(c). �
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3. The center of the universal enveloping algebra of gJ

In this section we describe the center of the universal enveloping algebra of the
complexication of the Jacobi Lie algebra gJ explicitly.

Let gJC be the complexification of the Jacobi Lie algebra gJ . We put the 2 × 2
matrices

H =

(
1 0
0 −1

)
, E =

(
0 1
0 0

)
and F =

(
0 0
1 0

)
.

Then {H,E, F} is a basis of the Lie algebra sl2(C). Let εij (1 ≤ i ≤ m, j = 1, 2)
be the m × 2 matrices whose (i, j)-th entry is 1 and whose other entries are zero,
and let Ekl be the m ×m elementary matrix whose (k, l)-th entry is 1 and whose
other entries are zero. We set ei := εi1, fi := εi2 (1 ≤ i ≤ m) and

Rkl :=
1

2
(Ekl + Eji), Rkl = Rlk, 1 ≤ k, l ≤ m.

Then {H,E, F, ei, fi, Rkl | 1 ≤ i ≤ m, 1 ≤ k ≤ l ≤ m } is a basis for gJC. It is easily
seen that

Zm :=
{

(0, (0, 0, R)) ∈ gJC | R = tR ∈ C(m,m)
}

is the center of gJC.

Lemma 3.1. We have the following.

(1) [H,E] = 2E, [H,F ] = −2F, [E,F ] = H.

(2) [H, ei] = −ei, [H, fi] = fi, 1 ≤ i ≤ m.

(3) [E, ei] = fi, [E, fi] = 0, 1 ≤ i ≤ m.

(4) [F, ei] = 0, [F, fi] = −ei, 1 ≤ i ≤ m.

(5) [ei, fj ] = 2Rij , 1 ≤ i, j ≤ m.
Proof. The proof follows immediately from the fact that

[(X1, (P1, Q1, R1)), (X2, (P2, Q2, R2))](3.1)

=
(

[X1, X2],
(
(P1, Q1)X2 − (P2, Q2)X1, P1

tQ2 − P2
tQ1 +Q2

tP1 −Q1
tP2

))
,

where X1, X2 ∈ sl2(C), [X1, X2] = X1X2 − X2X1, Pi, Qi ∈ C(m,1) (i =
1, 2), R1, R2 ∈ C(m,m) with R1 = tR1 and R2 = tR2. �

Formally we put

e :=


e1

e2

...
em

 , f :=


f1

f2

...
fm

 ,
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and

R :=


R11 R12 · · · R1m

R21 R22 · · · R2m

...
...

. . .
...

Rm1 Rm2 · · · Rmm

 , Rkl = Rlk, 1 ≤ k, l ≤ m.

Theorem 3.1. The center Zm
(
gJC
)

of the universal enveloping algebra U(gJC) of gJC
is given by

Zm
(
gJC
)

= C[Ωm, Rkl | 1 ≤ k ≤ l ≤ m ].

That is, Zm
(
gJC
)

is a polynomial algebra on 1 + m(m+1)
2 generators Ωm, Rkl (1 ≤

k ≤ l ≤ m). Here

Ωm : = detR
{
H2 − (m+ 2)H + 4EF

}
+ detR

{
E teR−1e− tfR−1fF −

(
H − m+ 3

2

)
tfR−1e

}
+ detR

{
1

4
tf
(
tfR−1e

)
R−1e− 1

4

(
teR−1f

)(
teR−1e

)}
is a Casimir operator of U(gJC) of degree m+ 2.

Proof. Using the method computing the center of the universal enveloping algebra
of a certain class of semidirect sum Lie algebras invented by Campoamer-Stursburg
and Low [6] (cf. [2], [15]), Conley and Raum [5] proved the above theorem. We refer
to [5] for the detail. �

Let γ : GJ ×
(
H × Cm

)
−→ C× be a scalar cocycle with respect to the action

(2.1). This means that γ is a smooth function satisfying the cocycle condition

(3.2) γ(g1g2, (τ, z)) = γ(g1, g2 · (τ, z)) γ(g2, (τ, z))

for all g1, g2 ∈ GJ and (τ, z) ∈ H× Cm. Then we get the map

γ̂(g) : GJ −→ C∞(H× Cm)

defined by
γ̂(g)(τ, z) := γ(g, (τ, z)), g ∈ GJ , (τ, z) ∈ H× Cm.

Then we obtain the right action |γ of GJ on C∞(H× Cm) defined by

(3.3) (g · f)(τ, z) :=
(
f |γ [g−1]

)
(τ, z) := γ(g−1, (τ, z))f(g−1 · (τ, z)),

where g ∈ GJ , f ∈ C∞(H× Cm) and (τ, z) ∈ H× Cm.
We note that the differential dγ̂ of γ̂ at the identity is given by

dγ̂(Y )(τ, z) =
d

dt

∣∣∣
t=0

γ(exp(tY ), (τ, z)).
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Therefore we have the differential right action |γ of gJC on C∞(H×Cm) defined by

(φ|γ [Y ]) (τ, z) : =
d

dt

∣∣∣
t=0

(γ(exp(tY ), (τ, z))φ(exp(tY ) · (τ, z)))(3.4)

= γ(Y, (τ, z))φ(τ, z) +
d

dt

∣∣∣
t=0

φ(exp(tY ), (τ, z)),(3.5)

where Y ∈ gJC and φ ∈ C∞(H × Cm). The action (3.4) extends to U(gJC) as usual,
and elements of U(gJC) of order r act by differential operators of order ≤ r.

Let Dγ be the algebra of all differential operators D on H × Cm satisfying the
following condition

(3.6) (Dφ)|γ [g] = D
(
φ|γ [g]

)
for all g ∈ GJ and for all φ ∈ C∞(H×Cm). Since GJ is connected, Dγ is the algebra
of all differential operators Dγon H × Cm commuting with the |γ-action of gJC. In
particular, the action |γ maps the center Zm(gJC) of U(gJC) into the center Zm(Dγ)
of Dγ .

Throughout this section we let M be a positive definite half-integral symmetric
matrix of degree m and let k ∈ Z+. We let γk,M : GJ × (H × Cm) −→ C× be the
canonical automorphic factor for GJ on H× Cm defined by

γk,M
(
(M, (λ, µ;κ)), (τ, z)

)
:

= (cτ + d)k e2π iM[z+λτ+µ] c (cτ+d)−1

e−2π i tr(M(τλ tλ+ 2λ tz +κ+µ tλ)),(3.7)

where (M, (λ, µ;κ)) ∈ GJ with M =

(
a b
c d

)
∈ SL2(R), (λ, µ;κ) ∈ H

(m)
R and

(τ, z) ∈ H× Cm.
For brevity we write

∂τ : =
∂

∂τ
=

1

2

(
∂

∂x
− i

∂

∂y

)
, ∂τ :=

∂

∂τ
=

1

2

(
∂

∂x
+ i

∂

∂y

)
,

∂zj : =
∂

∂zj
=

1

2

(
∂

∂uj
− i

∂

∂vj

)
, 1 ≤ j ≤ m,

∂zj : =
∂

∂zj
=

1

2

(
∂

∂uj
+ i

∂

∂vj

)
, 1 ≤ j ≤ m,

∂z : = t
(
∂z1 , ∂z2 , · · · , ∂zm

)
, ∂z := t

(
∂z1 , ∂z2 , · · · , ∂zm

)
.

Lemma 3.2. Let M and k be as above. We set M̃ := 2π iM. Then we have the
following:

|γk,M [E] = 2 Re (∂τ ),(3.8)

|γk,M [F ] = −2 Re
(
τ (τ ∂τ + tz ∂z)

)
− k τ − M̃[z],(3.9)

|γk,M [H] = 2 Re
(
2 τ ∂τ + tz ∂z

)
+ k,(3.10)

|γk,M [(0, (P,Q,R))] = 2 Re
(
t(P τ +Q) ∂z

)
+ 2 tPM̃ z + tr

(
RM̃

)
.(3.11)
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Proof. We observe that if (X, (P,Q,R)) ∈ gJC with X ∈ sl2(C), P,Q ∈ C(m,1) and
R = tR ∈ C(m,m), then

(3.12) exp
(
(X, (P,Q,R))

)
=
(

exp(X),
(
(P,Q) g(X), R− (P,Q)h(X) t(−Q,P )

))
,

where

exp(t) :=

∞∑
n=0

tn

n!
, g(t) :=

et − 1

t
and h(t) :=

et − 1− t
t

.

Using the formula (3.12) we easily obtain the formulas (3.8)-(3.11). �.

Theorem 3.2.

(3.13) |γk,M [Ωm] = det
(
M̃
) {

k(k −m− 2) − 2Ck,M
}
,

where

Ck,M : = −8 y2∂τ∂τ + 4 i
(
k − m

2

)
y ∂τ

+ 2 y2
(
∂τ M̃

−1[∂z] + ∂τ M̃
−1[∂z]

)
− 8 y ∂τ

tv ∂z

−1

2
y2
{
M̃−1[∂z] M̃

−1[∂z]− t
(
∂zM̃

−1∂z
)2}

+ 2 y
(
tv ∂z

)
t∂zM̃

−1∂u

− i
2

(2k −m+ 1) y t∂z M̃
−1∂u + 2 tv

(
tv ∂z

)
∂z + i (2k −m− 1) tv ∂z.

The operator Ck,M generates the image of the |γk,M-action of the center Zm(gJC).

In particular, Ck,M is an element of the center of Dγk,M .

Proof. We write M̃ =
(
M̃pq

)
. According to (3.11), we have the relation |γk,M [Rpq] =

M̃pq for all 1 ≤ p ≤ q ≤ m. The proof follows from Theorem 3.1. and Lemma
3.2. �

4. Invariant differential operators on H× Cm

For brevity we put
T1,m := C× Cm.

We define the real linear map Φm : pJ −→ T1,m by

(4.1) Φm

((
x y
y −x

)
, (P,Q, 0)

)
= (x+ i y, P + iQ),

where

((
x y
y −x

)
, (P,Q, 0)

)
∈ pJ . Obviously Φm is a real linear isomorphism of

pJ onto T1,m.
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Let S(m,R) denote the additive group consisting of all m ×m real symmetric
matrices. We define the group isomorphism θm : KJ −→ U(1)× S(m,R) by

(4.2) θm

((
a −b
b a

)
, (0, 0;κ)

)
= (a+ i b, κ),

where

((
a −b
b a

)
, (0, 0;κ)

)
∈ KJ .

Theorem 4.1. The adjoint representation Ad of KJ on pJ is compatible with the
natural action of U(1)× S(m,R) on T1,m = C× Cm defined by

(4.3) (h, κ) · (w, ξ) := (h2w, h ξ), h ∈ U(1), κ ∈ S(m,R), w ∈ C, ξ ∈ Cm

through the map Φm and θm. Precisely if kJ ∈ KJ and α ∈ pJ , then we have the
following equality

(4.4) Φm
(
Ad (kJ)α

)
= θm(kJ) · Φm(α).

We recall that we identified pJ with C× Cm.
Proof. We refer to [26] for the proof. �

The action (4.3) induces the action of U(1) on the polynomial algebra Pol[m] :=

Pol(T1,m). We denote by Pol
U(1)
[m] the subalgebra of Pol[m] consisting of U(1)-

invariants. We let D
(
H× Cm

)
be the algebra of all differential operators invariant

under the action (2.1) of GJ . According to [7], one gets a canonical linear bijection

(4.5) Θ[m] : Pol
U(1)
[m] −→ D

(
H× Cm

)
of Pol

U(1)
[m] onto D

(
H × Cm

)
. But Θ[m] is not multiplicative. The map Θ[m] is

described explicitly as follows. Let
{
ηα | 1 ≤ α ≤ 2(m + 1)

}
be a basis of pJ . If

P ∈ Pol
U(1)
[m] , then

(4.6)
(

Θ[m](P )f
)

(gKJ) =

P ( ∂

∂tα

)
f

g exp

2(m+1)∑
α=1

tαηα

KJ


(tα)=0

,

where g ∈ GJ and f ∈ C∞(H× Cm).

Theorem 4.2. Pol
U(1)
[m] is generated by

q(w, ξ) = tr
(
ww

)
,(4.7)

αkp(w, ξ) = Re
(
ξ tξ
)
kp
, 1 ≤ k ≤ p ≤ m,(4.8)

βlq(w, ξ) = Im
(
ξ tξ
)
lq
, 1 ≤ l < q ≤ m,(4.9)

fkp(w, ξ) = Re (w ξ tξ)kp, 1 ≤ k ≤ p ≤ m,(4.10)

gkp(w, ξ) = Im (w ξ tξ)kp, 1 ≤ k ≤ p ≤ m,(4.11)
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where w ∈ C and ξ ∈ Cm.

Proof. We refer to [9] or [26] for the general case. �

We let

w = r + i s ∈ C and ξ = t(ξ1, · · · , ξm) ∈ Cm with ξk = ζk + i ηk, 1 ≤ k ≤ m,

where r, s, ζ1, η1, · · · , ζm, ηm are real. The invariants q, αkp, βlq, fkp and gkp are
expressed in terms of r, s, ζk, ηl (1 ≤ k, l ≤ m) as follows:

q(w, ξ) = r2 + s2,

αkp(w, ξ) = ζkζp + ηkηp, 1 ≤ k ≤ p ≤ m,
βlq(w, ξ) = ζqηl − ζlηq, 1 ≤ l < q ≤ m,
fkp(w, ξ) = r(ζkζp − ηkηp) + s(ζkηp + ηkζp), 1 ≤ k ≤ p ≤ m,
gkp(w, ξ) = r(ζkηp + ηkζp)− s(ζkζp − ηkηp), 1 ≤ k ≤ p ≤ m.

Theorem 4.3. The m(m+1)
2 relations

(4.12) f2
kp + g2

kp = q αkk αpp, 1 ≤ k ≤ p ≤ m

exhaust all the relations among a complete set of generators q, αkp, βlq, fkp and gkp

of Pol
U(1)
[m] with 1 ≤ k ≤ p ≤ m and 1 ≤ l < q ≤ m.

Theorem 4.4. The action of U(1) on Pol1,m is not multiplicity-free. In fact, if

Pol[m] =
∑

σ∈Û(1)

mσ σ,

then mσ =∞.

For the proofs of the above theorems we refer to [26].

We consider the case m = 1. For a coordinate (w, ξ) in T1,1, we write w =

r + i s, ξ = ζ + i η, r, s, ζ, η real. The author [21] proved that the algebra Pol
U(1)
[1]

is generated by

q(w, ξ) =
1

4
ww =

1

4

(
r2 + s2

)
,

α(w, ξ) = ξ ξ = ζ2 + η2,

φ(w, ξ) =
1

2
Re
(
ξ2w

)
=

1

2
r
(
ζ2 − η2

)
+ s ζη,

ψ(w, ξ) =
1

2
Im (ξ2w) =

1

2
s
(
η2 − ζ2

)
+ r ζη.

In [21], using Formula (3.6) the author calculated explicitly the images

D1 = Θ[1](q), D2 = Θ[1](α), D3 = Θ[1](φ) and D4 = Θ[1](ψ)



A Note on Maass-Jacobi Forms II 67

of q, α, φ and ψ under the Halgason map Θ[1]. We can show that the algebra
D(H× C) is generated by the following differential operators

D1 =y2

(
∂2

∂x2
+

∂2

∂y2

)
+ v2

(
∂2

∂u2
+

∂2

∂v2

)
+ 2 y v

(
∂2

∂x∂u
+

∂2

∂y∂v

)
,

D2 = y

(
∂2

∂u2
+

∂2

∂v2

)
,

D3 = y2 ∂

∂y

(
∂2

∂u2
− ∂2

∂v2

)
− 2y2 ∂3

∂x∂u∂v

−
(
v
∂

∂v
+ 1

)
D2

and

D4 = y2 ∂

∂x

(
∂2

∂v2
− ∂2

∂u2

)
− 2 y2 ∂3

∂y∂u∂v

− v
∂

∂u
D2,

where τ = x+ iy and z = u+ iv with real variables x, y, u, v. Moreover, we have

D1D2−D2D1 = 2 y2 ∂

∂y

(
∂2

∂u2
− ∂2

∂v2

)
− 4 y2 ∂3

∂x∂u∂v
− 2

(
v
∂

∂v
D2 +D2

)
.

In particular, the algebra D(H×C) is not commutative. We refer to [1, 21] for more
detail.

Recently Hiroyuki Ochiai [13] (see also [1]) proved the following result.

Theorem 4.5. We have the following relations

(a) [D1, D2] = 2D3

(b) [D1, D3] = 2D1D2 − 2D3

(c) [D2, D3] = −D2
2

(d) [D4, D1] = 0

(e) [D4, D2] = 0

(f) [D4, D3] = 0
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(g) D2
3 +D2

4 = D2D1D2

These seven relations exhaust all the relations among the generators D1, D2, D3

and D4 of D(H× C).

Remark 4.1. According to Theorem 4.5, we see that D4 is a generator of the
center of D(H× C). We observe that the Lapalcian

∆1;A,B =
4

A
D1 +

4

B
D2 (see (2.5))

of (H× C, ds2
1;A,B) does not belong to the center of D(H× C).

5. Maass-Jacobi Forms due to Yang

Using GJ -invariant differential operators on the Siegel-Jacobi space, we intro-
duce a notion of Maass-Jacobi forms.

Definition 5.1. Let

Γ1,m := SL2(Z) nH
(m)
Z

be the discrete subgroup of GJ , where

H
(m)
Z =

{
(λ, µ;κ) ∈ H(m)

R | λ, µ, κ are integral
}
.

A smooth function f : H×Cm −→ C is called a Maass-Jacobi form on H×Cm if f
satisfies the following conditions (MJ1)-(MJ3) :

(MJ1) f is invariant under Γ1,m.
(MJ2) f is an eigenfunction of the Laplacian ∆m;A,B (cf. Formula (2.5)).
(MJ3) f has a polynomial growth, that is, there exist a constant C > 0 and a

positive integer N such that

|f(x+ iy, z)| ≤ C |p(y)|N as y −→∞,

where p(y) is a polynomial in y.

Remark 5.1. Let D∗ be a commutative subalgebra of D(H × Cm) containing the
Laplacian ∆m;A,B . We say that a smooth function f : H × Cm −→ C is a Maass-
Jacobi form with respect to D∗ if f satisfies the conditions (MJ1), (MJ2)∗ and
(MJ3) : the condition (MJ2)∗ is given by

(MJ2)∗ f is an eigenfunction of any invariant differential operator in D∗.

It is natural to propose the following problems.

Problem A : Find all the eigenfunctions of ∆m;A,B .

Problem B : Construct Maass-Jacobi forms.
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Problem C : Develop the spectral theory of the Laplacian ∆m;A,B on a fundamen-
tal domain for the Siegel-Jacobi space H× Cm with respect to Γ1,m.

If we find a nice eigenfunction φ of the Laplacian ∆m;A,B , we can construct a
Maass-Jacobi form fφ on H× Cm in the usual way defined by

(5.1) fφ(τ, z) :=
∑

γ∈Γ∞1,m\Γ1,m

φ
(
γ · (τ, z)

)
,

where

Γ∞1,m =

{((
a b
c d

)
, (λ, µ;κ)

)
∈ Γ1,m

∣∣∣ c = 0

}
is a subgroup of Γ1,m.

We consider the simple case m = 1 and A = B = 1. We take a coordinate
(τ, z) ∈ H × C with τ = x + iy, x ∈ R, y > 0 and z = u + iv, u, v real. A metric
ds2

1;1,1 on H× C given by

ds2
1;1,1 =

y + v2

y3
( dx2 + dy2 ) +

1

y
( du2 + dv2 )

− 2v

y2
( dx du + dy dv )

is a GJ -invariant Kähler metric on H× C. Its Laplacian ∆1;1,1 is given by

∆1;1,1 = y2

(
∂2

∂x2
+

∂2

∂y2

)
+ ( y + v2 )

(
∂2

∂u2
+

∂2

∂v2

)
+ 2 y v

(
∂2

∂x∂u
+

∂2

∂y∂v

)
.

We provide some examples of eigenfunctions of ∆1;1,1.

(1) h(x, y) = y
1
2Ks− 1

2
(2π|a|y) e2πiax (s ∈ C, a 6= 0 ) with eigenvalue s(s − 1).

Here

(5.2) Ks(z) :=
1

2

∫ ∞
0

exp
{
−z

2
(t+ t−1)

}
ts−1 dt,

where Re z > 0.
(2) ys, ysx, ysu (s ∈ C) with eigenvalue s(s− 1).
(3) ysv, ysuv, ysxv with eigenvalue s(s+ 1).
(4) x, y, u, v, xv, uv with eigenvalue 0.
(5) All Maass wave forms.
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We let f ;H × C −→ C be a Maass-Jacobi form with ∆1;1,1f = Λ f . Then f
satisfies the following invariance relations

f(τ + n, z) = f(τ, z) for all n ∈ Z

and
f(τ, z + n1τ + n2) = f(τ, z) for all n1, n2 ∈ Z.

Therefore f is a smooth function on H×C which is periodic in x and u with period
1. So f has the following Fourier series

(5.3) f(τ, z) =
∑
n∈Z

∑
r∈Z

cn,r(y, v) e2π i (nx+ru).

For two fixed integers n and r, for brevity, we set ϕ(y, v) = cn,r(y, v). Then ϕ
satisfies the following differential equation

(5.4)

[
y2 ∂

2

∂y2
+ (y + v2)

∂2

∂v2
+ 2 yv

∂2

∂y∂v
−
{

(Ay +B v)2 +B2 y + Λ
}]
ϕ = 0,

where A = 2π n and B = 2π r are constants. We note that the function φ(y) =

y
1
2 Ks− 1

2
(2π|n|y) satisfies the the differential equation (5.4) with Λ = s(s−1). Here

Ks(z) is the K-Bessel function defined by (5.2) (cf. [10], [19]).

6. Maass-Jacobi forms due to Pitale, Bringmann et al

We fix a positive integer m. Let M be a symmetric half-integral semi-positive
definite matrix of degree m. Let C∞(H × Cm) be the algebra of all C∞-functions
on H × Cm. For any nonnegative integer k ∈ Z, we define the |k,M-slash action of
GJ on C∞(H× Cm) as follows: If f ∈ C∞(H× Cm), and (M, (λ, µ;κ)) ∈ GJ with(
a b
c d

)
∈ SL2(R) and (λ, µ;κ) ∈ H(m)

R ,

(
f |k,M[(M, (λ, µ;κ))]

)
(τ, z) :

= (cτ + d)−k e−2π iM[z+λτ+µ] c (cτ+d)−1

(6.1)

× e2π i tr(M(τλ tλ+ 2λ tz+κ+µ tλ)) f

(
aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)
,

where τ ∈ H and z ∈ Cm. We recall the Siegel’s notation α[β] = tβαβ for suitable
matrices α and β. Let Dk,M be the algebra of all differential operators D on H×Cm
satisfying the following condition

(6.2) (Df)|k,M[g] = D
(
f |k,M[g]

)
for all f ∈ C∞(H×Cm) and for all g ∈ GJ . We recall the arithmetic subgroup Γ1,m

of GJ defined by

Γ1,m := SL2(Z) nH
(m)
Z .
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Definition 6.1. Let Ck,M be the Casimir operator defined in Theorem 3.2. A
smooth function φ : H × Cm −→ C is called a Maass-Jacobi form of weight k and
index M if it satisfies the following conditions:

(MJ1*) φ|k,M[γ] = φ for all γ ∈ Γ1,m.

(MJ2*) φ is an eigenfunction of the Casimir operator Ck,M.

(MJ3*) For some a > 0,

φ(τ, z) = O
(
eay e2π iM[v]/y

)
as y −→∞.

Furthermore if Ck,Mφ = 0, it is said to be a harmonic Maass-Jacobi form of weight
k and index M. We denote by Jk,M the space of all harmonic Maass-Jacobi forms
of weight k and index M.

For the present being we let M be a positive definite integral even lattice of
rank m and k an integer. We identify M with its Gram matrix with respect to
a fixed basis, that is, a positive definite half-integral symmetric matrix of degree
m. We write |M| for the determinant of the Gram matrix of M. Throughout this
section n will be an integer and r will be in Zm. For r = t(r1, · · · , rm) ∈ Zm and
z = t(z1, · · · , zm) ∈ Cm, we put

ζr :=

m∏
j=1

e2π i rjzj ,

where ζ = (ζ1, · · · , ζm) with ζj = e2πizj (1 ≤ j ≤ m). For a ∈ C, we write
e(a) := e2π i a. For two vectors ξ = t(ξ1, · · · , ξm) and η = t(η1, · · · , ηm) in Cm, we
let

〈ξ, η〉 :=

m∑
j=1

ξj ηj

be the standard scalar product.

We set

(6.3) D = DM(n, r) := |M|
(
4n−M−1[r]

)
and h = hM(r) := |M|M−1[r].

Let Mν,µ(w) be the usual M -Whittaker function, which is a solution to the following
differential equation

(6.4)
∂2

∂w2
f(w) +

(
−1

4
+
ν

w
+

1
4 − µ

2

w2

)
f(w) = 0.

For s ∈ C, κ ∈ 1
2Z and t ∈ R×, we define the function

(6.5) Ms,κ(t) := |t|−κ2Msgn(t)κ2 ,s−
1
2
(|t|)
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and

(6.6) φ
(n,r)
k,M,s(τ, z) := Ms,k−m2

(
πDy

|M|

)
e2π i (〈r,z〉+ i

4 M−1[r]y+nx).

We define the Poincaré series

(6.7) P
(n,r)
k,M,s(τ, z) :=

∑
γ∈Γ∞1,m\Γ1,m

(
φ

(n,r)
s,M,s

∣∣∣
k,M

[r]

)
(τ, z).

Obviously P
(n,r)
k,M,s is holomorphic in Cm. It is easily seen that P

(n,r)
k,M,s is an eigen-

function of the Casimir operator Ck,M with eigenvalue

−2 s(1− s)− 1

2

{
k2 − k(m+ 2) +

1

4
m(m+ 4)

}
.

For s ∈ C, κ ∈ 1
2Z and t ∈ R×, we set

(6.8) Ws,κ(t) := |t|−κ2Wsgn(t)κ2 ,s−
1
2
(|t|),

where Wν,µ denotes the usual W -Whittaker function which is also a solution to the
differential equation (6.4).

For r ∈ Zm, we define the theta series

(6.9) θ
(r)
k,M(τ, z) :=

∑
λ∈Zm

e2π iM[λ] ζ2Mλ
{
e2π i 〈r,λ〉ζr + (−1)k e−2π i 〈r,λ〉ζr

}
.

Theorem 6.1(Bringmann-Richter [4] and Conley-Raum [5]). The Poincaré series

P
(n,r)
s,M,s(τ, z) has the Fourier expansion

P
(n,r)
k,M,s(τ, z) = Ms,k−m2

(
πDy

|M|

)
e

(
−iDy
4|M|

)
θ

(r)
k,M(τ, z) e2π i n τ(6.10)

+
∑

n′∈Z, r′∈Zm
cy,s(n

′, r′) e2π i n′τ ζr
′
.

Here the coefficients cy,s(n
′, r′) are

cy,s(n
′, r′) := by,s(n

′, r′) + (−1)k by,s(n
′,−r′)

with by,s depending on D and D′ = |M| (4n′ − M−1[r′]) and by,s(n
′, r′) is given as

follows:

(1) If D′ = 0, there is a constant as(n
′, r′) such that

by,s(n
′, r′) = as(n

′, r′)
y1+m

4 −
k
2−s

Γ
(
s+ k

2 −
m
4

)
Γ
(
s− k

2 + m
4

) .
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(2) If DD′ > 0,

by,s(n
′, r′) = 21−m2 π i−k |M|− 1

2
Γ(2s)

Γ
(
s− sgn(D′)

(
k
2 −

m
4

))
×
(
D′

D

) k
2−

m+2
4

e

(
− iD

′y

4|M|

)
Ws,k−m2

(
πD′y

|M|

)
×
∑
c∈Z+

c−
m+2

2 Kc,M(n, r, n′, r′) J2s−1

(
π
√
DD′

c|M|

)
,

where Γ is the usual Gamma function, Js is the usual J-Bessel function and
Kc,M(n, r, n′, r′) is the Kloosterman sum defined by

Kc,M(n, r, n′, r′) := e−π i c
−1〈r,M−1r′〉(6.11)

×
∑

d∈(Z/cZ)×,
λ∈Zm/cZm

e2π i (c−1d̄M[λ] +n′d−〈r′,λ〉+ d̄ n+ d̄ 〈r,λ〉),

where d̄ is an integer inverse of d modulo c.

(3) If DD′ < 0,

by,s(n
′, r′) = 21−m2 π i−k |M|− 1

2
Γ(2s)

Γ
(
s− sgn(D′)

(
k
2 −

m
4

))
×
(
D′

D

) k
2−

m+2
4

e

(
− iD

′y

4|M|

)
Ws,k−m2

(
πD′y

|M|

)
×
∑
c∈Z+

c−
m+2

2 Kc,M(n, r, n′, r′) I2s−1

(
π
√
DD′

c|M|

)
,

where Is is the usual I-Bessel function.

Proof. We refer to [4] for the proof in the case n = m = 1 and to [5] in the case
n = 1, m is arbitrary. �

Remark 6.1. If s = k
2 −

m
4 (resp. s = 1 + m

4 −
k
2 ) , then the Poincaré series

P
(n,r)
k,M,s(τ, z) converges for k > m + 2 (resp. k < 0). In both cases Poincaré series

P
(n,r)
k,M,s(τ, z) is a harmonic Maass-Jacobi form of weight k and index M which is

holomorphic in Cm.

Remark 6.2. The Fourier coefficients c
(n,r)
y,s = c

(n,r)
k,M,s of the Poincaré series

P
(n,r)
k,M,s(τ, z) satisfy the the so-called Zagier-type duality with dual weights k and
m+ 2− k. More precisely, if D < 0 and D′ < 0, there is a constant hk,s depending
only on k and s such that

(6.12) c
(n,r)
k,M,s(n

′, r′) = hk,s c
(n′,r′)
m+2−k,M,s(n, r)
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while if D < 0 and D′ > 0, there is a constant ĥk,s depending only on k and s such
that

(6.13) c
(n,r)
k,M,s(n

′, r′) = ĥk,s c
(n′,r′)
m+2−k,M,s(n, r).

7. Skew-Holomorphic Jacobi Forms

We define the skew-slash action of GJ on C∞(H × Cm) as follows: If f ∈

C∞(H×Cm), and (M, (λ, µ;κ)) ∈ GJ with

(
a b
c d

)
∈ SL2(R) and (λ, µ;κ) ∈ H(m)

R ,

(
f |skk,M[(M, (λ, µ;κ))]

)
(τ, z) :

= (cτ + d)1−k |cτ + d|−1 e−2π iM[z+λτ+µ] c (cτ+d)−1

(7.1)

× e2π i tr(M(τλ tλ+ 2λ tz +κ+µ tλ)) f

(
aτ + b

cτ + d
,
z + λτ + µ

cτ + d

)
,

where τ ∈ H and z ∈ Cm.

Definition 7.1. A smooth f : H × Cm −→ C is said to be a skew-holomorphic
Jacobi form of weight k and index M if it is real analytic in τ and is holomorphic
in z ∈ Cm and satisfies the following conditions:

(SK1) f |skk,M[γ] = f for all γ ∈ ΓJ .

(SK2) The Fourier expansion of f is of the form

f(τ, z) =
∑

n∈Z, r∈Zm
D�−∞

c(n, r) eπDy/|M| e2π i n τ ζr.

We denote by Jskk,M the space of all skew-holomorphic Jacobi forms of weight k
and index M.

Remark 7.1. The notion of skew-holomorphic Jacobi forms was introduced by
N.-P. Skoruppa [18].

Let
en,r,M(τ, z) := e2π i (nτ+ 〈r,z〉) eπDy/|M|.

We define the Poincaré series

(7.2) P
(n,r),sk
k,M (τ, z) :=

∑
γ∈Γ∞1,m\Γ1,m

(
en,r,M|skk,M[γ]

)
(τ, z).

Theorem 7.1. The Poincaré series P
(n,r),sk
k,M (τ, z) defined in (7.2) is a cuspidal

skew-holomorphic Jacobi form of weight k and index M. And it has the Fourier
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expansion

P
(n,r),sk
k,M (τ, z) = eπDy/|M| θ

(r)
k−1,M(τ, z) e2π i nτ

+
∑

n′∈Z, r′∈Zm
D′>0

c(n′, r′) eπD
′y/|M| e2π i n′τ ζr

′
,

where θ
(r)
k,M(τ, z) is defined in Formula (6.9) and the coefficients c(n′, r′) are

c(n′, r′) = b(n′, r′) + (−1)kb(n′,−r′).

Here

b(n′, r′) : = 21−m2 π i1−k
(
D′

D

) k
2−

m+2
4

×
∑
c∈Z+

c−
m+2

2 Kc,M(n, r, n′,−r′) Jk−m+2
2

(
π
√
DD′

c|M|

)
.

Proof. The proof is analogous to that of Theorem 6.1. �

We define the following lowering operator

D
(M)
− =

(
τ − τ

2 i

) {
−(τ − τ) ∂τ − t(z − z)∂z +

τ − τ
8π i

M−1[∂z]

}
(7.3)

= −2 i y
(
y ∂τ + tv ∂z −

y

8π i
M−1[∂z]

)
.

We note that D
(M)
− satisfies the following relation

(7.4)
(
D

(M)
− φ

) ∣∣∣
k−2,M

[γ] = D
(M)
−
(
φ|k,M[γ]

)
for all φ ∈ C∞(H× Cm) and for all γ ∈ Γ1,m.

Now we define the differential operator

(7.5) ξk,M :=

(
τ − τ

2 i

)k− 5
2

D
(M)
− = yk−

5
2 D

(M)
− .

It is easily seen that if f is a harmonic Maass-Jacobi form of weight k and index
M which is holomorphic in Cm, then the image ξk,Mf of f under ξk,M is a skew-
holomorphic Jacobi form of weight 3− k and index M.

Theorem 7.2. The Poincaré series P
(n,r),sk
k,M (τ, z) span the space Jsk,cuspk,M of all

cuspidal skew-holomorphic Jacobi forms of weight k and index M.

Proof. The proof can be found in [18]. �
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Now we consider the special case s = k
2 −

m
4 and s = 1 + m

4 −
k
2 .

Proposition 7.1. The Poincaré series P
(n,r)

k,M, k2−
m
4

with k > 2+m is meromorphic.

If k < 0,

ξk,M

(
P

(n,r)

k,M,1+m
4 −

k
2

)
= ck,M P

(n,r),sk
3−k,M ,

where ck,M is a constant depending on k and M.

Proof. We refer to [5], p. 18 for the proof. �

Proposition 7.2. Let Jcusp,∗k,M be the space of all cuspidal harmonic Maass-Jacobi
forms of weight k and index M which are holomorphic in Cm. Then we have the
relation

ξk,M

(
Jcusp,∗k,M

)
= Jsk,cuspk,M .

Proof. We refer to [5], p. 18 for the proof. �

8. Covariant differential operators on H× Cm

Let G be a real Lie group, H a closed subgroup and V a finite dimensional
complex vector space. For an element x ∈ G we denote the coset xH by x. A 1-
cocycle of G on G/H with values in V is a smooth function α : G×G/H −→ GL(V )
satisfying the following condition

α(g1g2, x) = α(g2, x)α(g1, g2x)

for all g1, g2, x ∈ G. The associated right action of G on C∞
(
G/H

)
⊗ V is

f |α[g](x) := α(g, x)f(gx), g, x ∈ G

and the associated representation of H on V is

πα(h) := α(h, x),

where h ∈ H and e is the identity element of G.

Definition 8.1. Let V and V ′ be two finite dimensional complex vector spaces.
Let α and α′ be two 1-cocycles of G on G/H with values in V and V ′ respectively.
A differential operator D : C∞(G/H)⊗ V −→ C∞(G/H)⊗ V ′ is covariant from |α
to |α′ if for all g ∈ G and f ∈ C∞(G/H)⊗ V , we have

D
(
f |α[g]

)
= (Df)|α′ [g].

Let Dα,α′(G/H) be the space of all covariant differential operators from |α to |α′
and Dqα,α′(G/H) be the space of those of order ≤ q. When α = α′, we refer to such
operators as |α-invariant, and we write simply Dα(G/H) and Dqα(G/H)
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We consider our case

GJ = SL2(R) nH
(m)
R and KJ = SO(2) n S(m,R).

We observe that KJ is an abelian closed subgroup of GJ . We define the linear map
ξ : gJC −→ gJC by ξ(X) = X̂ with X ∈ gJC, where

Ĥ : = i (F − E), Ê :=
1

2
{H + i (E + F )} , F̂ :=

1

2
{H − i (E + F )} ,

R̂kl : =
1

2
Rkl, êj :=

1

2
(ej − i fj), f̂j :=

1

2
(ej + i fj).

It is easy to see that there is a unique KJ -splitting

(8.1) gJC = kJ∗ ⊕ pJ∗ ,

where

kJ∗ = span{Ĥ, R̂kl | 1 ≤ k ≤ l ≤ m }

and

pJ∗ = span{Ê, F̂ , êj , f̂j | 1 ≤ j ≤ m }.

We note that ξ is an automorphism of Lie algebras and so the given basis of pJ∗ is a

KJ -eigenbasis : the Ĥ=weights of Ê, F̂ , êj and f̂j are 1, −2, −1 and 1 respectively.
We take the scalar valued 1-cocycle α := γk,M defined by (3.7). We set M = (Mkl).
We let πk,M : KJ −→ GL1(C) be the one-dimensional representation of KJ defined
by

πk,M(h) := γk,M(h, e)−1,

where h ∈ KJ and e = (i, 0) = eKJ with the identity element e in GJ . We remark
that ξ maps the Casimir operator Ωm to

(
i
2

)m
Ωm.

Definition 8.2. Let k ∈ Z and M ∈ S(m,C). We define the raising operators
X+, Y+ and the lowering operators X− and Y−:

Xk,M
+ : = 2 i

(
∂τ + y−1 tv∂z + y−2M̃[v]

)
, Xk,M

− := −2 i y
(
y ∂τ + tv ∂z

)
,

Y k,M+ : = i ∂z + 2 i y−1M̃v, Y k,M− := − i y ∂z̃, M̃ := 2π iM.

We write Y k,M±,j for the j-th entry of Y k,M± (1 ≤ j ≤ m).

For brevity, we write

D(k,M; k′,M′) := Dγk,M,γk′,M′

(
GJ/KJ

)
and

Dq(k,M; k′,M′) := Dqγk,M,γk′,M′

(
GJ/KJ

)
,
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where k, k′ ∈ Z, M,M′ ∈ S(m,C), q ∈ Z ∪ {0} and GJ/KJ = H × Cm. We also
write

Dk,M := D(k,M; k,M) and and Dqk,M := Dq(k,M; k,M).

Conley and Raum [5] obtained the following three results.

Proposition 8.1. (1) The spaces D1(k,M; k ± 2,M) are one-dimensional. In fact

D1(k,M; k ± 2,M) = CXk,M
± .

(2) D1(k,M; k ± 1,M) = Span{Y k,M±,j | 1 ≤ j ≤ m } are m-dimensional.

(3) D0
k,M = D1

k,M = C.

(4) All other D1(k,M; k′,M′) are zero.

(5) We have the following commutation relations

[X−, X+] = −k, [Y−,j , Y+,j′ ] = i M̃jj′ , [X−, Y+] = −Y−,

[Y−, X+] = Y+, [X+, Y+] = [X−, Y−] = 0.

Proposition 8.2. Any covariant differential operator of order q may be expressed
as a linear combination of products up to q raising and lowering operators. There
is a unique such expression in which the raising operators are all to the left of the
lowering operators. The expression of this form for the Casimir operator Ck,M is

Ck,M = −2X+X− + i
(
X+ M̃−1[Y−]− M̃−1[Y+]X−

)
(8.2)

−1

2

{
M̃−1[Y+] M̃−1[Y−]− tY+

(
tY+ M̃−1Y−

)
M̃−1Y−

}
− i

2
(2 k −m− 3) tY+ M̃−1Y−.

Proposition 8.3. The algebra Dk,M is generated by D3
k,M. Bases for D2

k,M and

D3
k,M are given by

D2
k,M = Span{1, X+X−, Y+,i Y−,j | 1 ≤ i, j ≤ m },

D3
k,M = Span{X+ Y−,i Y−,j , Y+,i Y+,j X− | 1 ≤ i ≤ j ≤ m } ⊕ D2

k,M.

Therefore we have

dimC D2
k,M = m2 + 2 and dimC D3

k,M = 2m2 +m+ 2.
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9. Final remarks

In this final section we briefly remark the general case n > 1 and m > 1.

We let
Hn = {Ω ∈ C(n,n) | Ω = tΩ, Im Ω > 0 }

be the Siegel upper half plane of degree n and let

Sp(n,R) = {M ∈ R(2n,2n) | tMJnM = Jn }

be the symplectic group of degree n, where

Jn =

(
0 In
−In 0

)
.

Sp(n,R) acts on Hn transitively by

(9.1) M · Ω = (AΩ +B)(CΩ +D)−1,

where M =

(
A B
C D

)
∈ Sp(n,R) and Ω ∈ Hn.

For brevity, we write Gn = Sp(n,R). The isotropy subgroup Kn at iIn for the
action (9.1) is a maximal compact subgroup given by

Kn =

{(
A −B
B A

) ∣∣∣ A tA+B tB = In, A
tB = B tA, A,B ∈ R(n,n)

}
.

Let kn be the Lie algebra of Kn. Then the Lie algebra gn of Gn has a Cartan
decomposition gn = kn ⊕ pn, where

gn =

{(
X1 X2

X3 − tX1

) ∣∣∣ X1, X2, X3 ∈ R(n,n), X2 = tX2, X3 = tX3

}
,

kn =

{(
X −Y
Y X

)
∈ R(2n,2n)

∣∣∣ tX +X = 0, Y = tY

}
,

pn =

{(
X Y
Y −X

) ∣∣∣ X = tX, Y = tY, X, Y ∈ R(n,n)

}
.

The subspace pn of gn may be regarded as the tangent space of Hn at iIn.

We consider the Heisenberg group

H
(n,m)
R =

{
(λ, µ;κ) | λ, µ ∈ R(m,n), κ ∈ R(m,m), κ+ µ tλ symmetric

}
endowed with the following multiplication law(

λ, µ;κ
)
◦
(
λ′, µ′;κ′

)
=
(
λ+ λ′, µ+ µ′;κ+ κ′ + λ tµ′ − µ tλ′

)
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with
(
λ, µ;κ

)
,
(
λ′, µ′;κ′

)
∈ H

(n,m)
R . We define the semidirect product of Sp(n,R)

and H
(n,m)
R

GJn,m = Sp(n,R) nH
(n,m)
R

endowed with the following multiplication law(
M, (λ, µ;κ)

)
·
(
M ′, (λ′, µ′;κ′ )

)
=
(
MM ′, (λ̃+ λ′, µ̃+ µ′;κ+ κ′ + λ̃ tµ′ − µ̃ tλ′ )

)
with M,M ′ ∈ Sp(n,R), (λ, µ;κ), (λ′, µ′;κ′) ∈ H(n,m)

R and (λ̃, µ̃) = (λ, µ)M ′. Then
GJn,m acts on Hn × C(m,n) transitively by

(9.2)
(
M, (λ, µ;κ)

)
· (Ω, Z) =

(
M · Ω, (Z + λΩ + µ)(CΩ +D)−1

)
,

where M =

(
A B
C D

)
∈ Sp(n,R), (λ, µ;κ) ∈ H(n,m)

R and (Ω, Z) ∈ Hn × C(m,n).

The stabilizer KJ
n,m of GJn,m at (iIn, 0) for the action (9.2) is given by

KJ
n,m =

{(
k, (0, 0;κ)

) ∣∣ k ∈ Kn, κ = tκ ∈ R(m,m)
}
.

Therefore Hn×C(m,n) ∼= GJn,m/K
J
n,m is a homogeneous space of non-reductive type.

The Lie algebra gJn,m of GJn,m has a decomposition

gJn,m = kJn,m + pJn,m,

where

gJn,m =
{(
Z, (P,Q,R)

) ∣∣ Z ∈ gn, P,Q ∈ R(m,n), R = tR ∈ R(m,m)
}
,

kJn,m =
{(
X, (0, 0, R)

) ∣∣ X ∈ kn, R = tR ∈ R(m,m)
}
,

pJn,m =
{(
Y, (P,Q, 0)

) ∣∣ Y ∈ pn, P,Q ∈ R(m,n)
}
.

Thus the tangent space of the homogeneous space Hn,m at (iIn, 0) is identified with
pJn,m. We note that the Jacobi group GJn,m is not a reductive Lie group and that

the homogeneous space Hn × C(m,n) is not a symmetric space. From now on, for
brevity we write Hn,m = Hn × C(m,n), called the Siegel-Jacobi space of degree n
and index m.

For a coordinate (Ω, Z) ∈ Hn,m with Ω = (ωµν) ∈ Hn and Z = (zkl) ∈ C(m,n),
we put

Ω = X + iY, X = (xµν), Y = (yµν) real,

Z = U + iV, U = (ukl), V = (vkl) real,

dΩ = (dωµν), dΩ = (dωµν),

dZ = (dzkl), dZ = (dzkl),



A Note on Maass-Jacobi Forms II 81

∂

∂Ω
=

(
1 + δµν

2

∂

∂ωµν

)
,

∂

∂Ω
=

(
1 + δµν

2

∂

∂ωµν

)
,

∂

∂Z
=


∂

∂z11
. . . ∂

∂zm1

...
. . .

...
∂

∂z1n
. . . ∂

∂zmn

 ,
∂

∂Z
=


∂

∂z11
. . . ∂

∂zm1

...
. . .

...
∂

∂z1n
. . . ∂

∂zmn

 ,

where δij denotes the Kronecker delta symbol.

C. L. Siegel [17] introduced the symplectic metric ds2
n on Hn invariant under

the action (9.1) of Sp(n,R) given by

ds2
n = σ

(
Y −1dΩY −1dΩ

)
(9.3)

and H. Maass [11] proved that the differential operator

∆n = 4σ

(
Y

t(
Y
∂

∂Ω

)
∂

∂Ω

)
(9.4)

is the Laplacian of Hn for the symplectic metric ds2
n. Here σ(A) denotes the trace

of a square matrix A. In [23], the author proved that for any two positive real

numbers A and B, the following metric

ds2
n,m;A,B = Aσ

(
Y −1dΩY −1dΩ

)
+B

{
σ
(
Y −1 tV V Y −1dΩY −1dΩ

)
+ σ

(
Y −1 t(dZ) dZ

)
(9.5)

−σ
(
V Y −1dΩY −1 t(dZ)

)
− σ

(
V Y −1dΩY −1 t(dZ)

)}
is a Riemannian metric on Hn,m which is invariant under the action (9.2) of the
Jacobi group GJn,m.

The author [23] proved that for any two positive real numbers A and B, the
Laplacian ∆n,m;A,B of (Hn,m, ds2

n,m;A,B) is given by

∆n,m;A,B =
4

A

{
σ

(
Y

t(
Y
∂

∂Ω

)
∂

∂Ω

)
+ σ

(
V Y −1 tV

t(
Y
∂

∂Z

)
∂

∂Z

)

+σ

(
V

t(
Y
∂

∂Ω

)
∂

∂Z

)
+ σ

(
tV

t(
Y
∂

∂Z

)
∂

∂Ω

)}
(9.6)

+
4

B
σ

(
Y

∂

∂Z

t( ∂

∂Z

))
.
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Using GJn,m-invariant differential operators on the Siegel-Jacobi space Hn,m, we
introduce a notion of Maass-Jacobi forms.

Definition 9.1. Let
Γn,m := Sp(n,Z) nH

(n,m)
Z

be the discrete subgroup of GJ , where

H
(n,m)
Z =

{
(λ, µ;κ) ∈ H(n,m)

R | λ, µ, κ are integral
}
.

A smooth function f : Hn,m −→ C is called a Maass-Jacobi form on Hn,m if f
satisfies the following conditions (MJ1)-(MJ3) :

(MJ1) f is invariant under Γn,m.
(MJ2) f is an eigenfunction of the Laplacian ∆n,m;A,B (cf. (9.6)).
(MJ3) f has a polynomial growth, that is, there exist a constant C > 0 and a

positive integer N such that

|f(X + iY, Z)| ≤ C |p(Y )|N as detY −→∞,

where p(Y ) is a polynomial in Y = (yij).

Remark 9.1. Let D∗ be a commutative subalgebra of D(Hn,m) containing the
Laplacian ∆n,m;A,B . We say that a smooth function f : Hn,m −→ C is a Maass-
Jacobi form with respect to D∗ if f satisfies the conditions (MJ1), (MJ2)∗ and
(MJ3) : the condition (MJ2)∗ is given by

(MJ2)∗ f is an eigenfunction of any invariant differential operator in D∗.

Let ρ be a rational representation of GL(n,C) on a finite dimensional complex
vector space Vρ. Let M ∈ R(m,m) be a symmetric half-integral semi-positive definite
matrix of degree m. Let C∞(Hn,m, Vρ) be the algebra of all C∞ functions on Hn,m
with values in Vρ. Let Jρ,M : GJn,m×Hn,m −→ GL(Vρ) be the canonical automorphic

factor for GJn,m on Hn,m given by

Jρ,M(g, (Ω, Z)) = e2πi tr(M[Z+λΩ+µ](CΩ+D)−1C)(9.7)

× e−2πi tr(M(λΩ tλ+ 2λ tZ +κ+µ tλ))ρ(CΩ +D),

where g = (M, (λ, µ;κ)) ∈ GJn.m with M =

(
A B
C D

)
∈ Sp(n,R) and (λ, µ;κ) ∈

H
(n,m)
R . We recall the Siegel’s notation α[β] = tβαβ for suitable matrices α and β.

We define the |ρ,M-slash action of GJn,m on C∞(Hn,m, Vρ) as follows: If f ∈
C∞(Hn,m, Vρ) and g ∈ GJn,m,

(9.8)
(
f |ρ,M[g]

)
(Ω, Z) := Jρ,M(g, (Ω, Z))−1f(g · (Ω, Z)).
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We define Dρ,M to be the algebra of all differential operators D on Hn,m satisfying
the following condition

(9.9) (Df)|ρ,M[g] = D(f |ρ,M[g])

for all f ∈ C∞(Hn,m, Vρ) and for all g ∈ GJn,m. We denote by Zρ,M the center of
Dρ,M.

We define an another notion of Maass-Jacobi forms as follows.

Definition 9.2. A vector-valued smooth function φ : Hn,m −→ Vρ is called a
Maass-Jacobi form on Hn,m of type ρ and index M if it satisfies the following
conditions (MJ1)ρ,M, (MJ2)ρ,M and (MJ3)ρ,M :

(MJ1)ρ,M φ|ρ,M[γ] = φ for all γ ∈ Γn,m.
(MJ2)ρ,M f is an eigenfunction of all differential operators in the center Zρ,M

of Dρ,M.
(MJ3)ρ,M f has a growth condition

φ(Ω, Z) = O
(
ea detY · e2π tr(M[V ]Y −1)

)
as detY −→∞ for some a > 0.

The case n = 1, m = 1 and ρ = detk(k = 0, 1, 2, · · · ) was studied by R. Bendt
and R. Schmidt [1], A. Pitale [14] and K. Bringmann and O. Richter [4]. The case
n = 1, m =arbitrary and ρ = detk(k = 1, 2, · · · ) was dealt with by C. Conley
and M. Raum [5]. In [5] the authors proved that the center Zdetk,M of Ddetk,M is

the polynomial algebra with one generator Ck,M (cf. Theorem 3.2), the so-called
Casimir operator which is a |detk,M-slash invariant differential operator of degree
three for the case n = m = 1 or of degree four for the case n = 1, m ≥ 2. As
described in Section 6, Bringmann and Richter [4] considered the Poincaré series

P
(n,r)
k,M,s (the case n = m = 1) (cf. (6.7)) that is a harmonic Maass-Jacobi form in

the sense of Definition 9.2 and investigated its Fourier expansion and its Fourier

coefficients. Here the harmonicity of P
(n,r)
k,M,s means that Ck,MP

(n,r)
k,M,s = 0, i.e., P

(n,r)
k,M,s

is an eigenfunction of Ck,M with zero eigenvalue. Conley and Raum [5] generalized
the results in [14] and [4] to the case n = 1 and m is an arbitrary positive integer.

Remark 9.2. In [3], Bringmann, Conley and Richter proved that the center of the
algebra of differential operators invariant under the action of the Jacobi group over
a complex quadratic field is generated by two Casimir operators of degree three.
They also introduce an analogue of Kohnen’s plus space for modular forms of half-
integral weight over K = Q(i), and provide a lift from it to the space of Jacobi
forms over K.

Definition 9.3. Let ρ and ρ′ be two rational representations of GL(n,C) on finite
dimensional complex vector spaces Vρ and V ′ρ respectively. Let M and M′ be two
symmetric half-integral semi-positive matrices of degree m. A differential operator
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T : C∞(Hn,m)⊗Vρ −→ C∞(Hn,m)⊗Vρ′ is covariant from |ρ,M to |ρ′,M′ if T satisfies
the following condition

(9.10) T
(
f |ρ,M[g]

)
= (Tf)|ρ′,M′ [g])

for all f ∈ C∞(Hn,m)⊗ Vρ and for all g ∈ GJn,m.

Let D(ρ,M; ρ′,M′) be the space of all covariant differential operators on Hn,m
from |ρ,M to |ρ′,M′ , and let Dq(ρ,M; ρ′,M′) be the space of all covariant differential
operators of order ≤ q on Hn,m from |ρ,M to |ρ′,M′ . When ρ = ρ′ and M = M′,
we refer to such differential operators as |ρ,M-invariant, and we write simply Dρ,M
and Dqρ,M instead of D(ρ,M; ρ,M) and Dq(ρ,M; ρ,M) respectively.

We present the natural problems.

Problem 1. Find the generators of the algebra Dρ,M.

Problem 2. Find all the relations among a complete list of generators of Dρ,M.

Finally we consider the special case that ρ = 1 is a trivial representation of
GL(n,C) and M = 0. Let

Tn,m := S(m,C)× C(m,n)

be the complex vector space of dimension n(n+1)
2 +mn. We obtain the natural action

of U(n) on Tn,m given by

(9.11) h · (ω, ζ) := (hω th, ζ th), h ∈ U(n), ω ∈ S(m,C), ζ ∈ C(m,n).

We refer to [26] for a precise detail. Then the action (9.11) induces the action τn,m
of U(n) on the polynomial algebra Pol(Tn,m) consisting of all polynomial functions
on Tn,m. We denote by Pol(Tn,m)U(n) the subalgebra of Pol(Tn,m) invariant under
the action τn,m of U(n). The we have the so-called Helgason map

Θn,m : Pol(Tn,m)U(n) −→ D1,0 = D(1, 0; 1, 0)

defined by

(9.12)
(

Θn,m(P )f
)

(gKJ) =

[
P

(
∂

∂tα

)
f

(
g exp

(
N?∑
α=1

tαηα

)
KJ

)]
(tα)=0

,

where N? = n(n + 1) + 2mn,
{
ηα | 1 ≤ α ≤ N?

}
is a basis of pJn,m and P ∈

Pol(Tn,m)U(n). The map Θn,m is a linear bijection but is not multiplicative.

The following natural problems arise.

Problem 3. Find a complete list of explicit generators of Pol(Tn,m)U(n).
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Problem 4. Find all the relations among a complete list of generators of Pol(Tn,m)U(n).

Problem 5. Find an easy or effective way to express the images of the above in-
variant polynomials or generators of Pol(Tn,m)U(n) under the Helgason map Θn,m

explicitly.

Recently Problem 3 was solved completely in [9].
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