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1. Introduction

For any positive integers andi, we consider the Heisenberg group
Hﬂ(gg’h) ={0, ) Aune R"8 | e RED e 4 pia symmetric} .
Recall that the multiplication law is
Ao k)o W, k)= + M+ + 6+ 1w — D).

HereR"# (respR"™) denotes the set of all x g (resp.z x h) real matrices.

The Heisenberg grouﬁﬂég'h) is embedded into the symplectic grosip(g +

h, R) via the mapping

E "
A K
0 —
0O 0 0 E,

8

HE" 5 (h, oy 0) —> € Sp(g + h, R).

oMo
T o

t
oo

This Heisenberg group is a 2-step nilpotent Lie group and is important in the study
of toroidal compactifications of Siegel moduli spaces. In f "M is obtained

as the unipotent radical of the parabolic subgrougmfg + %, R) associated

with the rational boundary componef (cf. [F-C]p. 123 or [N] p. 21). For the
motivation of the study of this Heisenberg group we refer to [Y4]-[Y8] and [Z].
We refer to [Y1]-[Y3] for more results o/ *".

J.-H. YANG

Max-Planck Institut fit Mathematik, Gottfried-Claren-Strasse 26, D-53225 Bonn, Germany
Present addres®epartment of Mathematics, Inha University, Inchon 402-751, Republic of Korea
(e-mail: jhyang@math.inha.ac.kr)

* This work was partially supported by the Max-Planck-Institut Mathematik and TGRC-
KOSEF.



310 J.-H. Yang

In[C], P. Cartier stated without proof that fbr= 1, the lattice representation
of H" associated to the lattice is unitarily equivalent to the direct sum of
[L* : L]? copies of the Scludinger representation df.*", whereL* is the
dual lattice ofL with respectto a certain nondegenerate alternating bilinear form.
R. Berndt proved the above fact for the cése- 1 in his lecture notes [B]. In
this paper, we give a complete proof of Cartier’s theoremH; M

Main Theorem. Let M be a positive definite, symmetric half-integral matrix of
degree: andL be a self-dual lattice it -¢’. Then the lattice representatiamn
of Hﬂ({g”” associated witl. and M is unitarily equivalent to the direct sum of

(det2M )¢ copies of the Schudinger representation éf.*". For more details,
we refer to Sect. 3.

The paper is organized as follows. In Sect. 2, we review thedslamgér
representations of the Heisenberg graaf§”’. In Sect. 3, we prove the main
theorem. In the final section, we provide arelation between lattice representations
and theta functions.

AcknowledgementsThis work was in part done during my stay at the Max-Planck-Institut f~
Mathematik in Bonn. | am very grateful to the institute for hospitality and financial support. | also
would like to give my hearty thanks to the Department of Mathematics at Harvard University for
its hospitality during my short stay in Cambridge.

Notations.We denote by, R andC the ring of integers, the field of real num-
bers, and the field of complex numbers respectively. The syi@olienotes
the multiplicative group consisting of all complex numbensith |z| = 1, and
the symbolSp(g, R) the symplectic group of degreg H, the Siegel upper
half plane of degreg. The symbol “:=" means that the expression on the right
hand side is the definition of that on the left. We denoteZbythe set of all
positive integers, by *) the set of alk x [/ matrices with entries in a commu-
tative ring F. For anyM < F®D_ M denotes the transpose matrix df. For

A € F&P 5 (A) denotes the trace of. ForA € F&D andB € F®®  we set
B[A] = "ABA. We denote the identity matrix of degredy E;. For a positive
integern, Symm(n, K) denotes the vector space consisting of all symmetric
n X n matrices with entries in a field'.

2. Schrgdinger representations

First of all, we observe thati*" is a 2-step nilpotent Lie group. It is easy to
see that the inverse of an elemebt i1, k) € H" is given by

O k) ™H = (=h, =, —k + A — ).
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Now we set
(21) [)"7 lu’vK] = (Ov M,K)O()\.,O, O):()"9 M’K_Ml)\')'

Then H]ff’h) may be regarded as a group equipped with the following multipli-
cation

(2.2)  [A, i, k] 0 [Ao, fho, kol := [A + Xo, it + o, k + Ko + A '1o + po Al
The inverse of, u, k] € H" is given by
skl =[=A, —p, —k + A+ Al
We set
(2.3) K = { [0, u, k] € Hﬂ(f’h) ‘ uw e R®® g = % e R™M } .
ThenKk is a commutative normal subgroup B£*". Let K be the Pontrajagin

dual of K, i.e., the commutative group consisting of all unitary characters.of
ThenK is isomorphic to the additive grodp”¢ x Symm(h, R) via

(2.4 <a,q >:= eZrioWntk) 4 0, w.kleK, a= (k) eKk.
We put

(2.5) §:={1%,0,01 e HE" |1 e R"0 | = RO,

ThenS acts onK as follows:

(2.6) o ([0, w, k1) :=1[0, u, k + X'+ pn'Al, [r,0,0]€S.

Itis easy to see that the Heisenberg gr mg(f’h), ¢ ) is isomorphic to the semi-
direct productS x K of § andK whose multiplication is given by

(A, a) - (Ao, ao) := (A + Ao, a +ay(ao)), A, A0 €S, a,a0 € K.
On the other hands acts onk by
2.7) @} (@) == (i + 2kA, k), [A, 0,01 €S, a= (k) eKk.

Then, we have the relatior «;(a),a >=< a,aj(a) > foralla € K and
aek.

We have two types af-orbits in K .
TyPEI. Let# € Symm(h, R) with & # 0. The S-orbit of a(¢) := (0, &) € K
is given by

(2.8) O; = { (2kr, k) e K } A eR®® } ~ R0,
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TypeIl. Let§ e R"9, TheS-orbit O; of a() := (3, 0) is given by

(2.9) O;:={(3,0} =a.

We have

k= U o|Ul U o
keSymmh,R) $eR(8)
as a set. The stabilizet of S ata(k) = (0, k) is given by
(2.10 Se = {O}.

And the stabilizerS; of S ata(y) = (9, 0) is given by
(211 s;= {1,002 e R0 | =5 = RO,

From now on, we sef := H" for brevity. It is known thai is a closed,
commutative normal subgroup 6f Since(\, u, k) = (0, w, k +1A)o (X, 0, 0)
for (A, u, k) € G, the homogeneous spa&e:= K\G can be identified with
R"-# via

Kg=Ko(A,00— X, g=(,u,x)eq.

We observe thar acts onX by
(2.12) (Kg)-go:=K (A +10,0,0) = A + Ao,
whereg = (A, i, k) € G andgg = (Ao, Ko, ko) € G.
If ¢ = (A, u, k) € G, we have
(2.13) ke = (0, i,k 4+ p'%), s,=(*,0,0)

in the Mackey decomposition @f= k, o s, (cf.[M]). Thus if go = (Ao, o, k0)
€ G, then we have

(2.1 g 0 80 = (%, 0,0) o (Xo, Ko, ko) = (A + Ao, Ho, kKo + A ‘o)
and so
(219 ksyog0 = (0, 0, ko + po'ho + A ‘to + po'A).

For a real symmetric matrix = ‘c € R"" with ¢ # 0, we consider the
one-dimensional unitary representatgnof K defined by

(2.16) 0. (0, , k) 1= e® ) [ (0, u, k) € K,

wherel denotes the identity mapping. Then the induced representétion :=
Ind$ .. of G induced frono, is realized in the Hilbert spadé,, = L3(X, dg,
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C) = L2 (R™®, d¢) as follows. Ifgo = (Ao, po, ko) € G andx = Kg € X
with g = (A, i, k) € G, we have

(2.17) (Ugo(ac)f) (x) =0 (ksgogo) (f(xgo)), [ € Ho‘»-
It follows from (2.15) that
218 (Ug(0o)f) (1) = ePrioteteoriotorZhol 4 j0).

Here, we identifiedc = Kg(respxgo = Kggo) with A(resp. A + Ag). The
induced representatidri(o,) is called theSchiodinger representationf G as-
sociated witho,.. ThusU (o.) is a monomial representation.

Now, we denote by’ the Hilbert space consisting of all functiogs :
G —> C which satisfy the following conditions:

(1) ¢(g) is measurable with respectdg,
(2)¢ (0, i1, k) 0 8)) = 7 (g) forallg e G,
@l ¢ l1%= [y l¢@I*dé < oo, ¢ =Kg,

wheredg (respdg) is aG-invariant measure o6 (respX = K\G). The inner
product(, ) on’H% is given by

6.02 = | G B for g, g2 € W
G
We observe that the mappiag. : H,. —> H’ defined by

(219 (@c(f)) (g) := 1 CHD £0), f €My, g= (0 p6) €G

is an isomorphism of Hilbert spaces. The inve¥se: H° — H, of @, is
given by

(2.20 (W(9) (M) == ¢((2,0,0), ¢eH* reR",
The Schodinger representatialii (o) of G onH is given by
(221)  (Ug(00)9) (g) = 7 cteotuoort ko201l g ((24,0,0) 0 g) ,

wherego = (Ao, o, k0), & = (A, u,k) € G and¢ € H%. (2.21) can be
expressed as follows.

(222 (Ug(00)9) (g) = e?riotctotctnoiotiit2iinol ¢ (3 4 1., 0, 0)).

Theorem 2.1.Let ¢ be a positive symmetric half-integral matrix of degiee
Then the Schodinger representatiali (o) of G is irreducible.

Proof. The proof can be found in [Y1], theorem 3. O
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3. Proof of the Main Theorem

Let L := Z"& x 7(-¢ pe the lattice in the vector spate= C"*® . Let B be
an alternating bilinear form oW such thatB(L, L) C Z, that is,Z-valued on
L x L. The dualL? of L with respect taB is defined by

Ly :={veV|Bw,l)eZforallleL}.

ThenL C Lj. If B is nondegeneratd,}, is also a lattice ir¥/, called thedual

lattice of L. In caseB is nondegenerate, there existdasis{ 11, £12, - - - , &g,
n11, N12, -+« » Mg } OF L @and a sef e, e1o, - - - , e, } Of positive integers such
thateys|esz, e1oles, - - -, eng—1leng fOr which

B(&xas Ep) BEasmin) Y _ (0 e

Bkas &in) BMikas Miv —e0)’
where 1< k,l < h,1 < a,b < g ande := diag(e11, e12, - - - , e,) is the
diagonal matrix of degrefg with entrieses1, e12, - - - , ep,. Itis well known that

[L% : L] = (dete)? = (e11e12- - - eng)? (cf. [I] p. 72). The number det is called
the Pfaffianof B.

Now, we consider the following subgroups Gf

(CRN) ry:={0,pnx)eGlhpnel, ke R®M}
and
3-2) Iy ={(,u)eGl(pely keR"Y.

Then bothl'; and /. are normal subgroups @f. We set
(3.3 Zy:={(0,0,k) € G|k = 'k € Z"" integral} .
It is easy to show that

FLE={g€G|gyg_1y_1€ZOf0rallyeFL}.

We define

34 Y, :={¢ € Hom(I,C})| g is trivial on Zo }

and

(3.5 Yy 5:= {go €Y.l ok) =¥ for allk = 'k € R™M }

for each symmetric real matri% of degree:. We observe that, i is not half-
integral, thenY, = ¢ and soY, s = . It is clear that, ifS is symmetric
half-integral, therv, s is not empty.
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Thus we have
(3.6) Y =Um YL M,

whereM runs through the set of all symmetric half-integral matrices of degree
h.

Lemma 3.1.Let M be a symmetric half-integral matrix of degrewith M # O.
Then any element of Y; a4 is of the formg,, ,. Herepa, 4 is the character of
I';, defined by

(3.7) Mg (L, 1)) 1= e2TiOMO _omia D) for (1, k) € I,

whereq : L — R/27Z = [0, 2) is a function onL satisfying the following
condition:

B8  qlo+1) =qo) + ql1) — 20{M(ro'1 — po'*1)} (mod 2)

for all lo = (Mo, o) € L andl; = (A1, n1) € L.

Proof. (3.8) follows immediately from the fact that,, , is a character of ;.. It
is obvious that any element &f, ,, is of the formea 4. O

Lemma 3.2.An element ofY; g is of the formgy ; (k,1 € R"*#). Hereg,, is
the character of ; defined by

(3.9 O (y) i= 2T OCHHW oy — (3, k) € T

Proof. It is easy to prove and so we omit the proof. O

Lemma 3.3.Let M be a nonsingular symmetric half-integral matrix of degree
h. Letoag,q, andey 4, be the characters df;, defined by (3.7). The character
¢ of I, defined byp := @q,4, - <p;j’q2 is an element of, .

Proof. It follows from the existence of an element= (M~1A, M~ 11, 0) € G
with (A, n) € V such that

OMa (V) = ormg(gyg ™ forally e I

For a unitary charactes,, , of I';, defined by (3.7), we let

(3.10) TM,q = Ind?L PM.q

be the representation &f induced frompq .. Let H , be the Hilbert space
consisting of all measurable functiops G — C satisfying

(L1) ¢(vg) = ormq(y) @ (g) forally e I' andg € G.
(L2) |I¢|Ii/1,q = er\G 9p(@)I?dg < o0, g=T1g.
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The induced representatian, , is realized inH 4, as follows:

(3.11 (ﬁM,q(go)d))(g) = ¢(gg0), 80,8 €G, ¢ € Hpry.

The representatiom,, , is called thdattice representationf G associated with
the latticeL.

Main Theorem. Let M be a positive definite, symmetric half integral matrix of
degreé:. Letg be the character df;, defined by ((A, i, k)) 1= 2o Mo
forall (A, u, k) € I'y. Then the lattice representation

T = Ind,qL OM
induced from the character, is unitarily equivalent to the direct sum
@ Uopn) = EB Ind on¢ ((det2M )¢-copies)

of the Schodinger representation 1fdb 4.

Proof.We first recall that the induced representation is realized in the Hilbert
spaceH p consisting of all measurable functiogs: G — C satisfying the
conditions

(3.13)  $((ho, 1o, ko) 0 g) = eZ17MD ¢(g) (Ao, o, ko) € I, g € G

and
(3.14 IBl1Z rq :=/ 19(8)1?dg <00, g=T1og.
I \G

Now, we write
go = [Ao, o, kol € I'L and g =[A, u,k] €G.
For¢ € Hq, We have
(3.15 ¢ (800 g) = ¢([ho+ A, o+ i, ko + k + Ao’k + 1 Ao)).
On the other hand, we get

#(80< &) = ¢ ((ho, o, ko — o ho) © &)
— Zrio{Mko—po'r0)} #(g)

= % 10Mr0) g () (because (Mpuoro) € Z)
Thus, puttinge’ := kg + Ao + 1 "Ag, We get

(3.16) ¢([ho+ A, po+ f, k +k']) = eZr oMK =dmic WMo g (I3 11 ic]).
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Puttingio = ko = 0in (3.16), we have
(3.17) ¢ ([, 10, K1) = ¢ ([A, w, k1) for all uo € Z# and[r, u, k] € G.

Therefore if we fixA andk, ¢ is periodic inu with respect to the latticg "¢
in R™&_We note that

¢ (Dh, i, k1) = $(0,0,k] 0 [x, , O) = "M ¢ ([, pu, O])

for [A, u, k] € G. Hence ¢ admits a Fourier expansion jn:

(3.18) o([A, 1, k]) = e2rio (M) Z en (V) eZrio (N ')

NeZh.®

If Ag € Z"# | then we have

¢ (Dh+ o, k1) = 2T7MO N7 ey (- ) 270N
NeZh.8

= e #ioM'W ¢ (4, w, k) (by (3.16))
_ e—4ﬂia(MAO’;L) eZJTiO(MK) Z CN()\.) eZnia(N’/L)’
NeZh.9)

— pZrio(Mx) Z cN(A)eZ”iU{(N_ZM“)'“}- (by (3.18))
NeZ"-®)

So we get

Z cn O 4 Ag) eZio N1
NeZ8)

— Z CN()\-) eZnia{(N72M)Lo)’//,}
NeZh.9)

2ric(N!
= Z CN 1M (A) eTION W),
NeZt)

Hence, we get
(319 en (A + o) = cnranmi (M) forall ag € Z7# andr € R™®),

Consequently, it is enough to know only the coefficiants.) for the represen-
tativese in Z*#) modulo 2M. It is obvious that the number of all suefs is
(det 2M)¢. We denote by a complete system of such representativesirs’
modulo 2M.
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Then, we have

. . t
¢([A,M,K])=ez"‘“(M”){ D Caramn(h) FHIHEMNL
NeZ®®

; t
+ Z cpromn (L) e 2mio((B+2MN) ")
NeZh.8

; '
4 Z Cy+2MN()") eZﬂl{()/+2MN) n} }’
NeZ®-8)

where{«, 8, -- - , y } denotes the complete systegim
For eachx € 7, we denote byH »¢ , the Hilbert space consisting of Fourier
expansions
eZITMO N oy () STONETEMNI G ) € G,
NeZh.8)

wherecy (1) denotes the coefficients of the Fourier expansion (3.18)©fH v,
and¢ runs over the sdtg € wq }. Itis easy to see th&{ o, is invariant under
7 pm. We denote the restriction afa to H g, DY 7a1o. Then we have

(3.20) m =P Tra-
aeJ

Letg, € mrq. Then for[i, u, k] € G, we get

(32D Go(lh, kD) = &M N T ey (1) ETITIFEMN I,
NeZ®h.8)

We put

(hxg)-times

L,:=10,1] x [0,1] x --- x [0,1] C {[*,0,0]| » e R®®}

and
(hxg)-times

1,:=10,1] x[0,1] x --- x [0,1] C {[0, ,0]| u € R"®}.

Then, we obtain

(3.22 Go([h, i, k1) e 2 7@ W gy = 2T MO e ) a e .
m



Lattice representations of Heisenberg groups 319

Sincel';\G = I, x I, we get

IGallZ pt o = lgall g = ¢ (8)12dg
I \G

- / 6e (@2 drdpe
InoJI,

/I‘)\XIH

= Y lcararv)Pdr

L Nezmo

=| 2 lwG+NPdi (by(319)

b Neztno

_ / P .
R.9)

Sincedy € Tatas ldallmrma < o0 and soc, (1) € L2 (R™#), dg) for all
axeJ.

For eachr € 7, we define the mapping ., onL? (R"#, d&) by

2
P t
Z Catrorn () eZm(r{(aJrZMN) ) didu
NeZh®

(3.23) Wata/I[h o k]) o= OO KT f G N Pt

NeZh.&)

wheref € L? (R"®, d&) and[A, u, k] € G.

Lemma 3.4.For eachx € 7, the image ofL? (R"¢), d&) underd q,, is con-
tained inH ¢ . Moreover, the mapping ., iS a one-to-one unitary operator
of L (R"#), d§) ontoH o4, Preserving the norms. In other words, the mapping

It L2 (R™M®,dE) — Hpra

is an isometry.
Proof.We already showed that\( ., preserves the norms. First, we observe that
if (Ao, Mo, ko) € Iy, andg = [A, /L,K] e G,

(X0, Mo, ko) © & = [Ao, Ho. ko + o dol © [A, i, k]
= [ho+ A, o+ W, k + ko + oo+ Ao’ i + 1 Aol
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Thus we get
(WMo f) (o5 1o, K0) © &)
— ezniO'{M(K+K0+M0t)\0+)uolﬂ+ut)»0)} Z f()» + X0+ N) eZni{(a+2MN)’(uo+u)}

NeZ®h.8)
— eZHiU(MKQ) . eZm'a(MK) . eZﬂia(a’uo) Z f()\ + N) eZm’a{(a+2MN)’u}

NezZh®

= "M W0 )(8).

Here, in the above equalities we used the facts thatA2N ') € Z and
a'no € Z. Itis easy to show that

f Ortaf @2 d3 =/ FOIRdn = [LFIE < oo,
r\G RO9)

This completes the proof of Lemma 3.4.

Finally, itis easy to show that for eaghe 7, the mappingi 4, intertwines
the Schodinger representatioft/ (o), L2[R"#, d&)) and the representation
(TM.a» HM.o)- Therefore, by Lemma 3.4, for eache J, ma, IS unitarily
equivalent taU (oa4) and sar . IS an irreducible unitary representation@f
According to (3.20), the induced representatiop is unitarily equivalent to

@ U(oprm) ((det2M)e-copies).

This completes the proof of the Main Theorem. O

4. Relation of lattice representations to theta functions

In this section, we state the connection between lattice representations and theta
functions. As before, we writ& = R"8 x R"-8) = C8) [ = 78 x 7,08

and M is a positive symmetric half-integral matrix of degreeThe function

gm - L — R/27Z = [0, 2) defined by

(4.1 gm(E,m) == 20(ME'n), (¢, n el

satisfies Condition (3.8). We lepr,,, : I — Ci be the character af},
defined by

OMgng (L, 1)) = 2T oM gmiam® (1 1) e I

We denote byH 4, the Hilbert space consisting of measurable functions
¢ : G — C which satisfy Condition (4.2) and Condition (4.3):

(4.2) ¢((l,k)og) = Qg (U k) @p(g) forall (I,k) e I'y andg € G.



Lattice representations of Heisenberg groups 321

4.3 [ W@l <o g=rios
I \G
Then the lattice representation
T Mg = Ind,qL O Mg
of G induced from the character ,,, is realized i ¢ 4,, as
(TM.an(80) @) (8) = H(g80), £0,8 € G, ¢ € Hpt g

LetH r 4, bethe vector space consisting of measurable functiony — C
satisfying Conditions (4.4) and (4.5).

(4.4) FO+E& u+n) = ZioMEE—1OY g -y
forall (A, ) € Vand(&,n) € L.

(4.5 f IF@)|2dy = / IF(x, w)lI*drdp < oo.
L\V Iy x1y

Given ¢ € H 4, and a fixed elemen® € H,, we put
(4.6) E,(n,p):= ¢((h, 11, 0)), A, pueR"O,
(47) Fp(h, ) = ¢([x, 1, 0D, A, peR™,
(4.8) Fous(h,p) = e oMY B ), h e RED,
In addition, we put foW = 12 + u € C*#),
(4.9) Da.s(W) = 90582 + 1) i= Fo sk, ).

We observe thatE,, Fy and Fp, 4 are functions defined ol and 9, 4 is a
function defined orC"-#).

Proposition 4.1.If ¢ € Hat4,,, (§.71) € L and(r, n) € V, then we have the
formulas

(4.10) EsO4 &, 4 1n) = ZoMEmH 1Oy gLy ),
(4.11) '

Foh+ & p+mn) = e oMW EGL ).
(412)  FooO+§ utn) = o 20 oMERTHRERIAC0) £y (1, ).
If W =12 +neC”® thenwe have
(4.13) Oos(W +EQ 4 ) = e ZoMERTER2WID o, (W),
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Moreover, Fy is an element oH o4, -
Proof. We note that

()"+€?lu’+7790) - (g’ n, _SIM‘FTII)L)OO\,M,O)
Thus we have

Esh+ & n+n)=¢((A+§ n+n,0)
= d)((gv n, _g t:u + nt)") o ()"7 M, O))
— pZrio{ME n+i n—p'8)) & ((h, i, 0))
— Zrio{ME i n—p'6)} Ey(h, 10).
This proves Formula (4.10). We observe that
(A +& pn+n0l=En —&'w—un's&—n'E)olr, u 0l
Thus we have

FoO+& pn+n=90(2+& n+n0D)
— 2o IME utnE+n"6)}
x 2T OME (3, . O)
= ¢ MW g ([, 1, O
= MO MED B,
This proves Formula (4.11). According to (4.11), we have

FooO+ & u+n) = e ZoMOHLIOHO) p (3 £ 14 )
_ 2o lMOAD 2 (6]

> ef4nia(/\/l§’u) FtP()" M)
e—Zm’U{M(EQté+2k9'§+2u’§)}

27 t
X e i o (MAR2A) F(p()\» /’L)
— e—Zﬂia{M(EQtE+2)L.Qt§+2/L’E)} F_Q’¢()\,, I'L)

This proves Formula (4.12). Formula (4.13) follows immediately from Formula
(4.12). Indeed, ifW = A2 + n with A, u € R"® we have

VoW +E2+n) =Foeo(A+§& n+mn)
= 2 IMERER20240'D) o (3 1)

_ e—zni o{MEREF2WE)) ﬁ.Qd)(W)
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Remark 4.2The function?, ,(W) is atheta function of level 21 with respect

to 2 if ¥ 4 is holomorphic. Forany € Haq4,,. the functiondy, , satisfies

the well known transformation law of a theta function. In this sense, the lattice
representation( waqq,,,» Ha.qn, ) IS Closely related to theta functions.
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