2014학년도 1학기 (기말고사)		학 과			감독교수확인
과 목 명	일반수학 1	학 번			
출제교수명	용	교수명	분	를 반	
시 험 일 시	2014년 6월 18일 (오전 10:00-11:40)	성 명		·	점 수

1번 - 10번은 단답형 문제(각 5점 만점)입니다. 풀 이과정은 쓸 필요 없고 답만 쓰면 됩니다.

 $\int_{0}^{\infty} 3$. 부정적분 $\int_{0}^{\infty} \sin(\ln x) dx$ 를 구하여라.

x = 0, x = 1로 둘러싸인 영역을 $x - ^2$ 을 중심으로 회전시켜 얻은 회전체의 부피를 구하여라.

1. 두 곡선 $y = \sinh(x)$ 와 $y = \cosh(x)$ 와 두 직선

답:

2. 극한 $\lim_{n\to\infty} \sum_{i=1}^{n} \frac{1}{\sqrt{3n^2+i^2}}$ 을 구하여라.

답:

4. 정적분 $\int_0^1 \frac{dx}{x^3 + x^2 + x + 1}$ 를 구하여라.

답:

답:

2014학년도 19	2014학년도 1학기 (기말고사)			감!	독교수확인
과 목 명	일반수학 1	학 번			
출제교수명	용	교수명	분 반		
시 혐 일 시	2014년 6월 18일 (오전 10:00-11:40)	성 명		점 수	

5. 급수	$\sum_{n=1}^{\infty} \frac{2\sqrt{n}}{n^s + 1} \circ]$	수렴하는	실수 s 의] 범위를	구하여	7. $\theta =$	$\frac{\pi}{2}$ 에서	곡선	$r = e^{\theta} \mathfrak{A}$	접선의	방정식을	구하여라.
라.												

답:

답:

6. 특이적분 $\int_{1}^{\infty} \frac{x^{\alpha}}{\sqrt{x^3 + x + 1}} dx$ 가 수렴하기 위한 실수 $\left| 8. \text{ 멱급수 } \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} (3x - 1)^n \right|$ 의 수렴구간을 구하여라. α 의 범위를 구하여라.

답:

2014학년도 1학기 (기말고사)		학 과		감!	독교수확인
과 목 명	일반수학 1	학 번			
출제교수명	용	교수명	분 반		
시 험 일 시	2014년 6월 18일 (오전 10:00-11:40)	성 명		점 수	

9. $f(x) = e^{2x} \cos(2x)$ 의 $x = 0$ 에서 3차 테일러다항식을	· 11번~15번은 서술형 문제(각 10점 만점)입니다. (
구하시오.	이과정을 모두 서술하여야 합니다.

11. 부정적분 $\int \frac{\cos \theta}{1-\cos \theta} d\theta$ 를 구하여라.

-	
$\Gamma \perp$	•
-	
\mathbf{H}	

10. 곡선 $r=1-\cos\theta$ $(0\leq\theta\leq\pi)$ 를 x-축으로 회전했을 때 생기는 회전체의 겉넓이를 구하여라.

답:

2014학년도 1학기 (기말고사)		학 과		감!	독교수확인
과 목 명	일반수학 1	학 번			
출제교수명	용	교수명	분 반		
시 험 일 시	2014년 6월 18일 (오전 10:00-11:40)	성 명		점 수	

시엄될시	(오전 10:00-11:4	.0)			
12.	$f(x) = \int_0^x \frac{\sin t}{t+1} dt$	라고 하자	13. r=2cos2θ의 외부, r= 부의 공통인 부분의 넓이를	: 2의 내부 <u>-</u> 구하여라.	1리고 r=1의 외
$f(x) = \sum_{n=0}^{\infty} a_n x^n \Xi \Xi$	표현될 때, 계수 $a_0, a_1,$	a_2, a_3, a_4 를 구			
하여라.					

2014학년도 1학기 (기말고사)		학 과		감!	독교수확인
과 목 명	일반수학 1	학 번			
출제교수명	용	교수명	분 반		
시 혐 일 시	2014년 6월 18일 (오전 10:00-11:40)	성 명		점 수	

(土色 10:00-11:40)							
$14.$ 급수 $\sum_{n=2}^{\infty} \frac{\cos n \cdot \ln n}{n^2}$ 의 수렴여부를 판정하여라.	15. (1)					. < b)에	대해
$n=2$ n^2	$\int \frac{1}{a^2 \sin^2 \theta}$	$\frac{1}{+b^2\cos^2\theta}$	- dθ를	구하여	라.		
	(2) 두 타원	$\frac{x^2}{a^2}$	$\frac{y^2}{b^2} = 1$,	$\frac{x^2}{b^2} + \frac{3}{2}$	$\frac{y^2}{x^2} = 1$ 의	1사분면	에서의
	공통 내부의						