Lattice representations of Heisenberg groups

Jae-Hyun Yang*

Received: 24 August 1997 / Accepted: 12 October 1999

Mathematics Subject Classification (1991): 22E27, 11F27

1. Introduction

For any positive integers g and h, we consider the Heisenberg group

$$H_{\mathbb{R}}^{(g,h)} := \{ (\lambda, \mu, \kappa) \mid \lambda, \mu \in \mathbb{R}^{(h,g)}, \kappa \in \mathbb{R}^{(h,h)}, \kappa + \mu^t \lambda \text{ symmetric } \}.$$

Recall that the multiplication law is

$$(\lambda, \mu, \kappa) \circ (\lambda', \mu', \kappa') := (\lambda + \lambda', \mu + \mu', \kappa + \kappa' + \lambda^t \mu' - \mu^t \lambda').$$

Here $\mathbb{R}^{(h,g)}$ (resp. $\mathbb{R}^{(h,h)}$) denotes the set of all $h \times g$ (resp. $h \times h$) real matrices.

The Heisenberg group $H_{\mathbb{R}}^{(g,h)}$ is embedded into the symplectic group $Sp(g+h,\mathbb{R})$ via the mapping

$$H_{\mathbb{R}}^{(g,h)}\ni(\lambda,\mu,\kappa)\longmapsto\begin{pmatrix}E_g&0&0&{}^t\mu\\\lambda&E_h&\mu&\kappa\\0&0&E_g-{}^t\lambda\\0&0&0&E_h\end{pmatrix}\in Sp(g+h,\mathbb{R}).$$

This Heisenberg group is a 2-step nilpotent Lie group and is important in the study of toroidal compactifications of Siegel moduli spaces. In fact, $H_{\mathbb{R}}^{(g,h)}$ is obtained as the unipotent radical of the parabolic subgroup of $Sp(g+h,\mathbb{R})$ associated with the rational boundary component F_g (cf. [F-C] p. 123 or [N] p. 21). For the motivation of the study of this Heisenberg group we refer to [Y4]-[Y8] and [Z]. We refer to [Y1]-[Y3] for more results on $H_{\mathbb{R}}^{(g,h)}$.

J.-H. Yang

Max-Planck Institut für Mathematik, Gottfried-Claren-Strasse 26, D-53225 Bonn, Germany *Present address*: Department of Mathematics, Inha University, Inchon 402-751, Republic of Korea (e-mail: jhyang@math.inha.ac.kr)

 $^{^{\}star}$ This work was partially supported by the Max-Planck-Institut für Mathematik and TGRC-KOSEF.

In [C], P. Cartier stated without proof that for h=1, the lattice representation of $H_{\mathbb{R}}^{(g,1)}$ associated to the lattice L is unitarily equivalent to the direct sum of $[L^*:L]^{\frac{1}{2}}$ copies of the Schrödinger representation of $H_{\mathbb{R}}^{(g,1)}$, where L^* is the dual lattice of L with respect to a certain nondegenerate alternating bilinear form. R. Berndt proved the above fact for the case h=1 in his lecture notes [B]. In this paper, we give a complete proof of Cartier's theorem for $H_{\mathbb{R}}^{(g,h)}$.

Main Theorem. Let \mathcal{M} be a positive definite, symmetric half-integral matrix of degree h and L be a self-dual lattice in $\mathbb{C}^{(h,g)}$. Then the lattice representation $\pi_{\mathcal{M}}$ of $H_{\mathbb{R}}^{(g,h)}$ associated with L and \mathcal{M} is unitarily equivalent to the direct sum of $(\det 2\mathcal{M})^g$ copies of the Schrödinger representation of $H_{\mathbb{R}}^{(g,h)}$. For more details, we refer to Sect. 3.

The paper is organized as follows. In Sect. 2, we review the Schrödinger representations of the Heisenberg group $H_{\mathbb{R}}^{(g,h)}$. In Sect. 3, we prove the main theorem. In the final section, we provide a relation between lattice representations and theta functions.

Acknowledgements. This work was in part done during my stay at the Max-Planck-Institut für Mathematik in Bonn. I am very grateful to the institute for hospitality and financial support. I also would like to give my hearty thanks to the Department of Mathematics at Harvard University for its hospitality during my short stay in Cambridge.

Notations. We denote by \mathbb{Z} , \mathbb{R} and \mathbb{C} the ring of integers, the field of real numbers, and the field of complex numbers respectively. The symbol \mathbb{C}_1^{\times} denotes the multiplicative group consisting of all complex numbers z with |z|=1, and the symbol $Sp(g,\mathbb{R})$ the symplectic group of degree g, H_g the Siegel upper half plane of degree g. The symbol ":=" means that the expression on the right hand side is the definition of that on the left. We denote by \mathbb{Z}^+ the set of all positive integers, by $F^{(k,l)}$ the set of all $k \times l$ matrices with entries in a commutative ring F. For any $M \in F^{(k,l)}$, tM denotes the transpose matrix of M. For $A \in F^{(k,k)}$, $\sigma(A)$ denotes the trace of A. For $A \in F^{(k,l)}$ and $B \in F^{(k,k)}$, we set $B[A] = {}^tABA$. We denote the identity matrix of degree k by E_k . For a positive integer n, Symm (n, K) denotes the vector space consisting of all symmetric $n \times n$ matrices with entries in a field K.

2. Schrödinger representations

First of all, we observe that $H_{\mathbb{R}}^{(g,h)}$ is a 2-step nilpotent Lie group. It is easy to see that the inverse of an element $(\lambda, \mu, \kappa) \in H_{\mathbb{R}}^{(g,h)}$ is given by

$$(\lambda, \mu, \kappa)^{-1} = (-\lambda, -\mu, -\kappa + \lambda^{t}\mu - \mu^{t}\lambda).$$

Now we set

$$(2.1) \qquad [\lambda, \mu, \kappa] := (0, \mu, \kappa) \circ (\lambda, 0, 0) = (\lambda, \mu, \kappa - \mu^t \lambda).$$

Then $H^{(g,h)}_{\mathbb{R}}$ may be regarded as a group equipped with the following multiplication

(2.2)
$$[\lambda, \mu, \kappa] \diamond [\lambda_0, \mu_0, \kappa_0] := [\lambda + \lambda_0, \mu + \mu_0, \kappa + \kappa_0 + \lambda^t \mu_0 + \mu_0^t \lambda].$$

The inverse of $[\lambda, \mu, \kappa] \in H_{\mathbb{R}}^{(g,h)}$ is given by

$$[\lambda, \mu, \kappa]^{-1} = [-\lambda, -\mu, -\kappa + \lambda^t \mu + \mu^t \lambda].$$

We set

$$(2.3) K := \left\{ [0, \mu, \kappa] \in H_{\mathbb{R}}^{(g,h)} \middle| \mu \in \mathbb{R}^{(h,g)}, \ \kappa = {}^t \kappa \in \mathbb{R}^{(h,h)} \right\}.$$

Then K is a commutative normal subgroup of $H_{\mathbb{R}}^{(g,h)}$. Let \hat{K} be the Pontrajagin dual of K, i.e., the commutative group consisting of all unitary characters of K. Then \hat{K} is isomorphic to the additive group $\mathbb{R}^{(h,g)} \times \operatorname{Symm}(h,\mathbb{R})$ via

$$(2.4) \langle a, \hat{a} \rangle := e^{2\pi i \sigma(\hat{\mu}^t \mu + \hat{\kappa} \kappa)}, a = [0, \mu, \kappa] \in K, \hat{a} = (\hat{\mu}, \hat{\kappa}) \in \hat{K}.$$

We put

$$(2.5) S := \left\{ [\lambda, 0, 0] \in H_{\mathbb{R}}^{(g,h)} \middle| \lambda \in \mathbb{R}^{(h,g)} \right\} \cong \mathbb{R}^{(h,g)}.$$

Then *S* acts on *K* as follows:

(2.6)
$$\alpha_{\lambda}([0, \mu, \kappa]) := [0, \mu, \kappa + \lambda^{t} \mu + \mu^{t} \lambda], [\lambda, 0, 0] \in S.$$

It is easy to see that the Heisenberg group $\left(H_{\mathbb{R}}^{(g,h)},\diamond\right)$ is isomorphic to the semi-direct product $S \ltimes K$ of S and K whose multiplication is given by

$$(\lambda, a) \cdot (\lambda_0, a_0) := (\lambda + \lambda_0, a + \alpha_\lambda(a_0)), \quad \lambda, \lambda_0 \in S, \ a, a_0 \in K.$$

On the other hand, S acts on \hat{K} by

(2.7)
$$\alpha_1^*(\hat{a}) := (\hat{\mu} + 2\hat{\kappa}\lambda, \hat{\kappa}), [\lambda, 0, 0] \in S, a = (\hat{\mu}, \hat{\kappa}) \in \hat{K}.$$

Then, we have the relation $< \alpha_{\lambda}(a), \hat{a} > = < a, \alpha_{\lambda}^*(\hat{a}) >$ for all $a \in K$ and $\hat{a} \in \hat{K}$.

We have two types of S-orbits in \hat{K} .

TYPE I. Let $\hat{\kappa} \in \text{Symm}(h, \mathbb{R})$ with $\hat{\kappa} \neq 0$. The *S*-orbit of $\hat{a}(\hat{\kappa}) := (0, \hat{\kappa}) \in \hat{K}$ is given by

(2.8)
$$\hat{\mathcal{O}}_{\hat{\kappa}} := \left\{ (2\hat{\kappa}\lambda, \hat{\kappa}) \in \hat{K} \mid \lambda \in \mathbb{R}^{(h,g)} \right\} \cong \mathbb{R}^{(h,g)}.$$

Type II. Let $\hat{y} \in \mathbb{R}^{(h,g)}$. The S-orbit $\hat{\mathcal{O}}_{\hat{y}}$ of $\hat{a}(\hat{y}) := (\hat{y},0)$ is given by

(2.9)
$$\hat{\mathcal{O}}_{\hat{y}} := \{ (\hat{y}, 0) \} = \hat{a}(\hat{y}).$$

We have

$$\hat{K} = \left(\bigcup_{\hat{k} \in \operatorname{Symm}(h,\mathbb{R})} \hat{\mathcal{O}}_{\hat{k}}\right) \bigcup \left(\bigcup_{\hat{y} \in \mathbb{R}^{(h,g)}} \hat{\mathcal{O}}_{\hat{y}}\right)$$

as a set. The stabilizer $S_{\hat{\kappa}}$ of S at $\hat{a}(\hat{\kappa}) = (0, \hat{\kappa})$ is given by

$$(2.10) S_{\hat{\kappa}} = \{0\}.$$

And the stabilizer $S_{\hat{y}}$ of S at $\hat{a}(\hat{y}) = (\hat{y}, 0)$ is given by

(2.11)
$$S_{\hat{y}} = \left\{ \left[\lambda, 0, 0 \right] \middle| \lambda \in \mathbb{R}^{(h,g)} \right\} = S \cong \mathbb{R}^{(h,g)}.$$

From now on, we set $G := H_{\mathbb{R}}^{(g,h)}$ for brevity. It is known that K is a closed, commutative normal subgroup of G. Since $(\lambda, \mu, \kappa) = (0, \mu, \kappa + \mu^t \lambda) \circ (\lambda, 0, 0)$ for $(\lambda, \mu, \kappa) \in G$, the homogeneous space $X := K \setminus G$ can be identified with $\mathbb{R}^{(h,g)}$ via

$$Kg = K \circ (\lambda, 0, 0) \longmapsto \lambda, \quad g = (\lambda, \mu, \kappa) \in G.$$

We observe that G acts on X by

$$(2.12) (Kg) \cdot g_0 := K(\lambda + \lambda_0, 0, 0) = \lambda + \lambda_0,$$

where $g = (\lambda, \mu, \kappa) \in G$ and $g_0 = (\lambda_0, \mu_0, \kappa_0) \in G$.

If $g = (\lambda, \mu, \kappa) \in G$, we have

(2.13)
$$k_g = (0, \mu, \kappa + \mu^t \lambda), \quad s_g = (\lambda, 0, 0)$$

in the Mackey decomposition of $g = k_g \circ s_g$ (cf. [M]). Thus if $g_0 = (\lambda_0, \mu_0, \kappa_0) \in G$, then we have

$$(2.14) s_g \circ g_0 = (\lambda, 0, 0) \circ (\lambda_0, \mu_0, \kappa_0) = (\lambda + \lambda_0, \mu_0, \kappa_0 + \lambda^t \mu_0)$$

and so

$$(2.15) k_{s_{\sigma} \circ g_0} = (0, \mu_0, \kappa_0 + \mu_0{}^t \lambda_0 + \lambda{}^t \mu_0 + \mu_0{}^t \lambda).$$

For a real symmetric matrix $c={}^tc\in\mathbb{R}^{(h,h)}$ with $c\neq 0$, we consider the one-dimensional unitary representation σ_c of K defined by

(2.16)
$$\sigma_c\left((0,\mu,\kappa)\right) := e^{2\pi i \sigma(c\kappa)} I, \quad (0,\mu,\kappa) \in K,$$

where I denotes the identity mapping. Then the induced representation $U(\sigma_c) := \operatorname{Ind}_K^G \sigma_c$ of G induced from σ_c is realized in the Hilbert space $\mathcal{H}_{\sigma_c} = L^2(X, d\dot{g}, G)$

 \mathbb{C}) $\cong L^2\left(\mathbb{R}^{(h,g)},d\xi\right)$ as follows. If $g_0=(\lambda_0,\mu_0,\kappa_0)\in G$ and $x=Kg\in X$ with $g=(\lambda,\mu,\kappa)\in G$, we have

$$(2.17) \qquad \left(U_{g_0}(\sigma_c)f\right)(x) = \sigma_c\left(k_{s_v \circ g_0}\right)(f(xg_0)), \quad f \in \mathcal{H}_{\sigma_c}.$$

It follows from (2.15) that

$$(2.18) \qquad (U_{e_0}(\sigma_c) f)(\lambda) = e^{2\pi i \sigma \{c(\kappa_0 + \mu_0 t_{\lambda_0} + 2\lambda t_{\mu_0})\}} f(\lambda + \lambda_0).$$

Here, we identified x = Kg (resp. $xg_0 = Kgg_0$) with λ (resp. $\lambda + \lambda_0$). The induced representation $U(\sigma_c)$ is called the *Schrödinger representation* of G associated with σ_c . Thus $U(\sigma_c)$ is a monomial representation.

Now, we denote by \mathcal{H}^{σ_c} the Hilbert space consisting of all functions $\phi: G \longrightarrow \mathbb{C}$ which satisfy the following conditions:

- (1) $\phi(g)$ is measurable with respect to dg,
- $(2) \phi ((0, \mu, \kappa) \circ g)) = e^{2\pi i \sigma(c\kappa)} \phi(g) \text{ for all } g \in G,$
- (3) $\|\phi\|^2 := \int_X |\phi(g)|^2 d\dot{g} < \infty, \quad \dot{g} = Kg,$

where dg (resp. $d\dot{g}$) is a G-invariant measure on G (resp. $X = K \setminus G$). The inner product (,) on \mathcal{H}^{σ_c} is given by

$$(\phi_1,\phi_2) := \int_G \phi_1(g) \overline{\phi_2(g)} dg \quad \text{for } \phi_1, \ \phi_2 \in \mathcal{H}^{\sigma_c}.$$

We observe that the mapping $\Phi_c:\mathcal{H}_{\sigma_c}\longrightarrow\mathcal{H}^{\sigma_c}$ defined by

$$(2.19) \quad (\Phi_c(f))(g) := e^{2\pi i \sigma \{c(\kappa + \mu^t \lambda)\}} f(\lambda), \quad f \in \mathcal{H}_{\sigma_c}, \ g = (\lambda, \mu, \kappa) \in G$$

is an isomorphism of Hilbert spaces. The inverse $\Psi_c:\mathcal{H}^{\sigma_c}\longrightarrow\mathcal{H}_{\sigma_c}$ of Φ_c is given by

$$(2.20) \qquad (\Psi_c(\phi))(\lambda) := \phi((\lambda, 0, 0)), \quad \phi \in \mathcal{H}^{\sigma_c}, \ \lambda \in \mathbb{R}^{(h,g)}.$$

The Schrödinger representation $U(\sigma_c)$ of G on \mathcal{H}^{σ_c} is given by

$$(2.21) \qquad (U_{g_0}(\sigma_c)\phi)(g) = e^{2\pi i \sigma \{c(\kappa_0 + \mu_0{}^t\lambda_0 + \lambda{}^t\mu_0 - \lambda_0{}^t\mu)\}} \phi((\lambda_0, 0, 0) \circ g),$$

where $g_0 = (\lambda_0, \mu_0, \kappa_0), \ g = (\lambda, \mu, \kappa) \in G$ and $\phi \in \mathcal{H}^{\sigma_c}$. (2.21) can be expressed as follows.

$$(2.22) \quad \left(U_{g_0}(\sigma_c)\phi\right)(g) = e^{2\pi i \sigma \{c(\kappa_0 + \kappa + \mu_0{}^t\lambda_0 + \mu{}^t\lambda + 2\lambda{}^t\mu_0)\}}\phi((\lambda_0 + \lambda, 0, 0)).$$

Theorem 2.1. Let c be a positive symmetric half-integral matrix of degree h. Then the Schrödinger representation $U(\sigma_c)$ of G is irreducible.

Proof. The proof can be found in [Y1], theorem 3. \Box

3. Proof of the Main Theorem

Let $L:=\mathbb{Z}^{(h,g)}\times\mathbb{Z}^{(h,g)}$ be the lattice in the vector space $V\cong\mathbb{C}^{(h,g)}$. Let B be an alternating bilinear form on V such that $B(L,L)\subset\mathbb{Z}$, that is, \mathbb{Z} -valued on $L\times L$. The dual L_R^* of L with respect to B is defined by

$$L_B^* := \{ v \in V \mid B(v, l) \in \mathbb{Z} \text{ for all } l \in L \}.$$

Then $L \subset L_B^*$. If B is nondegenerate, L_B^* is also a lattice in V, called the *dual lattice* of L. In case B is nondegenerate, there exist a \mathbb{Z} -basis $\{\xi_{11}, \xi_{12}, \cdots, \xi_{hg}, \eta_{11}, \eta_{12}, \cdots, \eta_{hg}\}$ of L and a set $\{e_{11}, e_{12}, \cdots, e_{hg}\}$ of positive integers such that $e_{11}|e_{12}, e_{12}|e_{13}, \cdots, e_{h,g-1}|e_{hg}$ for which

$$\begin{pmatrix} B(\xi_{ka}, \xi_{lb}) & B(\xi_{ka}, \eta_{lb}) \\ B(\eta_{ka}, \xi_{lb}) & B(\eta_{ka}, \eta_{lb}) \end{pmatrix} = \begin{pmatrix} 0 & e \\ -e & 0 \end{pmatrix},$$

where $1 \le k, l \le h$, $1 \le a, b \le g$ and $e := \text{diag}(e_{11}, e_{12}, \dots, e_{hg})$ is the diagonal matrix of degree hg with entries $e_{11}, e_{12}, \dots, e_{hg}$. It is well known that $[L_B^*: L] = (\det e)^2 = (e_{11}e_{12}\cdots e_{hg})^2$ (cf. [I] p. 72). The number $\det e$ is called the *Pfaffian* of B.

Now, we consider the following subgroups of G:

(3.1)
$$\Gamma_L := \left\{ (\lambda, \mu, \kappa) \in G \mid (\lambda, \mu) \in L, \ \kappa \in \mathbb{R}^{(h,h)} \right\}$$

and

(3.2)
$$\Gamma_{L_B^*} := \left\{ (\lambda, \mu, \kappa) \in G \mid (\lambda, \mu) \in L_B^*, \ \kappa \in \mathbb{R}^{(h,h)} \right\}.$$

Then both Γ_L and $\Gamma_{L_R^*}$ are normal subgroups of G. We set

(3.3)
$$\mathcal{Z}_0 := \left\{ (0, 0, \kappa) \in G \mid \kappa = {}^t \kappa \in \mathbb{Z}^{(h,h)} \text{ integral } \right\}.$$

It is easy to show that

$$\Gamma_{L_p^*} = \left\{ g \in G \mid g \gamma g^{-1} \gamma^{-1} \in \mathcal{Z}_0 \text{ for all } \gamma \in \Gamma_L \right\}.$$

We define

$$(3.4) Y_L := \{ \varphi \in \operatorname{Hom}(\Gamma_L, \mathbb{C}_1^{\times}) \mid \varphi \text{ is trivial on } \mathcal{Z}_0 \}$$

and

$$(3.5) Y_{L,S} := \left\{ \varphi \in Y_L \mid \varphi(\kappa) = e^{2\pi i \sigma(S\kappa)} \text{ for all } \kappa = {}^t \kappa \in \mathbb{R}^{(h,h)} \right\}$$

for each symmetric real matrix S of degree h. We observe that, if S is not half-integral, then $Y_L = \emptyset$ and so $Y_{L,S} = \emptyset$. It is clear that, if S is symmetric half-integral, then $Y_{L,S}$ is not empty.

Thus we have

$$(3.6) Y_L = \cup_{\mathcal{M}} Y_{L,\mathcal{M}},$$

where \mathcal{M} runs through the set of all symmetric half-integral matrices of degree h.

Lemma 3.1. Let \mathcal{M} be a symmetric half-integral matrix of degree h with $\mathcal{M} \neq 0$. Then any element φ of $Y_{L,\mathcal{M}}$ is of the form $\varphi_{\mathcal{M},q}$. Here $\varphi_{\mathcal{M},q}$ is the character of Γ_L defined by

(3.7)
$$\varphi_{\mathcal{M},q}((l,\kappa)) := e^{2\pi i \sigma(\mathcal{M}\kappa)} \cdot e^{\pi i q(l)} \text{ for } (l,\kappa) \in \Gamma_L,$$

where $q:L\longrightarrow \mathbb{R}/2\mathbb{Z}\cong [0,2)$ is a function on L satisfying the following condition:

(3.8)
$$q(l_0 + l_1) \equiv q(l_0) + q(l_1) - 2\sigma \{\mathcal{M}(\lambda_0^t \mu_1 - \mu_0^t \lambda_1)\} \pmod{2}$$

for all $l_0 = (\lambda_0, \mu_0) \in L$ and $l_1 = (\lambda_1, \mu_1) \in L$.

Proof. (3.8) follows immediately from the fact that $\varphi_{\mathcal{M},q}$ is a character of Γ_L . It is obvious that any element of $Y_{L,\mathcal{M}}$ is of the form $\varphi_{\mathcal{M},q}$.

Lemma 3.2. An element of $Y_{L,0}$ is of the form $\varphi_{k,l}(k, l \in \mathbb{R}^{(h,g)})$. Here $\varphi_{k,l}$ is the character of Γ_L defined by

(3.9)
$$\varphi_{k,l}(\gamma) := e^{2\pi i \sigma(k^t \lambda + l^t \mu)}, \quad \gamma = (\lambda, \mu, \kappa) \in \Gamma_L.$$

Proof. It is easy to prove and so we omit the proof.

Lemma 3.3. Let \mathcal{M} be a nonsingular symmetric half-integral matrix of degree h. Let $\varphi_{\mathcal{M},q_1}$ and $\varphi_{\mathcal{M},q_2}$ be the characters of Γ_L defined by (3.7). The character φ of Γ_L defined by $\varphi := \varphi_{\mathcal{M},q_1} \cdot \varphi_{\mathcal{M},q_2}^{-1}$ is an element of $Y_{L,0}$.

Proof. It follows from the existence of an element $g = (\mathcal{M}^{-1}\lambda, \mathcal{M}^{-1}\mu, 0) \in G$ with $(\lambda, \mu) \in V$ such that

$$\varphi_{\mathcal{M},q_1}(\gamma) = \varphi_{\mathcal{M},q_2}(g\gamma g^{-1}) \text{ for all } \gamma \in \Gamma_L.$$

For a unitary character $\varphi_{\mathcal{M},q}$ of Γ_L defined by (3.7), we let

$$\pi_{\mathcal{M},q} := \operatorname{Ind}_{\Gamma_L}^G \varphi_{\mathcal{M},q}$$

be the representation of G induced from $\varphi_{\mathcal{M},q}$. Let $\mathcal{H}_{\mathcal{M},q}$ be the Hilbert space consisting of all measurable functions $\phi: G \longrightarrow \mathbb{C}$ satisfying

(L1)
$$\phi(\gamma g) = \varphi_{\mathcal{M},q}(\gamma) \phi(g)$$
 for all $\gamma \in \Gamma_L$ and $g \in G$.

(L2)
$$\|\phi\|_{\mathcal{M},q}^2 := \int_{\Gamma_L \setminus G} |\phi(\bar{g})|^2 d\bar{g} < \infty, \ \bar{g} = \Gamma_L g.$$

П

The induced representation $\pi_{\mathcal{M},q}$ is realized in $\mathcal{H}_{\mathcal{M},q}$ as follows:

(3.11)
$$\left(\pi_{\mathcal{M},q}(g_0)\phi \right)(g) := \phi(gg_0), \ g_0, g \in G, \ \phi \in \mathcal{H}_{\mathcal{M},q}.$$

The representation $\pi_{\mathcal{M},q}$ is called the *lattice representation* of G associated with the lattice L.

Main Theorem. Let \mathcal{M} be a positive definite, symmetric half integral matrix of degree h. Let $\varphi_{\mathcal{M}}$ be the character of Γ_L defined by $\varphi_{\mathcal{M}}((\lambda, \mu, \kappa)) := e^{2\pi i \sigma(\mathcal{M}\kappa)}$ for all $(\lambda, \mu, \kappa) \in \Gamma_L$. Then the lattice representation

$$\pi_{\mathcal{M}} := \operatorname{Ind}_{\Gamma_L}^G \varphi_{\mathcal{M}}$$

induced from the character $\varphi_{\mathcal{M}}$ is unitarily equivalent to the direct sum

$$\bigoplus U(\sigma_{\mathcal{M}}) := \bigoplus \operatorname{Ind}_K^G \sigma_{\mathcal{M}} \ \ (\operatorname{(} \det 2\mathcal{M}\operatorname{)}^g\operatorname{-copies}\operatorname{)}$$

of the Schrödinger representation $\operatorname{Ind}_{\kappa}^{G} \sigma_{\mathcal{M}}$.

Proof. We first recall that the induced representation $\pi_{\mathcal{M}}$ is realized in the Hilbert space $\mathcal{H}_{\mathcal{M}}$ consisting of all measurable functions $\phi: G \longrightarrow \mathbb{C}$ satisfying the conditions

$$(3.13) \quad \phi((\lambda_0, \mu_0, \kappa_0) \circ g) = e^{2\pi i \sigma(\mathcal{M}\kappa_0)} \phi(g), \quad (\lambda_0, \mu_0, \kappa_0) \in \Gamma_L, \ g \in G$$

and

(3.14)
$$\|\phi\|_{\pi,\mathcal{M}}^2 := \int_{\Gamma_L \setminus G} |\phi(\bar{g})|^2 d\bar{g} < \infty, \quad \bar{g} = \Gamma_L \circ g.$$

Now, we write

$$g_0 = [\lambda_0, \mu_0, \kappa_0] \in \Gamma_L$$
 and $g = [\lambda, \mu, \kappa] \in G$.

For $\phi \in \mathcal{H}_{\mathcal{M}}$, we have

(3.15)
$$\phi(g_0 \diamond g) = \phi([\lambda_0 + \lambda, \mu_0 + \mu, \kappa_0 + \kappa + \lambda_0{}^t\mu + \mu{}^t\lambda_0]).$$

On the other hand, we get

$$\phi(g_0 \diamond g) = \phi((\lambda_0, \mu_0, \kappa_0 - \mu_0{}^t \lambda_0) \circ g)$$

$$= e^{2\pi i \sigma \{\mathcal{M}(\kappa_0 - \mu_0{}^t \lambda_0)\}} \phi(g)$$

$$= e^{2\pi i \sigma (\mathcal{M} \kappa_0)} \phi(g) \quad (\text{because } \sigma(\mathcal{M} \mu_0{}^t \lambda_0) \in \mathbb{Z})$$

Thus, putting $\kappa' := \kappa_0 + \lambda_0^t \mu + \mu^t \lambda_0$, we get

$$(3.16) \ \phi([\lambda_0+\lambda,\mu_0+\mu,\kappa+\kappa']) = e^{2\pi i \sigma(\mathcal{M}\kappa')} \cdot e^{-4\pi i \sigma(\mathcal{M}\lambda_0{}^t\mu)} \phi([\lambda,\mu,\kappa]).$$

Putting $\lambda_0 = \kappa_0 = 0$ in (3.16), we have

(3.17)
$$\phi([\lambda, \mu + \mu_0, \kappa]) = \phi([\lambda, \mu, \kappa])$$
 for all $\mu_0 \in \mathbb{Z}^{(h,g)}$ and $[\lambda, \mu, \kappa] \in G$.

Therefore if we fix λ and κ , ϕ is periodic in μ with respect to the lattice $\mathbb{Z}^{(h,g)}$ in $\mathbb{R}^{(h,g)}$. We note that

$$\phi([\lambda, \mu, \kappa]) = \phi([0, 0, \kappa] \diamond [\lambda, \mu, 0]) = e^{2\pi i \sigma(\mathcal{M}_{\kappa})} \phi([\lambda, \mu, 0])$$

for $[\lambda, \mu, \kappa] \in G$. Hence, ϕ admits a Fourier expansion in μ :

(3.18)
$$\phi([\lambda, \mu, \kappa]) = e^{2\pi i \sigma(\mathcal{M}\kappa)} \sum_{N \in \mathbb{Z}^{(h,g)}} c_N(\lambda) e^{2\pi i \sigma(N^t \mu)}.$$

If $\lambda_0 \in \mathbb{Z}^{(h,g)}$, then we have

$$\phi([\lambda + \lambda_0, \mu, \kappa]) = e^{2\pi i \sigma(\mathcal{M}\kappa)} \sum_{N \in \mathbb{Z}^{(h,g)}} c_N(\lambda + \lambda_0) e^{2\pi i \sigma(N^t \mu)}$$

$$= e^{-4\pi i \sigma(\mathcal{M}\lambda_0^t \mu)} \phi([\lambda, \mu, \kappa]) \quad (\text{by (3.16)})$$

$$= e^{-4\pi i \sigma(\mathcal{M}\lambda_0^t \mu)} e^{2\pi i \sigma(\mathcal{M}\kappa)} \sum_{N \in \mathbb{Z}^{(h,g)}} c_N(\lambda) e^{2\pi i \sigma(N^t \mu)},$$

$$= e^{2\pi i \sigma(\mathcal{M}\kappa)} \sum_{N \in \mathbb{Z}^{(h,g)}} c_N(\lambda) e^{2\pi i \sigma\{(N-2\mathcal{M}\lambda_0)^t \mu\}}. \quad (\text{by (3.18)})$$

So we get

$$\sum_{N \in \mathbb{Z}^{(h,g)}} c_N(\lambda + \lambda_0) e^{2\pi i \sigma(N^t \mu)}$$

$$= \sum_{N \in \mathbb{Z}^{(h,g)}} c_N(\lambda) e^{2\pi i \sigma\{(N-2\mathcal{M}\lambda_0)^t \mu\}}$$

$$= \sum_{N \in \mathbb{Z}^{(h,g)}} c_{N+2\mathcal{M}\lambda_0}(\lambda) e^{2\pi i \sigma(N^t \mu)}.$$

Hence, we get

(3.19)
$$c_N(\lambda + \lambda_0) = c_{N+2\mathcal{M}\lambda_0}(\lambda)$$
 for all $\lambda_0 \in \mathbb{Z}^{(h,g)}$ and $\lambda \in \mathbb{R}^{(h,g)}$.

Consequently, it is enough to know only the coefficients $c_{\alpha}(\lambda)$ for the representatives α in $\mathbb{Z}^{(h,g)}$ modulo $2\mathcal{M}$. It is obvious that the number of all such α 's is $(\det 2\mathcal{M})^g$. We denote by \mathcal{J} a complete system of such representatives in $\mathbb{Z}^{(h,g)}$ modulo $2\mathcal{M}$.

Then, we have

$$\begin{split} \phi([\lambda,\mu,\kappa]) &= e^{2\pi i \sigma(\mathcal{M}\kappa)} \; \left\{ \sum_{N \in \mathbb{Z}^{(h,g)}} c_{\alpha+2\mathcal{M}N}(\lambda) \, e^{2\pi i \sigma\{(\alpha+2\mathcal{M}N)^t \mu\}} \\ &+ \sum_{N \in \mathbb{Z}^{(h,g)}} c_{\beta+2\mathcal{M}N}(\lambda) \, e^{2\pi i \sigma\{(\beta+2\mathcal{M}N)^t \mu\}} \\ &\cdot \\ &\cdot \\ &+ \sum_{N \in \mathbb{Z}^{(h,g)}} c_{\gamma+2\mathcal{M}N}(\lambda) \, e^{2\pi i \{(\gamma+2\mathcal{M}N)^t \mu\}} \right\}, \end{split}$$

where $\{\alpha, \beta, \dots, \gamma\}$ denotes the complete system \mathcal{J} .

For each $\alpha \in \mathcal{J}$, we denote by $\mathcal{H}_{\mathcal{M},\alpha}$ the Hilbert space consisting of Fourier expansions

$$e^{2\pi i\sigma(\mathcal{M}\kappa)}\sum_{N\in\mathbb{Z}^{(h,g)}}c_{\alpha+2\mathcal{M}N}(\lambda)\,e^{2\pi i\sigma\{(\alpha+2\mathcal{M}N)^t\mu\}},\quad (\lambda,\mu,\kappa)\in G,$$

where $c_N(\lambda)$ denotes the coefficients of the Fourier expansion (3.18) of $\phi \in \mathcal{H}_{\mathcal{M}}$ and ϕ runs over the set { $\phi \in \pi_{\mathcal{M}}$ }. It is easy to see that $\mathcal{H}_{\mathcal{M},\alpha}$ is invariant under $\pi_{\mathcal{M}}$. We denote the restriction of $\pi_{\mathcal{M}}$ to $\mathcal{H}_{\mathcal{M},\alpha}$ by $\pi_{\mathcal{M},\alpha}$. Then we have

(3.20)
$$\pi_{\mathcal{M}} = \bigoplus_{\alpha \in \mathcal{J}} \pi_{\mathcal{M},\alpha}.$$

Let $\phi_{\alpha} \in \pi_{\mathcal{M},\alpha}$. Then for $[\lambda, \mu, \kappa] \in G$, we get

(3.21)
$$\phi_{\alpha}([\lambda, \mu, \kappa]) = e^{2\pi i \sigma(\mathcal{M}\kappa)} \sum_{N \in \mathbb{Z}^{(h,g)}} c_{\alpha+2\mathcal{M}N}(\lambda) e^{2\pi i \sigma\{(\alpha+2\mathcal{M}N)^t \mu\}}.$$

We put

$$I_{\lambda} := \overbrace{[0,1] \times [0,1] \times \cdots \times [0,1]}^{(h \times g) \text{-times}} \subset \left\{ [\lambda,0,0] \mid \lambda \in \mathbb{R}^{(h,g)} \right\}$$

and

$$I_{\mu} := \overbrace{[0,1] \times [0,1] \times \cdots \times [0,1]}^{(h \times g)\text{-times}} \subset \left\{ [0,\mu,0] \mid \mu \in \mathbb{R}^{(h,g)} \right\}.$$

Then, we obtain

(3.22)
$$\int_{I_{\mu}} \phi_{\alpha}([\lambda, \mu, \kappa]) e^{-2\pi i \sigma(\alpha^{t} \mu)} d\mu = e^{2\pi i \sigma(\mathcal{M}\kappa)} c_{\alpha}(\lambda), \quad \alpha \in \mathcal{J}.$$

Since $\Gamma_L \setminus G \cong I_\lambda \times I_\mu$, we get

$$\begin{split} \|\phi_{\alpha}\|_{\pi,\mathcal{M},\alpha}^{2} &:= \|\phi_{\alpha}\|_{\pi,\mathcal{M}}^{2} = \int_{\Gamma_{L}\backslash G} |\phi_{\alpha}(\bar{g})|^{2} d\bar{g} \\ &= \int_{I_{\lambda}} \int_{I_{\mu}} |\phi_{\alpha}(\bar{g})|^{2} d\lambda d\mu \\ &= \int_{I_{\lambda}\times I_{\mu}} \left| \sum_{N\in\mathbb{Z}^{(h,g)}} c_{\alpha+2\mathcal{M}N}(\lambda) e^{2\pi i \sigma \{(\alpha+2\mathcal{M}N)^{T}\mu\}} \right|^{2} d\lambda d\mu \\ &= \int_{I_{\lambda}} \sum_{N\in\mathbb{Z}^{(h,g)}} |c_{\alpha+2\mathcal{M}N}(\lambda)|^{2} d\lambda \\ &= \int_{I_{\lambda}} \sum_{N\in\mathbb{Z}^{(h,g)}} |c_{\alpha}(\lambda+N)|^{2} d\lambda \quad \text{(by (3.19))} \\ &= \int_{\mathbb{D}(h,g)} |c_{\alpha}(\lambda)|^{2} d\lambda. \end{split}$$

Since $\phi_{\alpha} \in \pi_{\mathcal{M},\alpha}$, $\|\phi_{\alpha}\|_{\pi,\mathcal{M},\alpha} < \infty$ and so $c_{\alpha}(\lambda) \in L^{2}(\mathbb{R}^{(h,g)}, d\xi)$ for all $\alpha \in \mathcal{J}$.

For each $\alpha \in \mathcal{J}$, we define the mapping $\vartheta_{\mathcal{M},\alpha}$ on $L^2\left(\mathbb{R}^{(h,g)},d\xi\right)$ by

$$(3.23) \ (\vartheta_{\mathcal{M},\alpha}f)([\lambda,\mu,\kappa]) := e^{2\pi i \sigma(\mathcal{M}\kappa)} \sum_{N \in \mathbb{Z}^{(h,g)}} f(\lambda+N) \, e^{2\pi i \sigma\{(\alpha+2\mathcal{M}N)^t\mu\}},$$

where $f \in L^2(\mathbb{R}^{(h,g)}, d\xi)$ and $[\lambda, \mu, \kappa] \in G$.

Lemma 3.4. For each $\alpha \in \mathcal{J}$, the image of $L^2\left(\mathbb{R}^{(h,g)},d\xi\right)$ under $\vartheta_{\mathcal{M},\alpha}$ is contained in $\mathcal{H}_{\mathcal{M},\alpha}$. Moreover, the mapping $\vartheta_{\mathcal{M},\alpha}$ is a one-to-one unitary operator of $L^2\left(\mathbb{R}^{(h,g)},d\xi\right)$ onto $\mathcal{H}_{\mathcal{M},\alpha}$ preserving the norms. In other words, the mapping

$$\vartheta_{\mathcal{M},\alpha}: L^2\left(\mathbb{R}^{(h,g)},d\xi\right) \longrightarrow \mathcal{H}_{\mathcal{M},\alpha}$$

is an isometry.

Proof. We already showed that $\vartheta_{\mathcal{M},\alpha}$ preserves the norms. First, we observe that if $(\lambda_0, \mu_0, \kappa_0) \in \Gamma_L$ and $g = [\lambda, \mu, \kappa] \in G$,

$$(\lambda_{0}, \mu_{0}, \kappa_{0}) \circ g = [\lambda_{0}, \mu_{0}, \kappa_{0} + \mu_{0}{}^{t}\lambda_{0}] \diamond [\lambda, \mu, \kappa]$$

= $[\lambda_{0} + \lambda, \mu_{0} + \mu, \kappa + \kappa_{0} + \mu_{0}{}^{t}\lambda_{0} + \lambda_{0}{}^{t}\mu + \mu{}^{t}\lambda_{0}].$

Thus we get

$$\begin{split} &(\vartheta_{\mathcal{M},\alpha}f)((\lambda_{0},\mu_{0},\kappa_{0})\circ g)\\ &=e^{2\pi i\sigma\{\mathcal{M}(\kappa+\kappa_{0}+\mu_{0}{}^{t}\lambda_{0}+\lambda_{0}{}^{t}\mu+\mu{}^{t}\lambda_{0})\}}\sum_{N\in\mathbb{Z}^{(h,g)}}f(\lambda+\lambda_{0}+N)\,e^{2\pi i\{(\alpha+2\mathcal{M}N){}^{t}(\mu_{0}+\mu)\}}\\ &=e^{2\pi i\sigma(\mathcal{M}\kappa_{0})}\cdot e^{2\pi i\sigma(\mathcal{M}\kappa)}\cdot e^{2\pi i\sigma(\alpha{}^{t}\mu_{0})}\sum_{N\in\mathbb{Z}^{(h,g)}}f(\lambda+N)\,e^{2\pi i\sigma\{(\alpha+2\mathcal{M}N){}^{t}\mu\}}\\ &=e^{2\pi i\sigma(\mathcal{M}\kappa_{0})}(\vartheta_{\mathcal{M},\alpha}f)(g). \end{split}$$

Here, in the above equalities we used the facts that $2\sigma(\mathcal{M}N^t\mu_0) \in \mathbb{Z}$ and $\alpha^t\mu_0 \in \mathbb{Z}$. It is easy to show that

$$\int_{\Gamma_1 \backslash G} |\vartheta_{\mathcal{M},\alpha} f(\bar{g})|^2 d\bar{g} = \int_{\mathbb{R}^{(h,g)}} |f(\lambda)|^2 d\lambda = \|f\|_2^2 < \infty.$$

This completes the proof of Lemma 3.4.

Finally, it is easy to show that for each $\alpha \in \mathcal{J}$, the mapping $\vartheta_{\mathcal{M},\alpha}$ intertwines the Schrödinger representation $(U(\sigma_{\mathcal{M}}), L^2(\mathbb{R}^{(h,g)}, d\xi))$ and the representation $(\pi_{\mathcal{M},\alpha}, \mathcal{H}_{\mathcal{M},\alpha})$. Therefore, by Lemma 3.4, for each $\alpha \in \mathcal{J}$, $\pi_{\mathcal{M},\alpha}$ is unitarily equivalent to $U(\sigma_{\mathcal{M}})$ and so $\pi_{\mathcal{M},\alpha}$ is an irreducible unitary representation of G. According to (3.20), the induced representation $\pi_{\mathcal{M}}$ is unitarily equivalent to

$$\bigoplus U(\sigma_{\mathcal{M}})$$
 ((det $2\mathcal{M}$)^g-copies).

This completes the proof of the Main Theorem.

4. Relation of lattice representations to theta functions

In this section, we state the connection between lattice representations and theta functions. As before, we write $V = \mathbb{R}^{(h,g)} \times \mathbb{R}^{(h,g)} \cong \mathbb{C}^{(h,g)}$, $L = \mathbb{Z}^{(h,g)} \times \mathbb{Z}^{(h,g)}$ and \mathcal{M} is a positive symmetric half-integral matrix of degree h. The function $q_{\mathcal{M}}: L \longrightarrow \mathbb{R}/2\mathbb{Z} = [0,2)$ defined by

(4.1)
$$q_{\mathcal{M}}((\xi,\eta)) := 2\sigma(\mathcal{M}\xi^{t}\eta), \quad (\xi,\eta) \in L$$

satisfies Condition (3.8). We let $\varphi_{\mathcal{M},q_{\mathcal{M}}}: \Gamma_L \longrightarrow \mathbb{C}_1^{\times}$ be the character of Γ_L defined by

$$\varphi_{\mathcal{M},q_{\mathcal{M}}}((l,\kappa)) \,=\, e^{2\pi i\,\sigma(\mathcal{M}\kappa)}\,e^{\pi i\,q_{\mathcal{M}}(l)}\,,\quad (l,\kappa)\in \varGamma_L.$$

We denote by $\mathcal{H}_{\mathcal{M},q_{\mathcal{M}}}$ the Hilbert space consisting of measurable functions $\phi: G \longrightarrow \mathbb{C}$ which satisfy Condition (4.2) and Condition (4.3):

$$(4.2) \ \phi((l,\kappa)\circ g) = \varphi_{\mathcal{M},q_{\mathcal{M}}}((l,\kappa))\,\phi(g) \ \text{ for all } (l,\kappa)\in \varGamma_L \text{ and } g\in G.$$

(4.3)
$$\int_{\Gamma_L \setminus G} \|\phi(\dot{g})\|^2 d\dot{g} < \infty, \quad \dot{g} = \Gamma_L \circ g.$$

Then the lattice representation

$$\pi_{\mathcal{M},q_{\mathcal{M}}} := \operatorname{Ind}_{\Gamma_L}^G \varphi_{\mathcal{M},q_{\mathcal{M}}}$$

of G induced from the character $\varphi_{\mathcal{M},q_{\mathcal{M}}}$ is realized in $\mathcal{H}_{\mathcal{M},q_{\mathcal{M}}}$ as

$$(\pi_{\mathcal{M},q_{\mathcal{M}}}(g_0)\phi)(g) = \phi(gg_0), g_0, g \in G, \phi \in \mathcal{H}_{\mathcal{M},q_{\mathcal{M}}}.$$

Let $\mathbf{H}_{\mathcal{M},q_{\mathcal{M}}}$ be the vector space consisting of measurable functions $F:V\longrightarrow\mathbb{C}$ satisfying Conditions (4.4) and (4.5).

(4.4)
$$F(\lambda + \xi, \mu + \eta) = e^{2\pi i \sigma \{\mathcal{M}(\xi^t \eta + \lambda^t \eta - \mu^t \xi)\}} F(\lambda, \mu)$$

for all $(\lambda, \mu) \in V$ and $(\xi, \eta) \in L$.

(4.5)
$$\int_{L \setminus V} \|F(\dot{v})\|^2 d\dot{v} = \int_{I_{\lambda} \times I_{\mu}} \|F(\lambda, \mu)\|^2 d\lambda d\mu < \infty.$$

Given $\phi \in \mathcal{H}_{\mathcal{M},q_{\mathcal{M}}}$ and a fixed element $\Omega \in H_g$, we put

$$(4.6) \quad E_{\phi}(\lambda,\mu) := \phi((\lambda,\mu,0)), \quad \lambda,\mu \in \mathbb{R}^{(h,g)},$$

$$(4.7) \quad F_{\phi}(\lambda,\mu) := \phi([\lambda,\mu,0]), \quad \lambda,\mu \in \mathbb{R}^{(h,g)},$$

$$(4.8) \quad F_{\Omega,\phi}(\lambda,\mu) := e^{-2\pi i \, \sigma(\mathcal{M}\lambda\Omega'\lambda)} \, F_{\phi}(\lambda,\mu), \quad \lambda,\mu \in \mathbb{R}^{(h,g)}.$$

In addition, we put for $W = \lambda \Omega + \mu \in \mathbb{C}^{(h,g)}$,

(4.9)
$$\vartheta_{\Omega,\phi}(W) = \vartheta_{\Omega,\phi}(\lambda\Omega + \mu) := F_{\Omega,\phi}(\lambda,\mu).$$

We observe that E_{ϕ} , F_{ϕ} and $F_{\Omega,\phi}$ are functions defined on V and $\vartheta_{\Omega,\phi}$ is a function defined on $\mathbb{C}^{(h,g)}$.

Proposition 4.1. If $\phi \in \mathcal{H}_{\mathcal{M},q_{\mathcal{M}}}$, $(\xi, \eta) \in L$ and $(\lambda, \mu) \in V$, then we have the formulas

$$(4.10) E_{\phi}(\lambda + \xi, \mu + \eta) = e^{2\pi i \sigma \{\mathcal{M}(\xi^{t} \eta + \lambda^{t} \eta - \mu^{t} \xi)\}} E_{\phi}(\lambda, \mu).$$

(4.11)
$$F_{\phi}(\lambda + \xi, \mu + \eta) = e^{-4\pi i \, \sigma(\mathcal{M}\xi^{t}\mu)} \, F_{\phi}(\lambda, \mu).$$

$$(4.12) F_{\Omega,\phi}(\lambda+\xi,\mu+\eta) = e^{-2\pi i \,\sigma\{\mathcal{M}(\xi\Omega^t\xi+2\lambda\Omega^t\xi+2\mu^t\xi)\}} \,F_{\Omega,\phi}(\lambda,\mu).$$

If $W = \lambda \Omega + \eta \in \mathbb{C}^{(h,g)}$, then we have

$$\vartheta_{\Omega,\phi}(W + \xi \Omega + \eta) = e^{-2\pi i \,\sigma \{\mathcal{M}(\xi \Omega^t \xi + 2W^t \xi)\}} \,\vartheta_{\Omega,\phi}(W).$$

Moreover, F_{ϕ} is an element of $\mathbf{H}_{\mathcal{M},q_{\mathcal{M}}}$.

Proof. We note that

$$(\lambda + \xi, \mu + \eta, 0) = (\xi, \eta, -\xi^t \mu + \eta^t \lambda) \circ (\lambda, \mu, 0).$$

Thus we have

$$\begin{split} E_{\phi}(\lambda + \xi, \mu + \eta) &= \phi((\lambda + \xi, \mu + \eta, 0)) \\ &= \phi((\xi, \eta, -\xi^{t} \mu + \eta^{t} \lambda) \circ (\lambda, \mu, 0)) \\ &= e^{2\pi i \sigma \{\mathcal{M}(\xi^{t} \eta + \lambda^{t} \eta - \mu^{t} \xi)\}} \phi((\lambda, \mu, 0)) \\ &= e^{2\pi i \sigma \{\mathcal{M}(\xi^{t} \eta + \lambda^{t} \eta - \mu^{t} \xi)\}} E_{\phi}(\lambda, \mu). \end{split}$$

This proves Formula (4.10). We observe that

$$[\lambda + \xi, \mu + \eta, 0] = (\xi, \eta, -\xi^{t}\mu - \mu^{t}\xi - \eta^{t}\xi) \circ [\lambda, \mu, 0].$$

Thus we have

$$F_{\phi}(\lambda + \xi, \mu + \eta) = \phi([\lambda + \xi, \mu + \eta, 0])$$

$$= e^{-2\pi i \sigma \{\mathcal{M}(\xi^{t} \mu + \mu^{t} \xi + \eta^{t} \xi)\}}$$

$$\times e^{2\pi i \sigma (\mathcal{M} \xi^{t} \eta)} \phi([\lambda, \mu, 0])$$

$$= e^{-4\pi i \sigma (\mathcal{M} \xi^{t} \mu)} \phi([\lambda, \mu, 0])$$

$$= e^{-4\pi i \sigma (\mathcal{M} \xi^{t} \mu)} F_{\phi}(\lambda, \mu).$$

This proves Formula (4.11). According to (4.11), we have

$$\begin{split} F_{\varOmega,\phi}(\lambda+\xi,\mu+\eta) &= e^{-2\pi i\,\sigma\{\mathcal{M}(\lambda+\xi)\varOmega^{\,t}(\lambda+\xi)\}}\,F_{\phi}(\lambda+\xi,\mu+\eta) \\ &= e^{-2\pi i\,\sigma\{\mathcal{M}(\lambda+\xi)\varOmega^{\,t}(\lambda+\xi)\}} \\ &\quad \times e^{-4\pi i\,\sigma(\mathcal{M}\xi^{\,t}\mu)}\,F_{\phi}(\lambda,\mu) \\ &= e^{-2\pi i\,\sigma\{\mathcal{M}(\xi\varOmega^{\,t}\xi+2\lambda\varOmega^{\,t}\xi+2\mu^{\,t}\xi)\}} \\ &\quad \times e^{-2\pi i\,\sigma\{\mathcal{M}(\xi\varOmega^{\,t}\xi+2\lambda\varOmega^{\,t}\xi+2\mu^{\,t}\xi)\}}\,F_{\varOmega,\phi}(\lambda,\mu) \\ &= e^{-2\pi i\,\sigma\{\mathcal{M}(\xi\varOmega^{\,t}\xi+2\lambda\varOmega^{\,t}\xi+2\mu^{\,t}\xi)\}}\,F_{\varOmega,\phi}(\lambda,\mu). \end{split}$$

This proves Formula (4.12). Formula (4.13) follows immediately from Formula (4.12). Indeed, if $W = \lambda \Omega + \mu$ with $\lambda, \mu \in \mathbb{R}^{(h,g)}$, we have

$$\begin{split} \vartheta_{\varOmega,\phi}(W+\xi\varOmega+\eta) &= F_{\varOmega,\phi}(\lambda+\xi,\mu+\eta) \\ &= e^{-2\pi i\,\sigma\{\mathcal{M}(\xi\varOmega^{\,t}\xi+2(\lambda\varOmega+\mu)^{\,t}\xi)\}}\,F_{\varOmega,\phi}(\lambda,\mu) \\ &= e^{-2\pi i\,\sigma\{\mathcal{M}(\xi\varOmega^{\,t}\xi+2W^{\,t}\xi)\}}\,\vartheta_{\varOmega,\phi}(W). \end{split}$$

Remark 4.2. The function $\vartheta_{\Omega,\phi}(W)$ is a theta function of level $2\mathcal{M}$ with respect to Ω if $\vartheta_{\Omega,\phi}$ is holomorphic. For any $\phi \in \mathcal{H}_{\mathcal{M},q_{\mathcal{M}}}$, the function $\vartheta_{\Omega,\phi}$ satisfies the well known transformation law of a theta function. In this sense, the lattice representation $(\pi_{\mathcal{M},q_{\mathcal{M}}},\,\mathcal{H}_{\mathcal{M},q_{\mathcal{M}}})$ is closely related to theta functions.

References

- [B] R. Berndt, Darstellungen der Heisenberggruppe und Thetafunktionen. Vorlesungsausarbeitung, Hamburg, 1988
- [C] P. Cartier, Quantum Mechanical Commutation Relations and Theta Functions, Proc. of Symp. Pure Mathematics, 9 Amer. Math. Soc., 1966, pp. 361–383
- [F-C] G. Faltings and C.-L. Chai, Degeneration of Abelian Varieties, EMG, Band 22, Springer-Verlag, New York/Berlin, 1990
- [I] J. Igusa, Theta functions, Springer-Verlag, New York/Berlin, 1972
- [M] G.W. Mackey, Induced Representations of Locally Compact Groups I, Ann. of Math. 55 (1952), 101–139
- [N] Y. Namikawa, Toroidal Compactification of Siegel Spaces, Lect. Notes in Math. 812, Springer-Verlag, New York/Berlin, 1980
- [Y1] J.-H. Yang, Harmonic Analysis on the Quotient Spaces of Heisenberg Groups, Nagoya Math. J. 123 (1991), 103–117
- [Y2] J.-H. Yang, Harmonic Analysis on the Quotient Spaces of Heisenberg Groups, II, J. Number Theory 49 (1994), 63–72
- [Y3] J.-H. Yang, A decomposition theorem on differential polynomials of theta functions of high level, Japanese J. Math., Math. Soc. Japan, New Series 22 (1996), 37–49
- [Y4] J.-H. Yang, The Siegel-Jacobi Operator, Abh. Math. Sem. Univ. Hamburg 63 (1993), 135– 146
- [Y5] J.-H. Yang, Remarks on Jacobi forms of higher degree, Proc. of the 1993 Workshop on Automorphic Forms and Related Topics, PIMS (1993), 33–58
- [Y6] J.-H. Yang, Singular Jacobi Forms, Trans. Amer. Math. Soc. **347** (1995), 2041–2049
- [Y7] J.-H. Yang, Construction of Vector-Valued Modular Forms from Jacobi Forms, Canadian J. Math. 47 (1995), 1329–1339
- [Y8] J.-H. Yang, A geometrical theory of Jacobi forms of higher degree, Proc. of Symposium on Hodge Theory and Algebraic Geometry (edited by Tadao Oda), Sendai, Japan (1996), 125–147
- [Z] C. Ziegler, Jacobi Forms of Higher Degree, Abh. Math. Sem. Univ. Hamburg 59 (1989), 191–224