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Abstract. In this paper, we construct the Schrödinger-Weil representation of the Jacobi
group associated with a positive definite symmetric real matrix of degree m and as its
application, we obtain some properties of theta sums associated with the Schrödinger-Weil
representation.

1. Introduction

For a given fixed positive integer n, we let

Hn =
{
Ω ∈ C(n,n)

∣∣ Ω = tΩ, ImΩ > 0
}

be the Siegel upper half plane of degree n and let

Sp(n,R) =
{
g ∈ R(2n,2n)

∣∣ tgJng = Jn
}

be the symplectic group of degree n, where F (k,l) denotes the set of all k × l matrices with
entries in a commutative ring F for two positive integers k and l, tM denotes the transpose
of a matrix M, ImΩ denotes the imaginary part of Ω and

Jn =

(
0 In

−In 0

)
.

Here In denotes the identity matrix of degree n. We see that Sp(n,R) acts on Hn transitively
by

g · Ω = (AΩ+B)(CΩ+D)−1,

where g =

(
A B
C D

)
∈ Sp(n,R) and Ω ∈ Hn.

For two positive integers n and m, we consider the Heisenberg group

H
(n,m)
R = { (λ, µ;κ) | λ, µ ∈ R(m,n), κ ∈ R(m,m), κ+ µ tλ symmetric }

endowed with the following multiplication law

(λ, µ;κ) ◦ (λ′, µ′;κ′) = (λ+ λ′, µ+ µ′;κ+ κ′ + λ tµ′ − µ tλ′).

We let

GJ = Sp(n,R)nH
(n,m)
R (semi-direct product)

be the Jacobi group endowed with the following multiplication law(
g, (λ, µ;κ)

)
·
(
g′, (λ′, µ′;κ′)

)
=
(
gg′, (λ̃+ λ′, µ̃+ µ′;κ+ κ′ + λ̃ tµ′ − µ̃ tλ′)

)
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with g, g′ ∈ Sp(n,R), (λ, µ;κ), (λ′, µ′;κ′) ∈ H
(n,m)
R and (λ̃, µ̃) = (λ, µ)g′. Then we have the

natural transitive action of GJ on the Siegel-Jacobi space Hn,m := Hn × C(m,n) defined by(
g, (λ, µ;κ)

)
· (Ω, Z) =

(
(AΩ+B)(CΩ+D)−1, (Z + λΩ+ µ)(C Ω+D)−1

)
,

where g =

(
A B
C D

)
∈ Sp(n,R), (λ, µ;κ) ∈ H

(n,m)
R and (Ω, Z) ∈ Hn,m. Thus Hn,m is a

homogeneous Kähler space which is not symmetric. In fact, Hn,m is biholomorphic to the
homogeneous space GJ/KJ , where KJ ∼= U(n) × S(m,R). Here U(n) denotes the unitary
group of degree n and S(m,R) denote the abelian additive group consisting of all m ×m
symmetric real matrices. We refer to [?, ?, ?], [?]-[?] for more details on materials related to
the Siegel-Jacobi space, e.g., Jacobi forms, invariant metrics, invariant differential operators
and Maass-Jacobi forms.

The Weil representation for a symplectic group was first introduced by A. Weil in [?]
to reformulate Siegel’s analytic theory of quadratic forms (cf. [?]) in terms of the group
theoretical theory. It is well known that the Weil representation plays a central role in
the study of the transformation behaviors of theta series. In this paper, we construct the
Schrödinger-Weil representation ωM of the Jacobi group GJ associated with a positive
definite symmetric real matrix M of degree n.

This paper is organized as follows. In Section 2, we review the Schrödinger representation

of the Heisenberg groupH
(n,m)
R associated with a nonzero symmetric real matrix of degreem

which is formulated in [?, ?, ?]. In Section 3, we define the Schrödinger-Weil representation
ωM of the Jacobi group GJ associated with a symmetric positive definite matrix M and
provide some of the actions of ωM on the representation space L2

(
R(m,n)

)
explicitly. In the

final section, we define the theta sum Θ
[M]
f (τ, ϕ ;λ, µ, κ) and obtain some properties of the

theta sum. The theta sum Θ
[M]
f (τ, ϕ ;λ, µ, κ) is a generalization of the theta sum defined

by J. Marklof [?].

Notations : We denote by Z, R and C the ring of integers, the field of real numbers
and the field of complex numbers respectively. C× denotes the multiplicative group of
nonzero complex numbers and Z× denotes the set of all nonzero integers. T denotes the
multiplicative group of complex numbers of modulus one. The symbol “:=” means that the
expression on the right is the definition of that on the left. For two positive integers k and
l, F (k,l) denotes the set of all k × l matrices with entries in a commutative ring F . For a
square matrix A ∈ F (k,k) of degree k, σ(A) denotes the trace of A. For any M ∈ F (k,l), tM
denotes the transpose of a matrix M . In denotes the identity matrix of degree n. We put
i =

√
−1. For a positive integer m we denote by S(m,F ) the additive group consisting of

all m×m symmetric matrices with coefficients in a commutative ring F .

2. The Schrödinger Representation

First of all, we observe that H
(n,m)
R is a 2-step nilpotent Lie group. The inverse of an

element (λ, µ;κ) ∈ H
(n,m)
R is given by

(λ, µ;κ)−1 = (−λ,−µ;−κ+ λ tµ− µ tλ).
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Now we set

[λ, µ;κ] = (0, µ;κ) ◦ (λ, 0; 0) = (λ, µ;κ− µ tλ).

Then H
(n,m)
R may be regarded as a group equipped with the following multiplication

[λ, µ;κ] ⋄ [λ0, µ0;κ0] = [λ+ λ0, µ+ µ0;κ+ κ0 + λ tµ0 + µ0
tλ].

The inverse of [λ, µ;κ] ∈ H
(n,m)
R is given by

[λ, µ;κ]−1 = [−λ,−µ;−κ+ λ tµ+ µ tλ].

We set

L =
{
[0, µ;κ] ∈ H

(n,m)
R

∣∣∣µ ∈ R(m,n), κ = tκ ∈ R(m,m)
}
.

Then L is a commutative normal subgroup of H
(n,m)
R . Let L̂ be the Pontrajagin dual of L,

i.e., the commutative group consisting of all unitary characters of L. Then L̂ is isomorphic
to the additive group R(m,n) × S(m,R) via the canonical pairing

⟨a, â⟩ = e2πi σ(µ̂
tµ+κ̂κ), a = [0, µ;κ] ∈ L, â = (µ̂, κ̂) ∈ L̂,

where S(m,R) denotes the space of all symmetric m×m real matrices.

We put

S =
{
[λ, 0; 0] ∈ H

(n,m)
R

∣∣∣ λ ∈ R(m,n)
}
∼= R(m,n).

Then S acts on L as follows:

[λ, 0; 0] ∗ [0, µ;κ] := [0, µ;κ+ λ tµ+ µ tλ], [λ, 0, 0] ∈ S, [0, µ;κ] ∈ L.

We see that the Heisenberg group
(
H

(n,m)
R , ⋄

)
is isomorphic to the semi-direct product

S n L of S and L whose multiplication law is defined by(
[λ, 0; 0], [0, µ;κ]

)
⋆
(
[λ0, 0; 0], [0, µ0;κ0]

)
:=

(
[λ+ λ0, 0; 0], [0, µ+ µ0;κ+ κ0 + λ tµ0 + µ0

tλ]
)
.

On the other hand, S acts on L̂ by

[λ, 0; 0] • (µ̂, κ̂) = (µ̂+ 2κ̂λ, κ̂),

where [λ, 0; 0] ∈ S, (µ̂, κ̂) ∈ L̂ with µ̂ ∈ R(m,n) and κ̂ ∈ S(m,R). Then we have the following
relation

⟨ [λ, 0; 0] ∗ [0, µ;κ], (µ̂, κ̂) ⟩ = ⟨ [0, µ;κ], [λ, 0; 0] • (µ̂, κ̂) ⟩,
where [λ, 0; 0] ∈ S, [0, µ;κ] ∈ L and (µ̂, κ̂) ∈ L̂.

We have three types of S-orbits in L̂.

Type I. Let κ̂ ∈ S(m,R) be nondegenerate. The S-orbit of (0, κ̂) ∈ L̂ is given by

Ôκ̂ =
{
(2κ̂λ, κ̂) ∈ L̂

∣∣∣ λ ∈ R(m,n)
}
∼= R(m,n).

Type II. Let (µ̂, κ̂) ∈ R(m,n) × S(m,R) with µ̂ ∈ R(m,n), κ̂ ∈ S(m,R) and degenerate
κ̂ ̸= 0. Then

Ô(µ̂,κ̂) =
{
(µ̂+ 2κ̂λ, κ̂)

∣∣∣ λ ∈ R(m,n)
}
$ R(m,n) × {κ̂}.
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Type III. Let ŷ ∈ R(m,n). The S-orbit Ôŷ of (ŷ, 0) is given by

Ôŷ = { (ŷ, 0) } .

We have

L̂ =

 ∪
κ̂∈S(m,R)

κ̂ nondegenerate

Ôκ̂

∪
 ∪

ŷ∈R(m,n)

Ôŷ

∪
 ∪

(µ̂,κ̂)∈R(m,n)×S(m,R)
κ̸̂=0 degenerate

Ô(µ̂,κ̂)


as a set. The stabilizer Sκ̂ of S at (0, κ̂) with nondegenerate κ̂ is given by

Sκ̂ = {0}.

And the stabilizer Sŷ of S at (ŷ, 0) is given by

Sŷ =
{
[λ, 0; 0]

∣∣∣ λ ∈ R(m,n)
}
= S ∼= R(m,n).

In this section, for the present being we set H = H
(n,m)
R for brevity. We see that L is a

closed, commutative normal subgroup of H. Since (λ, µ;κ) = (0, µ;κ + µ tλ) ◦ (λ, 0; 0) for

(λ, µ;κ) ∈ H, the homogeneous space X = L\H can be identified with R(m,n) via

Lh = L ◦ (λ, 0; 0) 7−→ λ, h = (λ, µ;κ) ∈ H.

We observe that H acts on X by

(Lh) · h0 = L (λ+ λ0, 0; 0) = λ+ λ0,

where h = (λ, µ;κ) ∈ H and h0 = (λ0, µ0;κ0) ∈ H.

If h = (λ, µ;κ) ∈ H, according to the Mackey decomposition of h = lh ◦ sh with lh ∈ L
and sh ∈ S, (cf. [?]) we have

lh = (0, µ;κ+ µ tλ), sh = (λ, 0; 0).

Thus if h0 = (λ0, µ0;κ0) ∈ H, then we have

sh ◦ h0 = (λ, 0; 0) ◦ (λ0, µ0;κ0) = (λ+ λ0, µ0;κ0 + λ tµ0)

and so

(2.1) lsh◦h0 =
(
0, µ0;κ0 + µ0

tλ0 + λ tµ0 + µ0
tλ
)
.

For a real symmetric matrix c = tc ∈ S(m,R) with c ̸= 0, we consider the unitary
character χc of L defined by

(2.2) χc ((0, µ;κ)) = eπi σ(cκ), (0, µ;κ) ∈ L.

Then the representation Wc = IndHL χc of H induced from χc is realized on the Hilbert

space H(χc) = L2
(
X, dḣ,C

) ∼= L2
(
R(m,n), dξ

)
as follows. If h0 = (λ0, µ0;κ0) ∈ H and

x = Lh ∈ X with h = (λ, µ;κ) ∈ H, we have

(2.3) (Wc(h0)f) (x) = χc(lsh◦h0)f(xh0), f ∈ H(χc).

According to (2.1) and (2.2), we can describe Formula (2.3) more explicitly as follows.

(2.4) [Wc(h0)f ] (λ) = eπiσ{c(κ0+µ0
tλ0+2λ tµ0)} f(λ+ λ0),
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where h0 = (λ0, µ0;κ0) ∈ H and λ ∈ R(m,n). Here we identified x = Lh (resp.xh0 = Lhh0)
with λ (resp. λ+λ0). The induced representation Wc is called the Schrödinger representation
of H associated with χc. Thus Wc is a monomial representation.

Theorem 2.1. Let c be a positive definite symmetric real matrix of degree m. Then the
Schrödinger representation Wc of H is irreducible.

Proof. The proof can be found in [?], Theorem 3. �

Remark 2.1. We refer to [?]-[?] for more representations of the Heisenberg group H
(n,m)
R

and their related topics.

3. The Schrödinger-Weil Representation

Throughout this section we assume that M is a positive definite symmetric real m×m

matrix. We consider the Schrödinger representation WM of the Heisenberg group H
(n,m)
R

with the central character WM((0, 0;κ)) = χM((0, 0;κ)) = eπi σ(Mκ), κ ∈ S(m,R) (cf. (2.2)).
We note that the symplectic group Sp(n,R) acts on H

(n,m)
R by conjugation inside GJ . For

a fixed element g ∈ Sp(n,R), the irreducible unitary representation W g
M of H

(n,m)
R defined

by

(3.1) W g
M(h) = WM(ghg−1), h ∈ H

(n,m)
R

has the property that

W g
M((0, 0;κ)) = WM((0, 0;κ)) = eπi σ(Mκ) IdH(χM), κ ∈ S(m,R).

Here IdH(χM) denotes the identity operator on the Hilbert space H(χM). According to
Stone-von Neumann theorem, there exists a unitary operator RM(g) on H(χM) with
RM(I2n) = IdH(χM) such that

(3.2) RM(g)WM(h) = W g
M(h)RM(g) for all h ∈ H

(n,m)
R .

We observe that RM(g) is determined uniquely up to a scalar of modulus one.

From now on, for brevity, we put G = Sp(n,R). According to Schur’s lemma, we have a
map cM : G×G −→ T satisfying the relation

(3.3) RM(g1g2) = cM(g1, g2)RM(g1)RM(g2) for all g1, g2 ∈ G.

We recall that T denotes the multiplicative group of complex numbers of modulus one.
Therefore RM is a projective representation of G on H(χM) and cM defines the cocycle
class in H2(G,T ). The cocycle cM yields the central extension GM of G by T . The group
GM is a set G× T equipped with the following multiplication

(3.4) (g1, t1) · (g2, t2) =
(
g1g2, t1t2 cM(g1, g2)

−1
)
, g1, g2 ∈ G, t1, t2 ∈ T.

We see immediately that the map R̃M : GM −→ GL(H(χM)) defined by

(3.5) R̃M(g, t) = tRM(g) for all (g, t) ∈ GM
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is a true representation of GM. As in Section 1.7 in [?], we can define the map sM : G −→ T
satisfying the relation

cM(g1, g2)
2 = sM(g1)

−1sM(g2)
−1sM(g1g2) for all g1, g2 ∈ G.

Thus we see that

(3.6) G2,M =
{
(g, t) ∈ GM | t2 = sM(g)−1

}
is the metaplectic group associated with M that is a two-fold covering group of G. The

restriction R2,M of R̃M to G2,M is the Weil representation of G associated with M.

If we identify h = (λ, µ;κ) ∈ H
(n,m)
R (resp. g ∈ Sp(n,R)) with (I2n, (λ, µ;κ)) ∈ GJ (resp.

(g, (0, 0; 0)) ∈ GJ), every element g̃ of GJ can be written as g̃ = hg with h ∈ H
(n,m)
R and

g ∈ Sp(n,R). In fact,

(g, (λ, µ;κ)) = (I2n, ((λ, µ)g
−1;κ)) (g, (0, 0; 0)) = ((λ, µ)g−1;κ) · g.

Therefore we define the projective representation πM of the Jacobi group GJ with cocycle
cM(g1, g2) by

(3.7) πM(hg) = WM(h)RM(g), h ∈ H
(n,m)
R , g ∈ G.

Indeed, since H
(n,m)
R is a normal subgroup of GJ , for any h1, h2 ∈ H

(n,m)
R and g1, g2 ∈ G,

πM(h1g1h2g2) = πM(h1g1h2g
−1
1 g1g2)

= WM
(
h1(g1h2g

−1
1 )
)
RM(g1g2)

= cM(g1, g2)WM(h1)W
g1
M (h2)RM(g1)RM(g2)

= cM(g1, g2)WM(h1)RM(g1)WM(h2)RM(g2)

= cM(g1, g2)πM(h1g1)πM(h2g2).

We let

GJ
M= GM nH

(n,m)
R

be the semidirect product of GM and H
(n,m)
R with the multiplication law(

(g1, t1), (λ1, µ1;κ1)
)
·
(
(g2, t2), (λ2, µ2 ;κ2)

)
=

(
(g1, t1)(g2, t2), (λ̃+ λ2, µ̃+ µ2 ;κ1 + κ2 + λ̃ tµ2 − µ̃ tλ2)

)
,

where (g1, t1), (g2, t2) ∈ GM, (λ1, µ1;κ1), (λ2, µ2 ;κ2) ∈ H
(n,m)
R and (λ̃, µ̃) = (λ, µ)g2. If we

identify h = (λ, µ ;κ) ∈ H
(n,m)
R (resp. (g, t) ∈ GM) with ((I2n, 1), (λ, µ ;κ)) ∈ GJ

M (resp.

((g, t), (0, 0; 0)) ∈ GJ
M), we see easily that every element

(
(g, t), (λ, µ ;κ)

)
of GJ

M can be
expressed as(

(g, t), (λ, µ ;κ)
)
=
(
(I2n, 1), ((λ, µ)g

−1;κ)
)(
(g, t), (0, 0; 0)

)
= ((λ, µ)g−1;κ)(g, t).

Now we can define the true representation ω̃M of GJ
M by

(3.8) ω̃M(h·(g, t)) = t πM(hg) = tWM(h)RM(g), h ∈ H
(n,m)
R , (g, t) ∈ GM.
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Indeed, since H
(n,m)
R is a normal subgroup of GJ

M,

ω̃M
(
h1(g1, t1)h2(g2, t2)

)
= ω̃M

(
h1(g1, t1)h2(g1, t1)

−1(g1, t1)(g2, t2)
)

= ω̃M
(
h1(g1, t1)h2(g1, t1)

−1
(
g1g2, t1t2 cM(g1, g2)

−1
))

= t1t2 cM(g1, g2)
−1 WM

(
h1(g1, t1)h2(g1, t1)

−1
)
RM(g1g2)

= t1t2 WM(h1)WM
(
(g1, t1)h2(g1, t1)

−1
)
RM(g1)RM(g2)

= t1t2 WM(h1)WM
(
g1h2g

−1
1

)
RM(g1)RM(g2)

= t1t2 WM(h1)RM(g1)WM(h2)RM(g2)

= {t1 πM(h1g1)} {t2 πM(h2g2)}
= ω̃M

(
h1(g1, t1)

)
ω̃M

(
h2(g2, t2)

)
.

Here we used the fact that (g1, t1)h2(g1, t1)
−1 = g1h2g

−1
1 .

We recall that the following matrices

t(b) =

(
In b
0 In

)
with any b = tb ∈ R(n,n),

g(α) =

(
tα 0
0 α−1

)
with any α ∈ GL(n,R),

σn =

(
0 −In
In 0

)
generate the symplectic group G = Sp(n,R) (cf. [?, p. 326], [?, p. 210]). Therefore the

following elements ht(λ, µ ;κ), t(b ; t), g(α ; t) and σn ;t of GM nH
(n,m)
R defined by

ht(λ, µ ;κ) =
(
(I2n, t), (λ, µ;κ)

)
with t ∈ T, λ, µ ∈ R(m,n) and κ ∈ R(m,m),

t(b ; t) =
(
(t(b), t), (0, 0; 0)

)
with any b = tb ∈ R(n,n), t ∈ T,

g(α ; t) =
((
g(α), t), (0, 0; 0)

)
with any α ∈ GL(n,R) and t ∈ T,

σn ; t = ((σn, t), (0, 0; 0)) with t ∈ T

generate the group GMnH
(n,m)
R . We can show that the representation ω̃M is realized on the

representation H(χM) = L2
(
R(m,n)

)
as follows: for each f ∈ L2

(
R(m,n)

)
and x ∈ R(m,n),

the actions of ω̃M on the generators are given by

[
ω̃M

(
ht(λ, µ ;κ)

)
f
]
(x) = t eπi σ{M(κ+µ tλ+2x tµ)} f(x+ λ),(3.9) [

ω̃M
(
t(b ; t)

)
f
]
(x) = t eπi σ(Mx b tx)f(x),(3.10) [

ω̃M
(
g(α ; t)

)
f
]
(x) = t | detα|

m
2 f(x tα),(3.11)

(3.12)
[
ω̃M

(
σn ; t

)
f
]
(x) = t

(
detM

)n
2

∫
R(m,n)

f(y) e−2πi σ(M y tx) dy.

Let

GJ
2,M= G2,M nH

(n,m)
R
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be the semidirect product of G2,M and H
(n,m)
R . Then GJ

2,M is a subgroup of GJ
M which is

a two-fold covering group of the Jacobi group GJ . The restriction ωM of ω̃M to GJ
2,M is

called the Schrödinger-Weil representation of GJ associated with M.

We denote by L2
+

(
R(m,n)

) (
resp. L2

−
(
R(m,n)

))
the subspace of L2

(
R(m,n)

)
consisting of

even (resp. odd) functions in L2
(
R(m,n)

)
. According to Formulas (3.10)–(3.12), R2,M is

decomposed into representations of R±
2,M

R2,M = R+
2,M ⊕R−

2,M,

where R+
2,M and R−

2,M are the even Weil representation and the odd Weil representation of

G that are realized on L2
+

(
R(m,n)

)
and L2

−
(
R(m,n)

)
respectively. Obviously the center Z J

2,M
of GJ

2,M is given by

Z J
2,M =

{(
(I2n, 1), (0, 0;κ)

)
∈ GJ

2,M
} ∼= S(m,R).

We note that the restriction of ωM to G2,M coincides with R2,M and ωM(h) = WM(h) for

all h ∈ H
(n,m)
R .

Remark 3.1. In the case n = m = 1, ωM is dealt in [?] and [?]. We refer to [?] and [?]
for more details about the Weil representation R2,M.

Remark 3.2. The Schrödinger-Weil representation is applied usefully to the theory of
Maass-Jacobi forms [?].

4. Theta Sums

LetM be a positive definite symmetric real matrix of degreem. We recall the Schrödinger

representation WM of the Heisenberg groupH
(n,m)
R associate withM given by Formula (2.4)

in Section 2. We note that for an element (λ, µ;κ) of H
(n,m)
R , we have the decomposition

(λ, µ;κ) = (λ, 0; 0) ◦ (0, µ; 0) ◦ (0, 0;κ−λ tµ).

We consider the embedding Φn : SL(2,R) −→ Sp(n,R) defined by

(4.1) Φn

((
a b
c d

))
:=

(
aIn bIn
cIn dIn

)
,

(
a b
c d

)
∈ SL(2,R).

For x, y ∈ R(m,n), we put

(x, y)M := σ( txMy) and ∥x∥M :=
√
(x, x)M.

According to Formulas (3.10)-(3.12), for any M =

(
a b
c d

)
∈ SL(2,R) ↪→ Sp(n,R) and

f ∈ L2
(
R(m,n)

)
, we have the following explicit representation

(4.2) [RM(M)f ](x) =

{
|a|

mn
2 eab∥x∥

2
Mπif(ax) if c = 0,

(detM)
n
2 |c|−

mn
2

∫
R(m,n) e

α(M,x,y,M)
c

πif(y)dy if c ̸= 0,
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where
α(M,x, y,M) = a ∥x∥2M + d ∥y∥2M − 2(x, y)M.

Indeed, if a = 0 and c ̸= 0, using the decomposition

M =

(
0 −c−1

c d

)
=

(
0 −1
1 0

)(
c d
0 c−1

)
and if a ̸= 0 and c ̸= 0, using the decomposition

M =

(
a b
c d

)
=

(
a c−1

0 a−1

)(
0 −1
1 0

)(
ac ad
0 (ac)−1

)
,

we obtain Formula (4.2).

If

M1 =

(
a1 b1
c1 d1

)
, M2 =

(
a2 b2
c2 d2

)
and M3 =

(
a3 b3
c3 d3

)
∈ SL(2,R)

with M3 = M1M2, the corresponding cocycle is given by

(4.3) cM(M1,M2) = e−i πmn sign(c1c2c3)/4,

where

sign(x) =


−1 (x < 0)

0 (x = 0)

1 (x > 0).

In the special case when

M1 =

(
cosϕ1 − sinϕ1

sinϕ1 cosϕ1

)
and M2 =

(
cosϕ2 − sinϕ2

sinϕ2 cosϕ2

)
,

we find
cM(M1,M2) = e−i πmn (σϕ1

+σϕ2
−σϕ1+ϕ2

)/4,

where

σϕ =

{
2ν if ϕ = νπ

2ν + 1 if νπ < ϕ < (ν + 1)π.

It is well known that every M ∈ SL(2,R) admits the unique Iwasawa decomposition

(4.4) M =

(
1 u
0 1

)(
v1/2 0

0 v−1/2

)(
cosϕ − sinϕ
sinϕ cosϕ

)
,

where τ = u+ iv ∈ H1 and ϕ ∈ [0, 2π). This parametrization M = (τ, ϕ) in SL(2,R) leads
to the natural action of SL(2,R) on H1 × [0, 2π) defined by

(4.5)

(
a b
c d

)
(τ, ϕ) :=

(
aτ + b

cτ + d
, ϕ+ arg(cτ + d) mod 2π

)
.

Lemma 4.1. For two elements g1 and g2 in SL(2,R), we let

g1 =

(
1 u1
0 1

)(
v
1/2
1 0

0 v
−1/2
1

)(
cosϕ1 − sinϕ1

sinϕ1 cosϕ1

)
and

g2 =

(
1 u2
0 1

)(
v
1/2
2 0

0 v
−1/2
2

)(
cosϕ2 − sinϕ2

sinϕ2 cosϕ2

)
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be the Iwasawa decompositions of g1 and g2 respectively, where u1, u2 ∈ R, v1 > 0, v2 > 0
and 0 ≤ ϕ1, ϕ2 < 2π. Let

g3 = g1g2 =

(
1 u3
0 1

)(
v
1/2
3 0

0 v
−1/2
3

)(
cosϕ3 − sinϕ3

sinϕ3 cosϕ3

)
be the Iwasawa decomposition of g3 = g1g2. Then we have

u3 =
A

(u2 sinϕ1 + cosϕ1)2 + (v2 sinϕ1)2
,

v3 =
v1v2

(u2 sinϕ1 + cosϕ1)2 + (v2 sinϕ1)2

and

ϕ3 = tan−1

[
(v2 cosϕ2 + u2 sinϕ2) tanϕ1 + sinϕ2

(−v2 sinϕ2 + u2 cosϕ2) tanϕ1 + cosϕ2

]
,

where

A = u1(u2 sinϕ1 + cosϕ1)
2 + (u1v2 − v1u2) sin

2 ϕ1

+ v1u2 cos
2 ϕ1 + v1(u

2
2 + v22 − 1) sinϕ1 cosϕ1.

Proof. If g ∈ SL(2,R) has the unique Iwasawa decomposition (4.4), then we get the following

a = v1/2 cosϕ+ uv−1/2 sinϕ,

b = −v1/2 sinϕ+ uv−1/2 cosϕ,

c = v−1/2 sinϕ, d = v−1/2 cosϕ,

u = (ac+ bd)
(
c2 + d2

)−1
, v =

(
c2 + d2

)−1
, tanϕ =

c

d
.

We set

g3 = g1g2 =

(
a3 b3
c3 d3

)
.

Since

u3 = (a3c3 + b3d3)
(
c23 + d23

)−1
, v =

(
c23 + d23

)−1
, tanϕ3 =

c3
d3

,

by an easy computation, we obtain the desired results. �

Now we use the new coordinates (τ = u+ iv, ϕ) with τ ∈ H1 and ϕ ∈ [0, 2π) in SL(2,R).
According to Formulas (3.10)-(3.12), the projective representation RM of SL(2,R) ↪→
Sp(n,R) reads in these coordinates (τ = u+ iv, ϕ) as follows:

(4.6) [RM(τ, ϕ)f ] (x) = v
mn
4 eu∥x∥

2
Mπ i [RM(i, ϕ)f ]

(
v1/2x

)
,

where f ∈ L2
(
R(m,n)

)
, x ∈ R(m,n) and

[RM(i, ϕ)f ] (x)

=


f(x) if ϕ ≡ 0 mod 2π,

f(−x) if ϕ ≡ π mod 2π,

(detM)
n
2 | sinϕ|−

mn
2

∫
R(m,n) eB(x,y,ϕ,M)πi f(y)dy if ϕ ̸≡ 0 mod π.

(4.7)
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Here

B(x, y, ϕ,M) =

(
∥x∥2M + ∥y∥2M

)
cosϕ− 2(x, y)M

sinϕ
.

Now we set

S =

(
0 −1
1 0

)
.

We note that

(4.8)
[
RM

(
i,
π

2

)
f
]
(x) = [RM(S)f ] (x) = (detM)

n
2

∫
R(m,n)

f(y ) e−2 (x, y)M π i dy

for f ∈ L2
(
R(m,n)

)
.

Remark 4.1. For Schwartz functions f ∈ S
(
R(m,n)

)
, we have

lim
ϕ−→0±

| sinϕ|−
mn
2

∫
R(m,n)

eB(x,y,ϕ,M)π i f(y)dy = e±i πmn/4f(x) ̸= f(x).

Therefore the projective representation RM is not continuous at ϕ = νπ (ν ∈ Z) in general.
If we set

R̃M(τ, ϕ) = e−i πmnσϕ/4RM(τ, ϕ),

R̃M corresponds to a unitary representation of the double cover of SL(2,R) (cf. (3.5) and
[?]). This means in particular that

R̃M(i, ϕ)R̃M(i, ϕ′) = R̃M(i, ϕ+ ϕ′),

where ϕ ∈ [0, 4π) parametrises the double cover of SO(2) ⊂ SL(2,R).

We observe that for any element (g, (λ, µ;κ)) ∈ GJ with g ∈ Sp(n,R) and (λ, µ;κ) ∈
H

(n,m)
R , we have the following decomposition

(g, (λ, µ;κ)) = (I2n, ((λ, µ)g
−1;κ)) (g, (0, 0; 0)) = ((λ, µ)g−1;κ) · g.

Thus Sp(n,R) acts on H
(n,m)
R naturally by

g · (λ, µ;κ) =
(
(λ, µ)g−1;κ

)
, g ∈ Sp(n,R), (λ, µ;κ) ∈ H

(n,m)
R .

Definition 4.1. For any Schwartz function f ∈ S
(
R(m,n)

)
, we define the function Θ

[M]
f

on the Jacobi group SL(2,R)nH
(n,m)
R ↪→ GJ by

(4.9) Θ
[M]
f (τ, ϕ ;λ, µ, κ) :=

∑
ω∈Z(m,n)

[πM ((λ, µ;κ)(τ, ϕ)) f ] (ω),

where (τ, ϕ) ∈ SL(2,R) and (λ, µ ;κ) ∈ H
(n,m)
R . The projective representation πM of the

Jacobi group GJ was already defined by Formula (3.7). More precisely, for τ = u+ iv ∈ H1

and (λ, µ;κ) ∈ H
(n,m)
R , we have

Θ
[M]
f (τ, ϕ ;λ, µ, κ) = v

mn
4 e2π i σ(M(κ+µtλ))

×
∑

ω∈Z(m,n)

eπ i{u∥ω+λ∥2M +2(ω, µ)M} [RM(i, ϕ)f ]
(
v1/2(ω + λ)

)
.
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Lemma 4.2. We set fϕ := R̃M(i, ϕ)f for f ∈ S
(
R(m,n)

)
. Then for any R > 1, there

exists a constant CR such that for all x ∈ R(m,n) and ϕ ∈ R,

|fϕ(x)| ≤ CR (1 + ∥x∥M)−R .

Proof. Following the arguments in the proof of Lemma 4.3 in [?], pp. 428-429, we get the
desired result. �

Theorem 4.1 (Jacobi 1). Let M be a positive definite symmetric integral matrix of degree

m such that MZ(m,n) = Z(m,n). Then for any Schwartz function f ∈ S
(
R(m,n)

)
, we have

Θ
[M]
f

(
−1

τ
, ϕ+ arg τ ;−µ, λ, κ

)
=
(
detM

)−n
2 cM(S, (τ, ϕ))Θ

[M]
f (τ, ϕ ;λ, µ, κ),

where

cM(S, (τ, ϕ)) := ei πmn sign(sinϕ sin(ϕ+arg τ)).

Proof. First we recall that for any Schwartz function φ ∈ S
(
R(m,n)

)
, the Fourier transform

Fφ of φ is given by (
Fφ

)
(x) =

∫
R(m,n)

φ(y) e−2πi σ(y tx)dy.

Now we put

S =

(
0 −1
1 0

)
∈ SL(2,Z) ↪→ Sp(n,R)

and for any F ∈ S
(
R(m,n)

)
, we put

FM(x) := F (M−1x), x ∈ R(m,n).

According to Formula (3.12), for any F ∈ S
(
R(m,n)

)
,

[RM(S)F ] (x) =
(
detM

)n
2

∫
R(m,n)

F (y) e−2πi σ(My tx)dy

=
(
detM

)−n
2

∫
R(m,n)

F (M−1y) e−2πi σ(y tx)dy

=
(
detM

)−n
2

∫
R(m,n)

FM(y) e−2πi σ(y tx)dy

=
(
detM

)−n
2 [FFM] (x).

Thus we have

(4.10) FFM =
(
detM

)n
2 RM(S)F for F ∈ S

(
R(m,n)

)
.

By Lemma 4.1, we get easily

(4.11) S · (τ, ϕ) =
(
−1

τ
, ϕ+ arg τ

)
.

If we take F = πM((λ, µ ;κ)(τ, ϕ))f for f ∈ S
(
R(m,n)

)
, a fixed element (λ, µ ;κ) ∈ H

(n,m)
R

and an fixed element (τ, ϕ) ∈ SL(2,R), then it is easily seen that F ∈ S
(
R(m,n)

)
.
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According to Formulas (4.11), if we take F = πM((λ, µ ;κ)(τ, ϕ))f for f ∈ S
(
R(m,n)

)
,[

RM(S)F
]
(x) =

[
RM(S)πM

(
(λ, µ ;κ)(τ, ϕ)

)
f
]
(x), x ∈ R(m,n)

= [RM(S)WM(λ, µ ;κ)RM(τ, ϕ)f ] (x)

=
[
WM

(
(λ, µ)S−1;κ

)
RM(S)RM(τ, ϕ)f

]
(x)

= cM(S, (τ, ϕ))−1
[
WM(−µ, λ ;κ)RM

(
S · (τ, ϕ)

)
f
]
(x)

= cM(S, (τ, ϕ))−1

[
WM(−µ, λ ;κ)RM

(
−1

τ
, ϕ+ arg τ

)
f

]
(x)

= cM(S, (τ, ϕ))−1

[
πM

(
(−µ, λ ;κ)

(
−1

τ
, ϕ+ arg τ

))
f

]
(x).

Thus we obtain

(4.12)
[
RM(S)F

]
(x) = cM(S, (τ, ϕ))−1

[
πM

(
(−µ, λ ;κ)

(
−1

τ
, ϕ+ arg τ

))
f

]
(x).

According to Poisson summation formula, we have

(4.13)
∑

ω∈Z(m,n)

[FFM] (ω) =
∑

ω∈Z(m,n)

FM(ω).

It follows from (4.10) and (4.12) that∑
ω∈Z(m,n)

[FFM] (ω) =
(
detM

)n
2

∑
ω∈Z(m,n)

[
RM(S)F

]
(ω)

=
(
detM

)n
2 cM(S, (τ, ϕ))−1

×
∑

ω∈Z(m,n)

[
πM

(
(−µ, λ ;κ)

(
−1

τ
, ϕ+ arg τ

))
f

]
(x)

=
(
detM

)n
2 cM(S, (τ, ϕ))−1Θ

[M]
f

(
−1

τ
, ϕ+ arg τ ;−µ, λ, κ

)
.

On the other hand,∑
ω∈Z(m,n)

FM(ω) =
∑

ω∈Z(m,n)

F
(
M−1ω

)
=

∑
ω∈Z(m,n)

[πM((λ, µ ;κ)(τ, ϕ))f ]
(
M−1ω

)
=

∑
ω∈Z(m,n)

[πM((λ, µ ;κ)(τ, ϕ))f ] (ω)
(
∵ M−1Z(m,n) = Z(m,n)

)
= Θ

[M]
f (τ, ϕ ;λ, µ, κ).

Hence from (4.13) we obtain the desired formula

Θ
[M]
f

(
−1

τ
, ϕ+ arg τ ;−µ, λ, κ

)
=
(
detM

)−n
2 cM(S, (τ, ϕ))Θ

[M]
f (τ, ϕ ;λ, µ, κ).

If

S =

(
a1 b1
c1 d1

)
, (τ, ϕ) =

(
a2 b2
c2 d2

)
and S · (τ, ϕ) =

(
a3 b3
c3 d3

)
∈ SL(2,R),
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according to Lemma 4.1, we get easily

c1c2c3 =
(
u2 + v2

)1/2
sinϕ sin(ϕ+ arg τ),

where

(τ, ϕ) =

(
1 u
0 1

)(
v1/2 0

0 v−1/2

)(
cosϕ − sinϕ
sinϕ cosϕ

)
is the Iwasawa decomposition of (τ, ϕ) ∈ SL(2,R). Thus we obtain

cM(S, (τ, ϕ)) = ei πmn sign(c1c2c3) = ei πmn sign(sinϕ sin(ϕ+arg τ)).

This completes the proof. �

Theorem 4.2 (Jacobi 2). Let M = (Mkl) be a positive definite symmetric integral m×m

matrix and let s = (skj) ∈ Z(m,n) be integral. Then we have

Θ
[M]
f (τ + 2, ϕ ;λ, s− 2λ+ µ, κ− s tλ) = Θ

[M]
f (τ, ϕ ;λ, µ, κ)

for all (τ, ϕ) ∈ SL(2,R) and (λ, µ;κ) ∈ H
(n,m)
R .

Proof. For brevity, we put T∗ =

(
1 2
0 1

)
. According to Lemma 4.1, for any (τ, ϕ) ∈ SL(2,R),

the multiplication of T∗ and (τ, ϕ) is given by

(4.14) T∗(τ, ϕ) = (τ + 2, ϕ).

For s ∈ R(m,n), (λ, µ ;κ) ∈ H
(n,m)
R and (τ, ϕ) ∈ SL(2,R), according to (4.14),

πM((0, s; 0)T∗)πM((λ, µ ;κ)(τ, ϕ))

= WM(0, s; 0)RM(T∗)WM(λ, µ ;κ)RM(τ, ϕ)

= WM(0, s; 0)WM
(
(λ, µ)T−1

∗ ;κ
)
RM(T∗)RM(τ, ϕ)

= cM(T∗, (τ, ϕ))
−1WM(λ, s− 2λ+ µ ;κ− s tλ)RM

(
T∗(τ, ϕ)

)
= WM(λ, s− 2λ+ µ ;κ− s tλ)RM(τ + 2, ϕ)

= πM
(
(λ, s− 2λ+ µ ;κ− s tλ)(τ + 2, ϕ)

)
.

Here we used the fact that cM(T∗, (τ, ϕ)) = 1 because T∗ is upper triangular.

On the other hand, according to the assumptions on M and s, for f ∈ S
(
R(m,n)

)
and

ω ∈ Z(m,n), using Formulas (2.4), (3.10) or (4.6), we have[
πM
(
(0, s; 0)T∗

)
πM
(
(λ, µ;κ)(τ, ϕ)

)
f
]
(ω)

=
[
WM(0, s; 0)RM(T∗)πM

(
(λ, µ;κ)(τ, ϕ)

)
f
]
(ω)

= e2πi σ(Mω ts) · e2 ∥ω∥2Mπ i
[
RM(i, 0)πM

(
(λ, µ;κ)(τ, ϕ)

)
f
]
(ω)

=
[
πM
(
(λ, µ;κ)(τ, ϕ)

)
f
]
(ω).

Here we used the facts that

e2πi σ(Mω ts) = 1, e2 ∥ω∥
2
Mπ i = 1 and RM(i, 0)f = f (cf. (4.7)).
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Therefore for f ∈ S
(
R(m,n)

)
,

Θ
[M]
f (τ + 2, ϕ ;λ, s− 2λ+ µ, κ− s tλ)

=
∑

ω∈Z(m,n)

[
πM
(
(λ, s− 2λ+ µ, κ− s tλ)(τ + 2, ϕ)

)
f
]
(ω)

=
∑

ω∈Z(m,n)

[
πM
(
(0, s; 0)T∗

)
πM
(
(λ, µ;κ)(τ, ϕ)

)
f
]
(ω)

=
∑

ω∈Z(m,n)

[
πM
(
(λ, µ;κ)(τ, ϕ)

)
f
]
(ω)

= Θ
[M]
f (τ, ϕ ;λ, µ, κ).

This completes the proof. �

Theorem 4.3 (Jacobi 3). Let M = (Mkl) be a positive definite symmetric integral m×m

matrix and let (λ0, µ0;κ0) ∈ H
(m,n)
Z be an integral element of H

(n,m)
R . Then we have

Θ
[M]
f (τ, ϕ ;λ+ λ0, µ+ µ0, κ+ κ0 + λ0

tµ− µ0
tλ)

= eπ i σ(M(κ0+µ0
tλ0))Θ

[M]
f (τ, ϕ ;λ, µ, κ)

for all (τ, ϕ) ∈ SL(2,R) and (λ, µ;κ) ∈ H
(n,m)
R .

Proof. For any f ∈ S
(
R(m,n)

)
, we have

∑
ω∈Z(m,n)

[
WM(λ0, µ0;κ0)πM

(
(λ, µ ;κ)(τ, ϕ)

)
f
]
(ω)

=
∑

ω∈Z(m,n)

[WM(λ0, µ0;κ0)WM(λ, µ ;κ)RM(τ, ϕ)f ] (ω)

=
∑

ω∈Z(m,n)

[
WM(λ0 + λ, µ0 + µ;κ0 + κ+ λ0

tµ− µ0
tλ))RM(τ, ϕ)f

]
(ω)

=
∑

ω∈Z(m,n)

[
πM
(
(λ0 + λ, µ0 + µ;κ0 + κ+ λ0

tµ− µ0
tλ)(τ, ϕ)

)
f
]
(ω)

= Θ
[M]
f (τ, ϕ ;λ+ λ0, µ+ µ0, κ+ κ0 + λ0

tµ− µ0
tλ).
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On the other hand, for any f ∈ S
(
R(m,n)

)
, we have∑

ω∈Z(m,n)

[
WM(λ0, µ0;κ0)πM

(
(λ, µ ;κ)(τ, ϕ)

)
f
]
(ω)

=
∑

ω∈Z(m,n)

eπiσ{M(κ0+µ0
tλ0+2ω tµ0)} [πM(τ, ϕ ;λ, µ, κ)f ] (ω + λ0)

= eπiσ{M(κ0+µ0
tλ0}

∑
ω∈Z(m,n)

[πM(τ, ϕ ;λ, µ, κ)f ] (ω + λ0) (∵ µ0 is integral)

= eπiσ{M(κ0+µ0
tλ0}

∑
ω∈Z(m,n)

[πM(τ, ϕ ;λ, µ, κ)f ] (ω) (∵ λ0 is integral)

= eπiσ{M(κ0+µ0
tλ0}Θ

[M]
f (τ, ϕ ;λ, µ, κ).

Finally we obtain the desired result. �

We put V (m,n) = R(m,n) × R(m,n). Let

G(m,n) := SL(2,R)n V (m,n)

be the group with the following multiplication law

(4.15) (g1, (λ1, µ1)) · (g2, (λ2, µ2)) = (g1g2, (λ1, µ1)g2 + (λ2, µ2)),

where g1, g2 ∈ SL(2,R) and λ1, λ2, µ1, µ2 ∈ R(m,n).

We define

Γ(m,n) := SL(2,Z)nH
(n,m)
Z .

Then Γ(m,n) acts on G(m,n) naturally through the multiplication law (4.15).

Lemma 4.3. Γ(m,n) is generated by the elements

(S, (0, 0)), (T♭, (0, s)) and (I2, (λ0, µ0)),

where

S =

(
0 −1
1 0

)
, T♭ =

(
1 1
0 1

)
and s, λ0, µ0 ∈ Z(m,n).

Proof. Since SL(2,Z) is generated by S and T♭, we get the desired result. �

We define

Θ
[M]
f (τ, ϕ;λ, µ)

= v
mn
4

∑
ω∈Z(m,n)

eπ i{u∥ω+λ∥2M +2(ω, µ)M} [RM(i, ϕ)f ]
(
v1/2(ω + λ)

)
.

Theorem 4.4. Let Γ
(m,n)
[2] be the subgroup of Γ(m,n) generated by the elements

(S, (0, 0)), (T∗, (0, s)) and (I2, (λ0, µ0)),

where

T∗ =

(
1 2
0 1

)
and s, λ0, µ0 ∈ Z(m,n).
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Let M = (Mkl) be a positive definite symmetric unimodular integral m × m matrix such

that MZ(m,n) = Z(m,n). Then for f, g ∈ S
(
R(m,n)

)
, the function

Θ
[M]
f (τ, ϕ;λ, µ)Θ

[M]
g (τ, ϕ;λ, µ)

is invariant under the action of Γ
(m,n)
[2] on G(m,n).

Proof. The proof follows directly from Theorem 4.1 (Jacobi 1), Theorem 4.2 (Jacobi 2) and

Theorem 4.3 (Jacobi 3) because the left actions of the generators of Γ
(m,n)
[2] are given by

((τ, ϕ), (λ, µ)) 7−→
((

−1

τ
, ϕ+ arg τ

)
, (−µ, λ)

)
,

((τ, ϕ), (λ, µ)) 7−→ ((τ + 2, ϕ), (λ, s− 2λ+ µ))

and

((τ, ϕ), (λ, µ)) 7−→ ((τ, ϕ), (λ+ λ0, µ+ µ0)).

�

References

[1] R. Berndt and R. Schmidt, Elements of theRepresentation Theory of the Jacobi Group, Birkhäuser, 1998.
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